ICS8735AY-01T [ICSI]

1:5 DIFFERENTIAL-TO-3.3V LVPECL ZERO DELAY CLOCK GENERATOR; 1 : 5差分至3.3V LVPECL零延迟时钟发生器
ICS8735AY-01T
型号: ICS8735AY-01T
厂家: INTEGRATED CIRCUIT SOLUTION INC    INTEGRATED CIRCUIT SOLUTION INC
描述:

1:5 DIFFERENTIAL-TO-3.3V LVPECL ZERO DELAY CLOCK GENERATOR
1 : 5差分至3.3V LVPECL零延迟时钟发生器

时钟发生器 逻辑集成电路 驱动
文件: 总17页 (文件大小:287K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICS8735-01  
Integrated  
Circuit  
Systems, Inc.  
1:5 DIFFERENTIAL  
-
TO-3.3V LVPECL  
ZERO  
D
ELAY  
CLOCK  
GENERATOR  
GENERAL DESCRIPTION  
FEATURES  
The ICS8735-01 is a highly versatile 1:5 Differ- 5 differential 3.3V LVPECL outputs  
ICS  
ential-to-3.3V LVPECL clock generator and a  
Selectable differential clock inputs  
HiPerClockS™  
member of the HiPerClockS™ family of High  
Performance Clock Solutions from ICS. The  
ICS8735-01 has a fully integrated PLL and can  
CLKx, nCLKx pair can accept the following differential  
input levels: LVPECL, LVDS, LVHSTL, SSTL, HCSL  
be configured as zero delay buffer, multiplier or divider, and  
has an output frequency range of 31.25MHz to 700MHz.The  
reference divider, feedback divider and output divider are each  
programmable, thereby allowing for the following output-to-  
input frequency ratios: 8:1, 4:1, 2:1, 1:1, 1:2, 1:4, 1:8. The  
external feedback allows the device to achieve “zero delay”  
between the input clock and the output clocks.The PLL_SEL  
pin can be used to bypass the PLL for system test and debug  
purposes. In bypass mode, the reference clock is routed  
around the PLL and into the internal output dividers.  
Output frequency range: 31.25MHz to 700MHz  
Input frequency range: 31.25MHz to 700MHz  
VCO range: 250MHz to 700MHz  
Programmable dividers allow for the following output-to-input  
frequency ratios: 8:1, 4:1, 2:1, 1:1, 1:2, 1:4, 1:8  
External feedback for “zero delay” clock regeneration  
with configurable frequencies  
Cycle-to-cycle jitter: 25ps (maximum)  
Output skew: 25ps (maximum)  
Static phase offset: 50ps 100ps  
3.3V supply voltage  
0°C to 70°C ambient operating temperature  
Industrial temperature information available upon request  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
Q0  
nQ0  
PLL_SEL  
Q1  
nQ1  
÷1, ÷2, ÷4, ÷8,  
0
÷16, ÷32, ÷64  
CLK0  
nCLK0  
32 31 30 29 28 27 26 25  
Q2  
nQ2  
0
SEL0  
SEL1  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
VCCO  
Q3  
1
CLK1  
1
Q3  
nQ3  
nCLK1  
CLK0  
nQ3  
Q2  
PLL  
Q4  
nQ4  
nCLK0  
CLK1  
CLK_SEL  
ICS8735-01  
nQ2  
Q1  
8:1, 4:1, 2:1, 1:1,  
1:2, 1:4, 1:8  
nCLK1  
CLK_SEL  
FB_IN  
nFB_IN  
nQ1  
VCCO  
MR  
9
10 11 12 13 14 15 16  
SEL0  
SEL1  
SEL2  
SEL3  
MR  
32-Lead LQFP  
7mm x 7mm x 1.4mm package body  
Y Package  
TopView  
32-LeadVFQFN  
5mm x 5mm x 0.95 package body  
K Package  
TopView  
8735AY-01  
www.icst.com/products/hiperclocks.html  
REV. F NOVEMBER 12, 2004  
1
ICS8735-01  
Integrated  
Circuit  
Systems, Inc.  
1:5 DIFFERENTIAL  
-
TO-3.3V LVPECL  
ZERO  
D
ELAY  
CLOCK  
GENERATOR  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
SEL0  
Type  
Description  
1
2
3
4
5
6
Input Pulldown Determines output divider values in Table 3. LVCMOS / LVTTL interface levels.  
Input Pulldown Determines output divider values in Table 3. LVCMOS / LVTTL interface levels.  
Input Pulldown Non-inverting differential clock input.  
SEL1  
CLK0  
nCLK0  
CLK1  
nCLK1  
Input  
Pullup Inverting differential clock input.  
Input Pulldown Non-inverting differential clock input.  
Input  
Pullup Inverting differential clock input.  
Clock select input. When HIGH, selects CLK1, nCLK1.  
7
CLK_SEL Input Pulldown  
When LOW, selects CLK0, nCLK0. LVCMOS / LVTTL interface levels.  
Active HIGH Master Reset. When logic HIGH, the internal dividers are reset  
causing the true outputs Qx to go low and the inverted outputs nQx to go high.  
When logic LOW, the internal dividers and the otuputs are enabled.  
LVCMOS / LVTTL interface levels.  
8
MR  
Input Pulldown  
Power  
9, 32  
10  
VCC  
nFB_IN  
FB_IN  
SEL2  
VEE  
Core supply pins.  
Input  
Pullup  
Feedback input to phase detector for regenerating clocks with "zero delay".  
11  
Input Pulldown Feedback input to phase detector for regenerating clocks with "zero delay".  
Input Pulldown Determines output divider values in Table 3. LVCMOS / LVTTL interface levels.  
12  
13, 28  
14, 15  
Power  
Negative supply pins.  
nQ0, Q0 Output  
VCCO Power  
Differential output pair. LVPECL interface levels.  
16, 17,  
24, 25  
Output supply pins.  
18, 19  
20, 21  
22, 23  
26, 27  
29  
nQ1, Q1 Output  
nQ2, Q2 Output  
nQ3, Q3 Output  
nQ4, Q4 Output  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
SEL3  
VCCA  
Input Pulldown Determines output divider values in Table 3. LVCMOS / LVTTL interface levels.  
30  
Power  
Analog supply pin.  
Selects between the PLL and reference clock as the input to the dividers.  
When LOW, selects reference clock.When HIGH, selects PLL.  
LVCMOS / LVTTL interface levels.  
31  
PLL_SEL  
Input  
Pullup  
NOTE: Pullup and Pulldown refers to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
Input Capacitance  
Input Pullup Resistor  
Input Pulldown Resistor  
4
pF  
K  
KΩ  
RPULLUP  
RPULLDOWN  
51  
51  
8735AY-01  
www.icst.com/products/hiperclocks.html  
REV. F NOVEMBER 12, 2004  
2
ICS8735-01  
Integrated  
Circuit  
Systems, Inc.  
1:5 DIFFERENTIAL  
-
TO-3.3V LVPECL  
ZERO  
D
ELAY  
CLOCK  
GENERATOR  
TABLE 3A. CONTROL INPUT FUNCTION TABLE  
Outputs  
Inputs  
SEL0  
PLL_SEL = 1  
PLL Enable Mode  
Q0:Q4, nQ0:nQ4  
SEL3  
SEL2  
SEL1  
Reference Frequency Range (MHz)*  
250 - 700  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
÷ 1  
÷ 1  
÷ 1  
÷ 1  
÷ 2  
÷ 2  
÷ 2  
÷ 4  
÷ 4  
÷ 8  
x 2  
x 2  
x 2  
x 4  
x 4  
x 8  
125 - 350  
62.5 - 175  
31.25 - 87.5  
250 - 700  
125 - 350  
62.5 - 175  
250 - 700  
125 - 350  
250 - 700  
125 - 350  
62.5 - 175  
31.25 - 87.5  
62.5 - 175  
31.25 - 87.5  
31.25 - 87.5  
*NOTE: VCO frequency range for all configurations above is 250 to 700MHz.  
TABLE 3B. PLL BYPASS FUNCTION TABLE  
Inputs  
Outputs  
PLL_SEL = 0  
PLL Bypass Mode  
SEL3  
SEL2  
SEL1  
SEL0  
Q0:Q4, nQ0:nQ4  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
÷ 4  
÷ 4  
÷ 4  
÷ 8  
÷ 8  
÷ 8  
÷ 16  
÷ 16  
÷ 32  
÷ 64  
÷ 2  
÷ 2  
÷ 4  
÷ 1  
÷ 2  
÷ 1  
8735AY-01  
www.icst.com/products/hiperclocks.html  
REV. F NOVEMBER 12, 2004  
3
ICS8735-01  
Integrated  
Circuit  
Systems, Inc.  
1:5 DIFFERENTIAL  
-
TO-3.3V LVPECL  
ZERO  
D
ELAY  
CLOCK  
GENERATOR  
ABSOLUTE MAXIMUM RATINGS  
SupplyVoltage, V  
4.6V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
device.These ratings are stress specifications only.Functional  
operation of product at these conditions or any conditions be-  
yond those listed in the DC Characteristics or AC Character-  
istics is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect product reliability.  
CC  
Inputs, V  
-0.5V to VCC + 0.5 V  
-0.5V to VCCO + 0.5V  
I
Outputs, VO  
PackageThermal Impedance, θ  
32 Lead LQFP  
JA  
47.9°C/W (0 lfpm)  
34.8°C/W (0 lfpm)  
32 LeadVFQFN  
StorageTemperature, T  
-65°C to 150°C  
STG  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V 5ꢀ, TA = 0°C TO 70°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
VCC  
VCCA  
VCCO  
IEE  
Core Supply Voltage  
3.135  
3.135  
3.135  
3.3  
3.3  
3.3  
3.465  
3.465  
3.465  
150  
V
V
Analog Supply Voltage  
Output Supply Voltage  
Power Supply Current  
Analog Supply Current  
V
mA  
mA  
ICCA  
15  
TABLE 4B. LVCMOS/LVTTL DC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V 5ꢀ, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
VIH  
VIL  
Input High Voltage  
2
VCC + 0.3  
0.8  
V
V
Input Low Voltage  
Input High Current  
-0.3  
CLK_SEL, MR, SEL0,  
SEL1, SEL2, SEL3  
VIN = VCC = 3.465V  
VIN = VCC = 3.465V  
150  
5
µA  
µA  
IIH  
PLL_SEL  
CLK_SEL, MR, SEL0,  
SEL1, SEL2, SEL3  
VIN = 0V, VCC = 3.465V  
-5  
µA  
µA  
IIL  
Input Low Current  
PLL_SEL  
V
IN = 0V, VCC = 3.465V  
-150  
TABLE 4C. DIFFERENTIAL DC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V 5ꢀ, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
CLK0, CLK1, FB_IN  
nCLK0, nCLK1, nFB_IN  
CLK0, CLK1, FB_IN  
nCLK0, nCLK1, nFB_IN  
V
IN = VCC = 3.465V  
150  
5
µA  
µA  
µA  
µA  
V
Input  
IIH  
High Current  
VIN = VCC = 3.465V  
VIN = 0V, VCC = 3.465V  
-5  
-150  
Input  
IIL  
Low Current  
V
IN = 0V, VCC = 3.465V  
VPP  
Peak-to-Peak Input Voltage  
0.15  
1.3  
VCMR  
Common Mode Input Voltage; NOTE 1, 2  
VEE + 0.5  
VCC - 0.85  
V
NOTE 1: For single ended applications, the maximum input voltage for CLK, nCLK is VCC + 0.3V.  
NOTE 2: Common mode voltage is defined as VIH.  
8735AY-01  
www.icst.com/products/hiperclocks.html  
REV. F NOVEMBER 12, 2004  
4
ICS8735-01  
Integrated  
Circuit  
Systems, Inc.  
1:5 DIFFERENTIAL  
-
TO-3.3V LVPECL  
ZERO  
D
ELAY  
CLOCK  
GENERATOR  
TABLE 4D. LVPECL DC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V 5ꢀ, TA = 0°C TO 70°C  
Symbol  
VOH  
Parameter  
Test Conditions  
Minimum  
VCCO - 1.4  
VCCO - 2.0  
0.6  
Typical  
Maximum Units  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
Peak-to-Peak Output Voltage Swing  
VCCO - 1.0  
VCCO - 1.7  
1.0  
V
V
V
VOL  
VSWING  
NOTE 1: Outputs terminated with 50to VCCO - 2V.  
TABLE 5. INPUT FREQUENCY CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V 5ꢀ, TA = 0°C TO 70°C  
Symbol Parameter  
fIN Input Frequency  
Test Conditions  
PLL_SEL = 1  
PLL_SEL = 0  
Minimum Typical Maximum Units  
31.25  
700  
700  
MHz  
MHz  
CLK0, nCLK0,  
CLK1, nCLK1  
TABLE 6. AC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V 5ꢀ, TA = 0°C TO 70°C  
Symbol Parameter  
fMAX Output Frequency  
tPD  
Test Conditions  
Minimum Typical Maximum Units  
700  
4.2  
150  
25  
MHz  
ns  
Propagation Delay; NOTE 1  
Static Phase Offset; NOTE 2, 5  
Output Skew; NOTE 3, 5  
Cycle-to-Cycle Jitter; NOTE 5, 6  
Phase Jitter; NOTE 4, 5, 6  
PLL Lock Time  
PLL_SEL = 0V, f 700MHz  
3.4  
-50  
t(Ø)  
tsk(o)  
tjit(cc)  
tjit(θ)  
tL  
PLL_SEL = 3.3V  
50  
ps  
ps  
25  
ps  
50  
ps  
1
ms  
ps  
tR  
Output Rise Time  
20ꢀ to 80ꢀ @ 50MHz  
20ꢀ to 80ꢀ @ 50MHz  
300  
300  
47  
700  
700  
53  
tF  
Output Fall Time  
ps  
odc  
Output Duty Cycle  
All parameters measured at fMAX unless noted otherwise.  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Defined as the time difference between the input reference clock and the averaged feedback input signal,  
when the PLL is locked and the input reference frequency is stable.  
NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
NOTE 4: Phase jitter is dependent on the input source used.  
NOTE 5: This parameter is defined in accordance with JEDEC Standard 65.  
NOTE 6: Characterized at VCO frequency of 622MHz.  
8735AY-01  
www.icst.com/products/hiperclocks.html  
REV. F NOVEMBER 12, 2004  
5
ICS8735-01  
Integrated  
Circuit  
Systems, Inc.  
1:5 DIFFERENTIAL  
-
TO-3.3V LVPECL  
ZERO  
D
ELAY  
CLOCK  
GENERATOR  
PARAMETER MEASUREMENT INFORMATION  
2V  
VCC  
SCOPE  
VCC  
VCCA  
,
Qx  
,
VCCO  
nCLK0,  
nCLK1  
LVPECL  
VPP  
VCMR  
Cross Points  
nQx  
VEE  
CLK0,  
CLK1  
-1.3V 0.165V  
VEE  
3.3V OUTPUT LOAD AC TEST CIRCUIT  
DIFFERENTIAL INPUT LEVEL  
nQx  
Qx  
nQ0:nQ4  
Q0:Q4  
tcycle n  
tcycle n+1  
nQy  
Qy  
tjit(cc) = tcycle n –tcycle n+1  
1000 Cycles  
tsk(o)  
OUTPUT SKEW  
CYCLE-TO-CYCLE JITTER  
nQ0:nQ4  
80ꢀ  
tF  
80ꢀ  
Q0:Q4  
VSWING  
20ꢀ  
Pulse Width  
Clock  
20ꢀ  
tPERIOD  
Outputs  
tR  
tPW  
odc =  
tPERIOD  
OUTPUT RISE/FALL TIME  
OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD  
nCLK0,  
nCLK1  
CLK0,  
CLK1  
VOH  
VOL  
nCLK0,  
nCLK1  
CLK0,  
CLK1  
nFB_IN  
VOH  
VOL  
FB_IN  
nQ0:nQ4  
t(Ø)  
Q0:Q4  
tPD  
tjit(Ø) = t(Ø) — t(Ø) mean = Phase Jitter  
t(Ø) mean = Static Phase Offset  
(where t(Ø) is any random sample, and t(Ø) mean is the average  
of the sampled cycles measured on controlled edges)  
PROPAGATION DELAY  
PHASE JITTER & STATIC PHASE OFFSET  
8735AY-01  
www.icst.com/products/hiperclocks.html  
REV. F NOVEMBER 12, 2004  
6
ICS8735-01  
Integrated  
Circuit  
Systems, Inc.  
1:5 DIFFERENTIAL  
-
TO-3.3V LVPECL  
ZERO  
D
ELAY  
CLOCK  
GENERATOR  
APPLICATION INFORMATION  
TERMINATION FOR LVPECL OUTPUTS  
The clock layout topology shown below is a typical termina-  
tion for LVPECL outputs.The two different layouts mentioned  
are recommended only as guidelines.  
50transmission lines. Matched impedance techniques should  
be used to maximize operating frequency and minimize signal  
distortion. Figures 1A and 1B show two different layouts which  
are recommended only as guidelines. Other suitable clock lay-  
outs may exist and it would be recommended that the board  
designers simulate to guarantee compatibility across all printed  
circuit and clock component process variations.  
FOUT and nFOUT are low impedance follower outputs that gen-  
erate ECL/LVPECL compatible outputs.Therefore, terminating  
resistors (DC current path to ground) or current sources must  
be used for functionality. These outputs are designed to drive  
3.3V  
Zo = 50  
125  
125Ω  
FOUT  
FIN  
Z
o = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
Zo = 50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
((VOH + VOL) / (VCC – 2)) – 2  
84Ω  
84Ω  
FIGURE 1A. LVPECL OUTPUT TERMINATION  
FIGURE 1B. LVPECL OUTPUT TERMINATION  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS  
Figure 2 shows how the differential input can be wired to accept  
single ended levels. The reference voltage V_REF = VCC/2 is  
generated by the bias resistors R1, R2 and C1.This bias circuit  
should be located as close as possible to the input pin.The ratio  
of R1 and R2 might need to be adjusted to position theV_REF in  
the center of the input voltage swing. For example, if the input  
clock swing is only 2.5V and VCC = 3.3V, V_REF should be 1.25V  
and R2/R1 = 0.609.  
VCC  
R1  
1K  
Single Ended Clock Input  
V_REF  
CLKx  
nCLKx  
C1  
0.1u  
R2  
1K  
FIGURE 2. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT  
8735AY-01  
www.icst.com/products/hiperclocks.html  
REV. F NOVEMBER 12, 2004  
7
ICS8735-01  
Integrated  
Circuit  
Systems, Inc.  
1:5 DIFFERENTIAL  
-
TO-3.3V LVPECL  
ZERO  
D
ELAY  
CLOCK  
GENERATOR  
DIFFERENTIAL CLOCK INPUT INTERFACE  
The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL here are examples only. Please consult with the vendor of the  
and other differential signals.BothVSWING and VOH must meet the driver component to confirm the driver termination requirements.  
VPP and VCMR input requirements. Figures 3A to 3D show inter- For example in Figure 3A, the input termination applies for ICS  
face examples for the HiPerClockS CLK/nCLK input driven by HiPerClockS LVHSTL drivers. If you are using an LVHSTL driver  
the most common driver types.The input interfaces suggested from another vendor, use their termination recommendation.  
3.3V  
3.3V  
3.3V  
1.8V  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
nCLK  
Zo = 50 Ohm  
HiPerClockS  
Input  
LVPECL  
nCLK  
HiPerClockS  
Input  
LVHSTL  
R1  
50  
R2  
50  
ICS  
HiPerClockS  
R1  
50  
R2  
50  
LVHSTL Driver  
R3  
50  
FIGURE 3A. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
ICS HIPERCLOCKS LVHSTL DRIVER  
FIGURE 3B. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
3.3V  
3.3V  
3.3V  
3.3V  
Zo = 50 Ohm  
3.3V  
R3  
125  
R4  
125  
LVDS_Driver  
Zo = 50 Ohm  
Zo = 50 Ohm  
CLK  
CLK  
R1  
100  
nCLK  
Receiv er  
nCLK  
HiPerClockS  
Input  
Zo = 50 Ohm  
LVPECL  
R1  
84  
R2  
84  
FIGURE 3C. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
FIGURE 3D. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
3.3V LVDS DRIVER  
8735AY-01  
www.icst.com/products/hiperclocks.html  
REV. F NOVEMBER 12, 2004  
8
ICS8735-01  
Integrated  
Circuit  
Systems, Inc.  
1:5 DIFFERENTIAL  
-
TO-3.3V LVPECL  
ZERO  
D
ELAY  
CLOCK  
GENERATOR  
POWER SUPPLY FILTERING TECHNIQUES  
As in any high speed analog circuitry, the power supply pins  
are vulnerable to random noise. The ICS8735-01 provides  
separate power supplies to isolate any high switching  
noise from the outputs to the internal PLL.VCC, VCCA, and VCCO  
should be individually connected to the power supply  
plane through vias, and bypass capacitors should be  
used for each pin. To achieve optimum jitter performance,  
power supply isolation is required. Figure 4 illustrates how  
a 10resistor along with a 10µF and a .01µF bypass  
capacitor should be connected to each VCCA pin.  
3.3V  
VCC  
10  
.01µF  
VCCA  
10µF  
.01µF  
FIGURE 4. POWER SUPPLY FILTERING  
LAYOUT GUIDELINE  
The schematic of the ICS8735-01 layout example is shown in depend on the selected component types, the density of the  
Figure 5A. The ICS8735-01 recommended PCB board layout components, the density of the traces, and the stack up of the  
for this example is shown in Figure 5B. This layout example is P.C.board.  
used as a general guideline.The layout in the actual system will  
VCC  
SP = Space (i.e. not intstalled)  
R7  
VCC  
VCCA  
RU2  
SP  
RU3  
1K  
RU4  
1K  
RU5  
SP  
RU6  
1K  
RU7  
SP  
SEL[3:0] = 0101,  
Divide by 2  
10  
C11  
0.01u  
CLK_SEL  
PLL_SEL  
SEL0  
C16  
10u  
SEL1  
SEL2  
SEL3  
Zo = 50 Ohm  
Zo = 50 Ohm  
(77.76 MHz)  
+
-
RD2  
1K  
RD3  
SP  
RD4  
SP  
RD5  
1K  
RD6  
SP  
RD7  
1K  
VCC  
VCCO  
LVPECL_input  
R5  
50  
R4  
50  
U1  
3.3V  
(155.52 MHz)  
Zo = 50 Ohm  
Output  
Termination  
Example  
SEL0  
SEL1  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
SEL0  
SEL1  
VCCO  
R6  
50  
Q3  
nQ3  
Q2  
nQ2  
Q1  
nQ1  
VCCO  
CLK0  
nCLK0  
CLK1  
nCLK1  
CLK_SEL  
MR  
Zo = 50 Ohm  
CLK_SEL  
3.3V PECL Driver  
Bypass capacitor located near the power pins  
R8  
50  
R9  
50  
(U1-9)  
(U1-32)  
VCC  
8735-01  
VCC=3.3V  
C1  
0.1uF  
C6  
0.1uF  
VCCO=3.3V  
R10  
50  
SEL2  
(U1-16)  
(U1-17)  
(U1-24)  
(U1-25)  
VCCO  
R2  
50  
R1  
50  
C2  
0.1uF  
C4  
0.1uF  
C5  
0.1uF  
C7  
0.1uF  
R3  
50  
FIGURE 5A. ICS8735-01 LVPECL ZERO DELAY BUFFER SCHEMATIC EXAMPLE  
www.icst.com/products/hiperclocks.html  
8735AY-01  
REV. F NOVEMBER 12, 2004  
9
ICS8735-01  
Integrated  
Circuit  
Systems, Inc.  
1:5 DIFFERENTIAL  
-
TO-3.3V LVPECL  
ZERO  
D
ELAY  
CLOCK  
GENERATOR  
The following component footprints are used in this layout  
example:  
of the trace and the trace delay might be restricted by the  
available space on the board and the component location.  
While routing the traces, the clock signal traces should be routed  
first and should be locked prior to routing other signal traces.  
All the resistors and capacitors are size 0603.  
POWER AND GROUNDING  
• The differential 50output traces should have same  
Place the decoupling capacitors C1, C6, C2, C4, C5, and C7,  
as close as possible to the power pins. If space allows, place-  
ment of the decoupling capacitor on the component side is  
preferred. This can reduce unwanted inductance between the  
decoupling capacitor and the power pin caused by the via.  
length.  
• Avoid sharp angles on the clock trace.Sharp angle  
turns cause the characteristic impedance to change on  
the transmission lines.  
• Keep the clock traces on the same layer.Whenever pos-  
sible, avoid placing vias on the clock traces. Placement  
of vias on the traces can affect the trace characteristic  
impedance and hence degrade signal integrity.  
Maximize the power and ground pad sizes and number of vias  
capacitors.This can reduce the inductance between the power  
and ground planes and the component power and ground pins.  
To prevent cross talk, avoid routing other signal traces in  
parallel with the clock traces. If running parallel traces is  
unavoidable, allow a separation of at least three trace  
widths between the differential clock trace and the other  
signal trace.  
The RC filter consisting of R7, C11, and C16 should be placed  
as close to the VCCA pin as possible.  
CLOCK TRACES AND TERMINATION  
Poor signal integrity can degrade the system performance or  
cause system failure. In synchronous high-speed digital sys-  
tems, the clock signal is less tolerant to poor signal integrity  
than other signals. Any ringing on the rising or falling edge  
or excessive ring back can cause system failure. The shape  
• Make sure no other signal traces are routed between the  
clock trace pair.  
• The matching termination resistors should be located as  
close to the receiver input pins as possible.  
GND  
R7  
C16  
C11  
C7  
VCCO  
C6  
C5  
VCC  
U1  
Pin 1  
VCCA  
VIA  
50 Ohm  
Traces  
C4  
C1  
C2  
FIGURE 5B. PCB BOARD LAYOUT FOR ICS8735-01  
8735AY-01  
www.icst.com/products/hiperclocks.html  
REV. F NOVEMBER 12, 2004  
10  
ICS8735-01  
Integrated  
Circuit  
Systems, Inc.  
1:5 DIFFERENTIAL  
-
TO-3.3V LVPECL  
ZERO  
D
ELAY  
CLOCK  
GENERATOR  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS8735-01.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS8735-01 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.3V + 5ꢀ = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.465V * 150mA = 520mW  
Power (outputs)MAX = 30.2mW/Loaded Output pair  
If all outputs are loaded, the total power is 5 * 30.2mW = 151mW  
Total Power_MAX (3.465V, with all outputs switching) = 520mW + 151mW = 671mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device.The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = JunctionTemperature  
θJA = Junction-to-AmbientThermal Resistance  
Pd_total =Total Device Power Dissipation (example calculation is in section 1 above)  
TA = AmbientTemperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 42.1°C/W perTable 7A below.  
Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:  
70°C + 0.671W * 42.1°C/W = 98°C. This is well below the limit of 125°C  
This calculation is only an example.Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 7A. THERMAL RESISTANCE θJA FOR 32-PIN LQFP, FORCED CONVECTION  
θJA byVelocity (Linear Feet per Minute)  
0
200  
55.9°C/W  
42.1°C/W  
500  
50.1°C/W  
39.4°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
67.8°C/W  
47.9°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
TABLE 7B. θJAVS. AIR FLOW TABLE FOR 32 LEAD VFQFN PACKAGE  
θJA 0 Air Flow (Linear Feet per Minute)  
0
Multi-Layer PCB, JEDEC StandardTest Boards  
34.8C/W  
8735AY-01  
www.icst.com/products/hiperclocks.html  
REV. F NOVEMBER 12, 2004  
11  
ICS8735-01  
Integrated  
Circuit  
Systems, Inc.  
1:5 DIFFERENTIAL  
-
TO-3.3V LVPECL  
ZERO  
D
ELAY  
CLOCK  
GENERATOR  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVPECL output driver circuit and termination are shown in Figure 6.  
VCCO  
Q1  
VOUT  
R L  
50  
VCCO - 2V  
FIGURE 6. LVPECL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50load, and a termination  
voltage ofV - 2V.  
CCO  
For logic high, VOUT = V  
= V  
– 1.0V  
OH_MAX  
CCO_MAX  
)
= 1.0V  
OH_MAX  
(V  
- V  
CCO_MAX  
For logic low, VOUT = V  
= V  
– 1.7V  
OL_MAX  
CCO_MAX  
)
= 1.7V  
OL_MAX  
(V  
- V  
CCO_MAX  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
))  
Pd_H = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
- V  
/R ] * (V  
- V  
) =  
OH_MAX  
CCO_MAX  
CCO_MAX  
OH_MAX  
CCO_MAX  
OH_MAX  
CCO_MAX  
OH_MAX  
L
L
[(2V - 1V)/50] * 1V = 20.0mW  
))  
Pd_L = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
/R ] * (V  
- V  
) =  
OL_MAX  
CCO_MAX  
CCO_MAX  
OL_MAX  
CCO_MAX  
OL_MAX  
CCO_MAX  
OL_MAX  
L
L
[(2V - 1.7V)/50] * 1.7V = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30.2mW  
8735AY-01  
www.icst.com/products/hiperclocks.html  
REV. F NOVEMBER 12, 2004  
12  
ICS8735-01  
Integrated  
Circuit  
Systems, Inc.  
1:5 DIFFERENTIAL  
-
TO-3.3V LVPECL  
ZERO  
D
ELAY  
CLOCK  
GENERATOR  
RELIABILITY INFORMATION  
TABLE 8A. θJAVS. AIR FLOW TABLE FOR 32 LEAD LQFP PACKAGE  
θJA byVelocity (Linear Feet per Minute)  
0
200  
55.9°C/W  
42.1°C/W  
500  
50.1°C/W  
39.4°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
67.8°C/W  
47.9°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
TABLE 8B. θJAVS. AIR FLOW TABLE FOR 32 LEAD VFQFN PACKAGE  
θJA 0 Air Flow (Linear Feet per Minute)  
0
Multi-Layer PCB, JEDEC StandardTest Boards  
34.8C/W  
TRANSISTOR COUNT  
The transistor count for ICS8735-01 is: 2969  
8735AY-01  
www.icst.com/products/hiperclocks.html  
REV. F NOVEMBER 12, 2004  
13  
ICS8735-01  
Integrated  
Circuit  
Systems, Inc.  
1:5 DIFFERENTIAL  
-
TO-3.3V LVPECL  
ZERO  
D
ELAY  
CLOCK  
GENERATOR  
PACKAGE OUTLINE - Y SUFFIX FOR 32 LEAD LQFP  
TABLE 9A. PACKAGE DIMENSIONS  
JEDEC VARIATION  
ALL DIMENSIONS IN MILLIMETERS  
BBA  
SYMBOL  
MINIMUM  
NOMINAL  
MAXIMUM  
N
A
32  
--  
--  
--  
1.60  
0.15  
1.45  
0.45  
0.20  
A1  
A2  
b
0.05  
1.35  
0.30  
0.09  
1.40  
0.37  
c
--  
D
9.00 BASIC  
7.00 BASIC  
5.60 Ref.  
9.00 BASIC  
7.00 BASIC  
5.60 Ref.  
0.80 BASIC  
0.60  
D1  
D2  
E
E1  
E2  
e
L
0.45  
0.75  
θ
--  
0°  
7°  
ccc  
--  
--  
0.10  
Reference Document: JEDEC Publication 95, MS-026  
8735AY-01  
www.icst.com/products/hiperclocks.html  
REV. F NOVEMBER 12, 2004  
14  
ICS8735-01  
Integrated  
Circuit  
Systems, Inc.  
1:5 DIFFERENTIAL  
-
TO-3.3V LVPECL  
ZERO  
D
ELAY  
CLOCK  
GENERATOR  
PACKAGE OUTLINE - K SUFFIX FOR 32 LEAD VFQFN  
TABLE 9B. PACKAGE DIMENSIONS  
JEDEC VARIATION  
ALL DIMENSIONS IN MILLIMETERS  
SYMBOL  
MINIMUM  
MAXIMUM  
N
A
32  
0.80  
0
1.0  
A1  
A3  
b
0.05  
0.25 Reference  
0.18  
0.30  
e
0.50 BASIC  
ND  
NE  
D
8
8
5.0  
D2  
E
1.25  
3.25  
5.0  
E2  
L
1.25  
0.30  
3.25  
0.50  
Reference Document: JEDEC Publication 95, MO-220  
8735AY-01  
www.icst.com/products/hiperclocks.html  
REV. F NOVEMBER 12, 2004  
15  
ICS8735-01  
Integrated  
Circuit  
Systems, Inc.  
1:5 DIFFERENTIAL  
-
TO-3.3V LVPECL  
ZERO  
D
ELAY  
CLOCK  
GENERATOR  
TABLE 10. ORDERING INFORMATION  
Part/Order Number  
Marking  
Package  
Count  
250 per tray  
1000  
Temperature  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
ICS8735AY-01  
ICS8735AY-01T  
ICS8735AK-01  
ICS8735AK-01T  
ICS8735AY-01  
ICS8735AY-01  
ICS8735AK-01  
ICS8735AK-01  
32 Lead LQFP  
32 Lead LQFP on Tape and Reel  
32 Lead VFQFN  
490 per Tray  
2500  
32 Lead VFQFN on Tape and Reel  
The aforementioned trademark, HiPerClockS™ is a trademark of Integrated Circuit Systems, Inc. or its subsidiaries in the United States and/or other countries.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use or  
for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal  
commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not  
recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product for  
use in life support devices or critical medical instruments.  
8735AY-01  
www.icst.com/products/hiperclocks.html  
REV. F NOVEMBER 12, 2004  
16  
ICS8735-01  
Integrated  
Circuit  
Systems, Inc.  
1:5 DIFFERENTIAL  
-
TO-3.3V LVPECL  
ZERO  
D
ELAY  
CLOCK  
GENERATOR  
REVISION HISTORY SHEET  
Description of Change  
Rev  
Table  
Page  
Date  
tPD row changed the Test Condtions from 0MHz < f 700MHz to f 700MHz.  
t(Ø) row changed Parameter name from PLL Reference Zero Delay to  
Static Phase Offset.  
B
T5  
5
10/12/01  
tjit(θ) row changed 85 Max. to 50 Max.  
C
C
T4A  
4
1
Added ICCA row.  
10/30/01  
11/1/01  
Updated Block Diagram.  
T3A  
T6  
3
5
Added note at end of the table.  
Added Note 6.  
C
11/19/01  
C
C
Figure 11  
10  
Revised Figure 11, LVPECL Zero Delay Buffer Schematic Example  
12/3/01  
6/3/02  
10  
2
Added Termination for LVPECL Outputs section  
Pin Description Table - revised MR description.  
T2  
6
3.3V Output Load Test Circuit Diagram, revised VEE equation from  
"-1.3V 0.135V" to " -1.3V 0.165V".  
C
D
E
8/19/02  
9/17/02  
12/3/02  
8
5
Revised Output Rise/Fall Time Diagram.  
T4D  
T6  
LVPECL table - corrected VSWING from 0.9 max. to 1.0 max.  
AC Table - changed tPD from 3.6 min. to 3.4 min, deleted 3.9 typical.  
Updated VCC pin description to read Core supply pins from Positive supply pins.  
5
T1  
2
4
T4A  
Updated VCC to read Core Supply Voltage from Positive Supply Voltage.  
IEE, deleted 100mA typical and added 150mA Maximum.  
Updated format.  
T1  
T2  
2
8
Pin Description Table - updated MR description.  
E
F
1/31/03  
Corrected LVPECL Zero Delay Buffer Schematic Example.  
Add 32 Lead VFQFN package throughout data sheet.  
2
8
Pin Characteristics Table - changed CIN from 4pF max. to 4pF typical.  
Added Differential Clock Input Interface Application Section.  
11/12/04  
8735AY-01  
www.icst.com/products/hiperclocks.html  
REV. F NOVEMBER 12, 2004  
17  

相关型号:

ICS8735AY-31LF

PLL Based Clock Driver, 8735 Series, 5 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, ROHS COMPLIANT, MS-026, LQFP-32
IDT

ICS8735AYI-01

PLL Based Clock Driver, 8735 Series, 5 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, MS-026, LQFP-32
IDT

ICS8735AYI-31LFT

PLL Based Clock Driver, 8735 Series, 5 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, ROHS COMPLIANT, LQFP-32
IDT

ICS87366AMLF

PLL Based Clock Driver, 87366 Series, 6 True Output(s), 0 Inverted Output(s), PDSO24, 7.50 X 15.33 MM, 2.30 MM HEIGHT, MO-119, MS-013, SOIC-24
IDT

ICS87366AMLFT

PLL Based Clock Driver, 87366 Series, 6 True Output(s), 0 Inverted Output(s), PDSO24, 7.50 X 15.33 MM, 2.30 MM HEIGHT, MO-119, MS-013, SOIC-24
IDT

ICS8737-11

LOW SKEW ±1/±2 DIFFERENTIAL-TO- 3.3V LVPECL CLOCK GENERATOR
ICSI

ICS8737-11-LF

Low Skew Clock Driver, 4 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, MO-153, TSSOP-20
IDT

ICS8737-11T

Low Skew Clock Driver, 4 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, MO-153, TSSOP-20
IDT

ICS8737-11T-LF

Low Skew Clock Driver, 4 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, MO-153, TSSOP-20
IDT

ICS8737AG-11

LOW SKEW ±1/±2 DIFFERENTIAL-TO- 3.3V LVPECL CLOCK GENERATOR
ICSI

ICS8737AG-11LF

Low Skew Clock Driver, 8737 Series, 4 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, LEAD FREE, MO-153, TSSOP-20
IDT

ICS8737AG-11T

LOW SKEW ±1/±2 DIFFERENTIAL-TO- 3.3V LVPECL CLOCK GENERATOR
ICSI