82V2048LDA [IDT]

PCM Transceiver, 1-Func, PQFP144, TQFP-144;
82V2048LDA
型号: 82V2048LDA
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

PCM Transceiver, 1-Func, PQFP144, TQFP-144

PC 电信 电信集成电路
文件: 总48页 (文件大小:539K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
OCTAL T1/E1 SHORT HAUL  
ANALOG FRONT END  
IDT82V2048L  
FEATURES  
!
!
Hitless Protection Switching (HPS) for 1 to 1 protection without  
relays  
Octal T1/E1 short haul analog front end which supports 100 Ω  
T1 twisted pair, 120 E1 twisted pair and 75 E1 coaxial  
!
!
!
!
!
applications  
JTAG boundary scan for board test  
3.3 V supply with 5 V tolerant I/O  
Low power consumption  
!
Built-in transmit pre-equalization meets G.703 & T1.102  
!
Digital/Analog LOS detector meets ITU G.775, ETS 300 233 and  
T1.231  
Operating temperature range: -40°C to +85°C  
!
ITU G.772 non-intrusive monitoring for in-service testing for  
any one of channel 1 to channel 7  
Available in 144-pin Thin Quad Flat Pack (TQFP) and 160-pin  
Plastic Ball Grid Array (PBGA) packages  
Green package options available  
!
Low impedance transmit drivers with high-Z  
!
Selectable hardware and parallel/serial host interface  
FUNCTIONAL BLOCK DIAGRAM  
One of Eight Identical Channels  
LOS  
LOSn  
Detector  
RTIPn  
RCn  
RDPn  
RDNn  
Slicer  
RRINGn  
Peak  
Detector  
TCLKn  
TDPn  
TDNn  
TTIPn  
Line  
Driver  
Waveform  
Shaper  
TRINGn  
Transmit  
All Ones  
VDDIO  
Register  
File  
G.772  
Monitor  
Clock  
Generator  
Control Interface  
VDDT  
VDDD  
VDDA  
JTAG TAP  
Figure-1 Block Diagram  
July, 2005  
IDT and the IDT logo are trademarks of Integrated Device Technology, Inc.  
1
DSC-6527/1  
2005 Integrated Device Technology, Inc.  
 
IDT82V2048L OCTAL T1/E1 SHORT HAUL ANALOG FRONT END  
INDUSTRIAL TEMPERATURE RANGES  
PIN CONFIGURATIONS  
TDN3  
RC3  
RDP3  
RDN3  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
TDN4  
RC4  
RDP4  
RDN4  
LOS4  
OE  
CLKE  
VDDT4  
TTIP4  
LOS3  
RTIP3  
RRING3  
VDDT3  
TTIP3  
TRING3  
GNDT3  
RRING2  
RTIP2  
GNDT2  
TRING2  
TTIP2  
VDDT2  
RTIP1  
RRING1  
VDDT1  
TTIP1  
TRING1  
GNDT1  
RRING0  
RTIP0  
GNDT0  
TRING0  
TTIP0  
TRING4  
GNDT4  
RTIP4  
RRING4  
GNDT5  
TRING5  
TTIP5  
VDDT5  
RRING5  
RTIP5  
VDDT6  
TTIP6  
TRING6  
GNDT6  
RTIP6  
RRING6  
GNDT7  
TRING7  
TTIP7  
VDDT7  
RRING7  
RTIP7  
LOS7  
IDT82V2048L  
(Top View)  
VDDT0  
MODE1  
LOS0  
RDN0  
RDP0  
RC0  
TDN0  
TDP0  
RDN7  
RDP7  
RC7  
TDN7  
Figure-2 TQFP144 Package Pin Assignment  
2
IDT82V2048L OCTAL T1/E1 SHORT HAUL ANALOG FRONT END  
INDUSTRIAL TEMPERATURE RANGES  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
TCLK  
7
TCLK  
6
MC  
1
TCLK  
1
TCLK  
0
1
2
1
2
RC7  
RC6  
MCLK  
VDDIO VDDD  
D6  
D5  
D4  
D3  
D7  
RC1  
RC0  
RDP  
7
TDP  
7
RDP  
6
TDP MODE MC  
6
MODE TDP  
RDP  
1
TDP  
0
RDP  
0
D0  
D2  
D1  
2
2
1
1
RDN  
7
TDN  
7
RDN  
6
TDN  
6
LOS  
6
MC  
3
MC  
0
LOS  
1
TDN  
1
RDN  
1
TDN  
0
RDN  
0
3
3
VDDT VDDT VDDT VDDT LOS  
LOS VDDT VDDT VDDT VDDT  
4
A4 GNDIO GNDD  
4
7
7
6
6
7
0
1
1
0
0
TRING TTIP TRING TTIP  
TTIP TRING TTIP TRING  
5
5
7
7
6
6
1
1
0
0
GNDT GNDT GNDT GNDT  
GNDT GNDT GNDT GNDT  
6
6
7
7
6
6
1
1
0
0
RRING  
0
RTIP RRING RTIP RRING  
RRING RTIP  
RTIP  
0
7
7
7
7
6
6
1
1
IDT82V2048L  
(Bottom View)  
RTIP RRING RTIP RRING  
RRING RTIP RRING RTIP  
8
8
4
4
5
5
2
2
3
3
GNDT GNDT GNDT GNDT  
GNDT GNDT GNDT GNDT  
9
9
4
4
5
5
2
2
3
3
TRING TTIP TRING TTIP  
TTIP TRING TTIP TRING  
10  
11  
12  
13  
14  
10  
11  
12  
13  
14  
4
4
5
5
2
2
3
3
VDDT VDDT VDDT VDDT LOS  
LOS VDDT VDDT VDDT VDDT  
TMS GNDIO GNDA  
MODE  
CS  
4
4
5
5
4
3
2
2
3
3
RDN  
4
TDN  
4
RDN  
5
TDN  
5
LOS  
5
TS  
2
LOS  
2
TDN  
2
RDN  
2
TDN  
3
RDN  
3
TDI  
TRST  
0
RDP  
4
TDP  
4
RDP  
5
TDP  
5
TS  
1
TDP  
2
RDP  
2
TDP  
3
RDP  
3
CLKE TDO  
IC  
IC  
INT  
TCLK  
4
TCLK  
5
TS  
0
TCLK  
2
TCLK  
3
RC4  
A
RC5  
C
OE  
E
TCK VDDIO VDDA  
SDO  
RC2  
M
RC3  
P
B
D
F
G
H
J
K
L
N
Figure-3 PBGA160 Package Pin Assignment  
3
IDT82V2048L OCTAL T1/E1 SHORT HAUL ANALOG FRONT END  
INDUSTRIAL TEMPERATURE RANGES  
1
PIN DESCRIPTION  
Table-1 Pin Description  
Pin No.  
Name  
Type  
Description  
TQFP144 PBGA160  
Transmit and Receive Line Interface  
TTIP0  
TTIP1  
TTIP2  
TTIP3  
TTIP4  
TTIP5  
TTIP6  
TTIP7  
45  
52  
57  
N5  
L5  
L10  
N10  
B10  
D10  
D5  
64  
117  
124  
129  
136  
TTIPn/TRINGn: Transmit Bipolar Tip/Ring for Channel 0~7  
B5  
These pins are the differential line driver outputs. They will be in high impedance state if pin OE is low or  
the corresponding pin TCLKn is low (pin OE is global control, while pin TCLKn is per-channel control). In  
host mode, each pin can be in high impedance by programming a ‘1’ to the corresponding bit in register  
OE(1).  
Analog  
Output  
TRING0  
TRING1  
TRING2  
TRING3  
TRING4  
TRING5  
TRING6  
TRING7  
46  
51  
58  
P5  
M5  
M10  
P10  
A10  
C10  
C5  
63  
118  
123  
130  
135  
A5  
RTIP0  
RTIP1  
RTIP2  
RTIP3  
RTIP4  
RTIP5  
RTIP6  
RTIP7  
48  
55  
60  
P7  
M7  
M8  
P8  
A8  
C8  
C7  
A7  
67  
120  
127  
132  
139  
Analog  
Input  
RTIPn/RRINGn: Receive Bipolar Tip/Ring for Channel 0~7  
These pins are the differential line receiver inputs.  
RRING0  
RRING1  
RRING2  
RRING3  
RRING4  
RRING5  
RRING6  
RRING7  
49  
54  
61  
N7  
L7  
L8  
N8  
B8  
D8  
D7  
B7  
66  
121  
126  
133  
138  
1. Register name is indicated by bold capital letter. For example, OE indicates Output Enable Register.  
4
 
IDT82V2048L OCTAL T1/E1 SHORT HAUL ANALOG FRONT END  
INDUSTRIAL TEMPERATURE RANGES  
Table-1 Pin Description (Continued)  
Pin No.  
Name  
Type  
Description  
Transmit and Receive Digital Data Interface  
TQFP144 PBGA160  
TDP0  
TDP1  
TDP2  
TDP3  
TDP4  
TDP5  
TDP6  
TDP7  
37  
30  
80  
73  
108  
101  
8
N2  
L2  
L13  
N13  
B13  
D13  
D2  
TDPn/TDNn: Positive/Negative Transmit Data for Channel 0~7  
The NRZ data to be transmitted for positive/negative pulse is input on this pin. Data on TDPn/TDNn are  
active high and are sampled on the falling edges of TCLKn.  
1
B2  
TDPn  
TDNn  
Output Pulse  
Space  
Negative Pulse  
Positive Pulse  
Space  
I
0
0
1
1
0
1
0
1
TDN0  
TDN1  
TDN2  
TDN3  
TDN4  
TDN5  
TDN6  
TDN7  
38  
31  
79  
N3  
L3  
L12  
N12  
B12  
D12  
D3  
72  
109  
102  
7
144  
B3  
TCLK0  
TCLK1  
TCLK2  
TCLK3  
TCLK4  
TCLK5  
TCLK6  
TCLK7  
36  
29  
81  
74  
107  
100  
9
N1  
L1  
TCLKn: Transmit Clock for Channel 0~7  
L14  
N14  
B14  
D14  
D1  
The clock of 1.544 MHz (for T1 mode) or 2.048 MHz (for E1 mode) for transmit is input on this pin. The  
transmit data at TDPn or TDNn is sampled into the device on the falling edges of TCLKn.  
Different combinations of TCLKn and MCLK result in different transmit mode. It is summarized as Table-2  
System Interface Configuration.  
I
2
B1  
RDP0  
RDP1  
RDP2  
RDP3  
RDP4  
RDP5  
RDP6  
RDP7  
40  
33  
77  
P2  
M2  
M13  
P13  
A13  
C13  
C2  
70  
111  
104  
5
O
RDPn/RDNn: Positive/Negative Receive Data for Channel 0~7  
142  
A2  
These pins output the raw RZ sliced data. The active polarity of RDPn/RDNn is determined by pin CLKE.  
When pin CLKE is low, RDPn/RDNn is active low. When pin CLKE is high, RPDn/RDNn is active high.  
RDPn/RDNn will remain active during LOS. RDPn/RDNn is set into high impedance when the correspond-  
ing receiver is powered down.  
High  
Imped-  
ance  
RDN0  
RDN1  
RDN2  
RDN3  
RDN4  
RDN5  
RDN6  
RDN7  
41  
34  
76  
P3  
M3  
M12  
P12  
A12  
C12  
C3  
69  
112  
105  
4
141  
A3  
RC0  
RC1  
RC2  
RC3  
RC4  
RC5  
RC6  
RC7  
39  
32  
78  
P1  
M1  
O
M14  
P14  
A14  
C14  
C1  
RCn: Receive Pulse for Channel 0~7  
71  
RCn is the output of an internal exclusive OR (XOR) which is connected with RDPn and RDNn. The clock  
is recovered from the signal on RCn. If receiver n is powered down, the corresponding RCn will be in high  
impedance.  
High  
Imped-  
ance  
110  
103  
6
143  
A1  
5
IDT82V2048L OCTAL T1/E1 SHORT HAUL ANALOG FRONT END  
INDUSTRIAL TEMPERATURE RANGES  
Table-1 Pin Description (Continued)  
Pin No.  
Name  
MCLK  
Type  
Description  
TQFP144 PBGA160  
MCLK: Master Clock  
This is an independent, free running reference clock. A clock of 1.544 MHz (for T1 mode) or 2.048 MHz  
(for E1 mode) is supplied to this pin as the clock reference of the device for normal operation.  
When MCLK is low, all the receivers are powered down, and the output pins RCn, RDPn and RDNn are  
switched to high impedance.  
I
10  
E1  
In transmit path, the operation mode is decided by the combination of MCLK and TCLKn (See Table-2  
System Interface Configuration for details).  
NOTE: Wait state generation via RDY/ACK is not available if MCLK is not provided.  
LOS0  
LOS1  
LOS2  
LOS3  
LOS4  
LOS5  
LOS6  
LOS7  
42  
35  
75  
K4  
K3  
LOSn: Loss of Signal Output for Channel 0~7  
A high level on this pin indicates the loss of signal when there is no transition over a specified period of  
time or no enough ones density in the received signal. The transition will return to low automatically when  
there is enough transitions over a specified period of time with a certain ones density in the received sig-  
nal. The LOS assertion and desertion criteria are described in 2.4.3 Loss of Signal (LOS) Detection.  
K12  
K11  
E11  
E12  
E3  
68  
O
113  
106  
3
140  
E4  
Hardware/Host Control Interface  
MODE2: Control Mode Select 2(2)  
The signal on this pin determines which control mode is selected to control the device:  
MODE2  
Low  
Control Interface  
Hardware Mode  
VDDIO/2  
High  
Serial Host Interface  
Parallel Host Interface  
Hardware control pins include MODE[2:0], TS[2:0], CLKE and OE.  
Serial host Interface pins include CS, SCLK, SDI, SDO and INT.  
Parallel host Interface pins include CS, A[4:0], D[7:0], WR/DS, RD/R/W, ALE/AS, INT and RDY/ACK. The  
device supports multiple parallel host interface as follows (refer to MODE1 and MODE0 pin descriptions  
below for details):  
I
MODE2  
11  
E2  
(Pulled to  
VDDIO/2)  
MODE[2:0]  
100  
Host Interface  
Non-multiplexed Motorola Mode Interface  
Non-multiplexed Intel Mode Interface  
Multiplexed Motorola Mode Interface  
Multiplexed Intel Mode Interface  
101  
110  
111  
MODE1: Control Mode Select 1(2)  
In parallel host mode, the parallel interface operates with separate address bus and data bus when this pin  
is low, and operates with multiplexed address and data bus when this pin is high.  
In serial host mode or hardware mode, this pin should be grounded.  
MODE1  
MODE0  
I
43  
88  
K2  
MODE0: Control Mode Select 0(2)  
In parallel host mode, the parallel host interface is configured for Motorola compatible hosts when this pin  
is low, or for Intel compatible hosts when this pin is high.  
I
I
H12  
In serial host mode or hardware mode, this pin should be grounded.  
CS: Chip Select (Active Low)  
In host mode, this pin is asserted low by the host to enable host interface. A high to low transition must  
occur on this pin for each read/write operation and the level must not return to high until the operation is  
over.  
CS  
87  
J11  
(Pulled to  
VDDIO/2)  
In hardware control mode, this pin should be pulled to VDDIO/2.  
2. In host mode, register e-AFE has to be set to ‘FFH’ for proper device operation. See Expanded Register Description on page 28 for more details.  
6
IDT82V2048L OCTAL T1/E1 SHORT HAUL ANALOG FRONT END  
INDUSTRIAL TEMPERATURE RANGES  
Table-1 Pin Description (Continued)  
Pin No.  
Name  
Type  
Description  
TQFP144 PBGA160  
TS2: Template Select 2  
In hardware control mode, the signal on this pin is the most significant bit for the transmit template select.  
Refer to 2.5.1 Waveform Shaper for details.  
SCLK: Shift Clock  
In serial host mode, the signal on this pin is the shift clock for the serial interface. Data on pin SDO is  
clocked out on falling edges of SCLK if pin CLKE is high, or on rising edges of SCLK if pin CLKE is low.  
Data on pin SDI is always sampled on rising edges of SCLK.  
TS2/SCLK/  
ALE/AS  
I
86  
J12  
ALE: Address Latch Enable  
In parallel Intel multiplexed host mode, the address on AD[4:0] is sampled into the device on the falling  
edges of ALE (signals on AD[7:5] are ignored). In non-multiplexed host mode, ALE should be pulled high.  
AS: Address Strobe (Active Low)  
In parallel Motorola multiplexed host mode, the address on AD[4:0] is latched into the device on the falling  
edges of AS (signals on AD[7:5] are ignored). In non-multiplexed host mode, AS should be pulled high.  
TS1: Template Select 1  
In hardware control mode, the signal on this pin is the second most significant bit for the transmit template  
select. Refer to 2.5.1 Waveform Shaper for details.  
RD: Read Strobe (Active Low)  
In parallel Intel multiplexed or non-multiplexed host mode, this pin is active low for read operation.  
TS1/RD/R/W  
I
85  
J13  
R/W: Read/Write Select  
In parallel Motorola multiplexed or non-multiplexed host mode, the pin is active low for write operation and  
high for read operation.  
TS0: Template Select 0  
In hardware control mode, the signal on this pin is the least significant bit for the transmit template select.  
Refer to 2.5.1 Waveform Shaper for details.  
SDI: Serial Data Input  
In serial host mode, this pin input the data to the serial interface. Data on this pin is sampled on the rising  
edges of SCLK.  
WR: Write Strobe (Active Low)  
In parallel Intel host mode, this pin is active low during write operation. The data on D[7:0] (in non-multi-  
plexed mode) or AD[7:0] (in multiplexed mode) is sampled into the device on the rising edges of WR.  
TS0/SDI/WR/  
I
84  
J14  
DS  
DS: Data Strobe (Active Low)  
In parallel Motorola host mode, this pin is active low. During a write operation (R/W = 0), the data on D[7:0]  
(in non-multiplexed mode) or AD[7:0] (in multiplexed mode) is sampled into the device on the rising edges  
of DS. During a read operation (R/W = 1), the data is driven to D[7:0] (in non-multiplexed mode) or AD[7:0]  
(in multiplexed mode) by the device on the rising edges of DS.  
In parallel Motorola non-multiplexed host mode, the address information on the 5 bits of address bus  
A[4:0] are latched into the device on the falling edges of DS.  
7
IDT82V2048L OCTAL T1/E1 SHORT HAUL ANALOG FRONT END  
INDUSTRIAL TEMPERATURE RANGES  
Table-1 Pin Description (Continued)  
Pin No.  
Name  
Type  
Description  
TQFP144 PBGA160  
SDO: Serial Data Output  
In serial host mode, the data is output on this pin. In serial write operation, SDO is always in high imped-  
ance. In serial read operation, SDO is in high impedance only when SDI is in address/command byte. Data  
on pin SDO is clocked out of the device on the falling edges of SCLK if pin CLKE is high, or on the rising  
edges of SCLK if pin CLKE is low.  
SDO/RDY/ACK  
O
83  
K14  
RDY: Ready Output  
In parallel Intel host mode, the high level of this pin reports to the host that bus cycle can be completed,  
while low reports the host must insert wait states.  
ACK: Acknowledge Output (Active Low)  
In parallel Motorola host mode, the low level of this pin indicates that valid information on the data bus is  
ready for a read operation or acknowledges the acceptance of the written data during a write operation.  
O
INT: Interrupt (Active Low)  
INT  
Open  
Drain  
82  
K13  
This is an open drain, active low interrupt output. Two sources may cause the interrupt. Refer to 2.19 Inter-  
rupt Handling for details.  
D7/AD7  
D6/AD6  
D5/AD5  
D4/AD4  
D3/AD3  
D2/AD2  
D1/AD1  
D0/AD0  
28  
27  
26  
25  
24  
23  
22  
21  
K1  
J1  
J2  
J3  
J4  
H2  
H3  
G2  
Dn: Data Bus 7~0  
In non-multiplexed host mode, these pins are the bi-directional data bus.  
I/O  
ADn: Address/Data Bus 7~0  
High  
Imped-  
ance  
In multiplexed host mode, these pins are the multiplexed bi-directional address/data bus.  
In hardware mode, these pins should be tied to VDDIO/2.  
In serial host mode, these pins should be grounded.  
8
IDT82V2048L OCTAL T1/E1 SHORT HAUL ANALOG FRONT END  
INDUSTRIAL TEMPERATURE RANGES  
Table-1 Pin Description (Continued)  
Pin No.  
Name  
Type  
Description  
MCn: Performance Monitor Configuration 3~0  
TQFP144 PBGA160  
In hardware control mode, A4 must be connected to GND. MC[3:0] are used to select a transmitter or  
receiver of channel 1 to 7 for non-intrusive monitoring. Channel 0 is used as the monitoring channel. If a  
transmitter is monitored, signals on the corresponding pins TTIPn and TRINGn are internally transmitted  
to RTIP0 and RRING0 pins. If a receiver is monitored, signals on the corresponding pins RTIPn and  
RRINGn are internally transmitted to RTIP0 and RRING0 pins. The monitored is then output to RDP0 and  
RDN0 pins.  
Performance Monitor Configuration determined by MC[3:0] is shown below. Note that if MC[2:0] = 000, the  
device is in normal operation of all the channels.  
MC[3:0]  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Monitoring Configuration  
Normal operation without monitoring  
Monitor Receiver 1  
Monitor Receiver 2  
Monitor Receiver 3  
Monitor Receiver 4  
Monitor Receiver 5  
Monitor Receiver 6  
Monitor Receiver 7  
A4  
12  
13  
14  
15  
16  
F4  
F3  
F2  
F1  
G3  
MC3/A3  
MC2/A2  
MC1/A1  
MC0/A0  
I
Normal operation without monitoring  
Monitor Transmitter 1  
Monitor Transmitter 2  
Monitor Transmitter 3  
Monitor Transmitter 4  
Monitor Transmitter 5  
Monitor Transmitter 6  
Monitor Transmitter 7  
In host mode operation, the monitoring channel is selected in the PMON register. The signals monitored  
by channel 0 can be routed to TTIP0/RING0 by activating the remote loopback in this channel (refer to  
2.13 G.772 Monitoring).  
An: Address Bus 4~0  
When pin MODE1 is low, the parallel host interface operates with separate address and data bus. In this  
mode, the signal on this pin is the address bus of the host interface.  
When pin MODE1 is high or in serial host mode, these pins should be tied to GND.  
OE: Output Driver Enable  
OE  
I
I
114  
115  
E14  
E13  
Pulling this pin low can drive all driver output into high impedance for redundancy application without  
external mechanical relays. In this condition, all other internal circuits remain active.  
CLKE: Clock Edge Select  
The signal on this pin determines the active edge of RCn, RDPn, RDNn and SCLK. Refer to 2.3 Clock  
Edges for details.  
CLKE  
JTAG Signals  
I
TRST: JTAG Test Port Reset (Active Low)  
TRST  
95  
96  
G12  
F11  
This is the active low asynchronous reset to the JTAG Test Port. This pin has an internal pull-up resistor  
and can be left disconnected.  
Pull-up  
I
TMS: JTAG Test Mode Select  
The signal on this pin controls the JTAG test performance and is clocked into the device on the rising  
edges of TCK. This pin has an internal pull-up resistor and can be left disconnected.  
TMS  
Pull-up  
I
TCK: JTAG Test Clock  
The clock of the JTAG test is input on this pin. The data on TDI and TMS are clocked into the device on ris-  
ing edges of TCK while the data on TDO pin is clocked out of the device on falling edges of TCK. This pin  
should be connected to GNDIO or VDDIO pin when unused.  
TCK  
97  
F14  
9
IDT82V2048L OCTAL T1/E1 SHORT HAUL ANALOG FRONT END  
INDUSTRIAL TEMPERATURE RANGES  
Table-1 Pin Description (Continued)  
Pin No.  
Name  
TDO  
Type  
O
Description  
TQFP144 PBGA160  
TDO: JTAG Test Data Output  
The serial data of the JTAG test is output on this pin. The data on TDO pin is clocked out of the device on  
the falling edges of TCK. TDO is a high impedance output signal. It is active only when scanning of data is  
over. This pin should be left float when unused.  
High  
Imped-  
ance  
98  
99  
F13  
F12  
I
TDI: JTAG Test Data Input  
TDI  
The serial data of the JTAG test is input on this pin. The data on TDI pin is clocked into the device on the  
rising edges of TCK. This pin has an internal pull-up resistor and it can be left disconnected.  
Pull-up  
Power Supplies and Grounds  
3.3 V I/O Power Supply  
17  
92  
G1  
G14  
VDDIO  
GNDIO  
-
-
18  
91  
G4  
G11  
I/O GND  
VDDT0  
VDDT1  
VDDT2  
VDDT3  
VDDT4  
VDDT5  
VDDT6  
VDDT7  
44  
53  
56  
N4, P4  
L4, M4  
L11, M11 3.3 V/5 V Power Supply for Transmitter Driver  
N11, P11 All VDDT pins must be connected to 3.3 V or all VDDT must be connected to 5 V. It is not allowed to leave  
A11, B11 any of the VDDT pins open (not-connected) even if the channel is not used.  
C11, D11 T1 is only 5V VDDT.  
C4, D4  
A4, B4  
65  
-
116  
125  
128  
137  
GNDT0  
GNDT1  
GNDT2  
GNDT3  
GNDT4  
GNDT5  
GNDT6  
GNDT7  
47  
50  
59  
N6, P6  
L6, M6  
L9, M9  
N9, P9  
A9, B9  
C9, D9  
C6, D6  
A6, B6  
62  
-
Analog GND for Transmitter Driver  
119  
122  
131  
134  
VDDD  
VDDA  
19  
90  
H1  
-
-
3.3 V Digital/Analog Core Power Supply  
H14  
GNDD  
GNDA  
20  
89  
H4  
Digital/Analog Core GND  
H11  
Others  
IC: Internal Connection  
G13  
IC  
IC  
-
-
93  
94  
Internal use. Leave it open for normal operation.  
IC: Internal Connection  
H13  
Internal use. Leave it open for normal operation.  
10  
IDT82V2048L OCTAL T1/E1 SHORT HAUL ANALOG FRONT END  
INDUSTRIAL TEMPERATURE RANGES  
1
2
FUNCTIONAL DESCRIPTION  
The Dual Rail interface consist of TDPn , TDNn, TCLKn, RDPn,  
RDNn and RCn. Data transmitted from TDPn and TDNn appears on  
TTIPn and TRINGn at the line interface. The interface of the AFE is  
shown in Figure-4. Pin RDPn and RDNn, are raw RZ slice outputs and  
internally connected to an XOR which is fed to the RCn output for  
external clock recovery applications.  
2.1 OVERVIEW  
The IDT82V2048L is a fully integrated octal short-haul analog front  
end (AFE), which contains eight transmit and receive channels for use in  
either T1 or E1 applications. The raw sliced data (no retiming) is output  
to the system. Transmit equalization is implemented with low-impedance  
output drivers that provide shaped waveforms to the transformer, guar-  
anteeing template conformance. Moreover, testing functions, such as  
JTAG boundary scan is provided. The device is optimized for flexible  
software control through a serial or parallel host mode interface. Hard-  
ware control is also available. Figure-1 on page 1 shows one of the eight  
identical channels operation.  
2.2.1.1 SYSTEM INTERFACE CONFIGURATION  
For normal transmit and receive operation, the device is configured  
as follows:  
In host mode, MCLK can be either clocked or pulled high. If MCLK is  
pulled high, TCLK1 has to be provided for proper device operation. In  
addition, register e-AFE has to be set to ‘FFH’ to ensure proper device  
2
operation. See Expanded Register Description on page 28 for details.  
2.2 T1/E1 MODE SELECTION  
In hardware mode, MCLK has to be pulled high and TCLK1 has to be  
provided for proper device operation.  
T1/E1 mode selection configures the device globally. In Hardware  
control Mode, the template selection pins TS[2:0], determine whether  
the operation mode is T1 or E1 (see Table-5 on page 14). In Software  
Mode, the register TS determines whether the operation mode is T1 or  
E1.  
Depending on the state of TCLK1 and TCLKn, the transmitter will  
Transmit All Ones (TAOS), will go into power down, or will go into high  
impedance.  
The status of TCLK1 and TCLKn has no effect on the receive paths.  
By setting MCLK low, all the receive paths are powered down.  
2.2.1 SYSTEM INTERFACE  
The system interface of each channel operates in Dual Rail Mode  
with data recovery, that is, with raw data slicing only and without clock  
recovery.  
Table-2 summarizes the different combinations between MCLK and  
TCLKn.  
1. The footprint ‘n’ (n = 0 - 7) indicates one of the eight channels.  
2. The first letter ‘e-’ indicates expanded register.  
11  
IDT82V2048L OCTAL T1/E1 SHORT HAUL ANALOG FRONT END  
INDUSTRIAL TEMPERATURE RANGES  
Table-2 System Interface Configuration  
Host or Hardware Mode MCLK  
TCLK1  
TCLKn  
AFEn in e-AFE  
Transmitter Mode  
Transmit and Receive Normal Operation  
Host(1) only  
Clocked  
High  
Clocked  
Clocked  
Clocked  
Clocked  
1
Normal operation  
Host or Hardware(2)  
DC(3)  
Normal operation  
Transmit Interface Modes  
Transmit All Ones (TAOS) signals to the line side in the  
corresponding transmit channel.  
High (16 MCLK)  
Low (64 MCLK)  
Host only  
Clocked  
1
Corresponding transmit channel is set into power down state.  
Transmit All Ones (TAOS) signals to the line side in the corre-  
sponding transmit channel.  
TCLKn is high  
(16 TCLK1)  
TCLK1 is clocked  
TCLKn is low  
Host or Hardware  
High/Low  
DC  
Corresponding transmit channel is set into power down state.  
(64 TCLK1)  
All eight transmitters (TTIPn & TRINGn) are in high imped-  
ance.  
TCLK1 is unavailable.  
DC  
Receive Interface Modes  
The receive path is not affected by the  
status of TCLK1 or TCLKn.  
Low  
DC  
Host or Hardware  
All the receive paths are powered down.  
1. In host mode, register e-AFE must be set to ‘FFH’ for proper operation. See Expanded Register Description on page 28 for details.  
2. In hardware mode, MCLK must be pulled high and TCLK1 provided for proper operation.  
3. DC means Don’t Care  
One of Eight Identical Channels  
LOS  
LOSn  
Detector  
RCn  
RDPn  
RDNn  
RTIPn  
Slicer  
RRINGn  
Peak  
Detector  
TCLKn  
TDPn  
TDNn  
TTIPn  
Line  
Driver  
Waveform  
Shaper  
TRINGn  
Transmit  
All Ones  
Figure-4 Analog Front End (AFE) Interface  
12  
IDT82V2048L OCTAL T1/E1 SHORT HAUL ANALOG FRONT END  
INDUSTRIAL TEMPERATURE RANGES  
2.3 CLOCK EDGES  
The active edge of SCLK is selectable. If pin CLKE is high, the active  
edge of SCLK is the falling edge. On the contrary, if CLKE is low, the  
active edge SCLK is the rising edge. Pin SDO is always active high, and  
the output signals are valid on the active edge of SCLK. See Table-3  
Active Clock Edge and Active Level for details. Pin CLKE is used to set  
the active level for RDPn/RDNn raw slicing output: high for active high  
polarity and low for active low. It should be noted that data on pin SDI  
are always active high and are sampled on the rising edges of SCLK.  
The data on pin TDPn or TDNn are also always active high but are  
sampled on the falling edges of TCLKn, despite the level on CLKE.  
Table-3 Active Clock Edge and Active Level  
Pin RDPn and RDNn  
Pin CLKE  
Pin SDO  
Slicer Output  
High  
Low  
Active High  
Active Low  
SCLK  
SCLK  
Active High  
Active High  
2.4.2 DATA RECOVERY  
2.4 RECEIVER  
The analog line signal are converted to RZ digital bit streams on the  
RDPn/RDNn pins and internally connected to an XOR which is fed to the  
RCn output for external clock recovery applications.  
In receive path, the line signals couple into RRINGn and RTIPn via a  
transformer and are converted into RZ digital pulses by a data slicer.  
Adaptation for attenuation is achieved using an integral peak detector  
that sets the slicing levels. The recovered data on pin RDPn/RDNn in an  
undecoded dual rail RZ format. Loss of signal is detected. This change  
in status may be enabled to generate an interrupt.  
2.4.3 LOSS OF SIGNAL (LOS) DETECTION  
The Loss of Signal Detector monitors the amplitude and density of  
the received signal on receiver line before the transformer (measured on  
port A, B shown in Figure-7). The loss condition is reported by pulling pin  
LOSn high. At the same time, LOS alarm registers track LOS condition.  
When LOS is detected or cleared, an interrupt will generate if not  
masked. In host mode, the detection supports the ANSI T1.231 for T1  
mode, ITU G.775 and ETSI 300 233 for E1 mode. In hardware mode, it  
supports the ITU G.775 and ANSI T1.231.  
2.4.1 PEAK DETECTOR AND SLICER  
The slicer determines the presence and polarity of the received  
pulses. The raw positive slicer output appears on RDPn while the nega-  
tive slicer output appears on RDNn. The slicer circuit has a built-in peak  
detector from which the slicing threshold is derived. The slicing  
threshold is default to 50% (typical) of the peak value.  
Table-4 summarizes the conditions of LOS. During LOS, the RDPn/  
RDNn continue to output the sliced data.  
Signals with an attenuation of up to 12 dB (from 2.4 V) can be recov-  
ered by the receiver. To provide immunity from impulsive noise, the peak  
detectors are held above a minimum level of 0.150 V typically, despite  
the received signal level.  
Table-4 LOS Condition  
Standard  
G.775 for E1  
Signal on  
LOSn  
ANSI T1.231 for T1  
ETSI 300 233 for E1  
Continuous Intervals  
Amplitude(1)  
175  
32  
2048 (1 ms)  
LOS  
Detected  
High  
below typical 200 mVp  
below typical 200 mVp  
below typical 200 mVp  
12.5% (16 marks in a sliding 128-bit 12.5% (4 marks in a sliding 32-bit 12.5% (4 marks in a sliding 32-bit  
period) with no more than 99 contin- period) with no more than 15 con- period) with no more than 15 con-  
Density  
LOS  
Cleared  
Low  
uous zeros  
tinuous zeros  
tinuous zeros  
Amplitude(1)  
exceed typical 250 mVp  
exceed typical 250 mVp  
exceed typical 250 mVp  
1. LOS levels at device (RTIPn, RRINGn) with all ones signal. For more detail regarding the LOS parameters, please refer to Receiver Characteristics on page 38.  
13  
 
 
IDT82V2048L OCTAL T1/E1 SHORT HAUL ANALOG FRONT END  
INDUSTRIAL TEMPERATURE RANGES  
2.5 TRANSMITTER  
1.2  
1
In transmit path, data in NRZ format is clocked into the device on  
TDPn and TDNn. The data is sampled into the device on falling edges of  
TCLKn. The shape of the pulses are user programmable to ensure that  
the T1/E1 pulse template is met after the signal passes through different  
cable lengths or types.  
0.8  
0.6  
0.4  
0.2  
0
2.5.1 WAVEFORM SHAPER  
T1 pulse template, specified in the DSX-1 Cross-Connect by ANSI  
T1.102, is illustrated in Figure-5. The device has built-in transmit wave-  
form templates, corresponding to 5 levels of pre-equalization for cable of  
a length from 0 to 655 ft with each increment of 133 ft.  
-0.2  
-0.4  
-0.6  
E1 pulse template, specified in ITU-T G.703, is shown in Figure-6.  
The device has built-in transmit waveform templates for cable of 75 or  
120 .  
0
250  
500  
750  
1000  
1250  
Time (ns)  
Figure-5 DSX-1 Waveform Template  
Any one of the six built-in waveforms can be chosen in both hard-  
ware mode and host mode. In hardware control mode, setting pins  
TS[2:0] can select the required waveform template for all the transmit-  
ters, as shown in Table-5. In host mode, the waveform template can be  
configured on a per-channel basis. Bits TSIA[2:0] in register TSIA are  
used to select the channel and bits TS[2:0] in register TS are used to  
select the required waveform template.  
1.20  
1.00  
0.80  
0.60  
0.40  
The built-in waveform shaper uses an internal high frequency clock  
which is 16XMCLK as the clock reference. This function will be  
bypassed when MCLK is unavailable.  
0.20  
0.00  
-0.20  
300  
-300  
-200  
-100  
0
100  
200  
Figure-6 CEPTTWimea(nsv) eform Template  
Table-5 Built-in Waveform Template Selection  
TS2  
TS1  
TS0  
Service  
Clock Rate  
Cable Length  
Maximum Cable Loss (dB)(1)  
-
-
0
0
0
E1  
2.048 MHz  
120 /75 Cable  
0
0
0
1
1
1
1
0
1
1
0
0
1
1
1
0
1
0
1
0
1
Reserved  
0-133 ft. ABAM  
133-266 ft. ABAM  
266-399 ft. ABAM  
399-533 ft. ABAM  
533-655 ft. ABAM  
0.6  
1.2  
1.8  
2.4  
3.0  
T1  
1.544 MHz  
1. Maximum cable loss at 772 kHz.  
2.6 LINE INTERFACE CIRCUITRY  
The transmit and receive interface RTIPn/RRINGn and TTIPn/  
TRINGn connections provide a matched interface to the cable. Figure-7  
shows the appropriate external components to connect with the cable  
for one transmit/receive channel. Table-6 summarizes the component  
values based on the specific application.  
14  
 
 
 
IDT82V2048L OCTAL T1/E1 SHORT HAUL ANALOG FRONT END  
INDUSTRIAL TEMPERATURE RANGES  
Table-6 External Components Values  
E1  
T1  
100 Twisted Pair, VDDT = 5.0 V  
9.1 Ω ± 1%  
Component  
75 Coax  
9.5 Ω ± 1%  
9.31 Ω ± 1%  
120 Twisted Pair  
RT  
RR  
9.5 Ω ± 1%  
15 Ω ± 1%  
12.4 Ω ± 1%  
Cp  
2200 pF  
1000 pF  
D1 - D4  
Nihon Inter Electronics - EP05Q03L, 11EQS03L, EC10QS04, EC10QS03L; Motorola - MBR0540T1  
One of Eight Identical Channels  
1
2:1  
1 kΩ  
RTIPn  
A
RR  
0.22 µF  
RX Line  
RR  
B
RRINGn  
TTIPn  
1 kVDDT  
RT  
1
2:1  
D4  
VDDT  
·
·
D3  
VDDDn  
GNDTn  
68 µF3  
Cp2  
TX Line  
0.1 µF  
VDDT  
D2  
TRINGn  
RT  
D1  
NOTE:  
1. Pulse T1124 transformer is recommended to be used in Standard (STD) operating temperature range (0°C to 70°C), while Pulse T1114  
transformer is recommended to be used in Extended (EXT) operating temperature range is -40°C to +85°C. See Transformer Specifications Table  
for details.  
2. Typical value. Adjust for actual board parasitics to obtain optimum return loss.  
3. Common decoupling capacitor for all VDDT and GNDT pins. One per chip.  
Figure-7 External Transmit/Receive Line Circuitry  
In T1 mode, only 5.0 V can be selected, 100 lines are driven  
through a pair of 9.1 series resistors and a 1:2 transformer.  
2.7 TRANSMIT DRIVER POWER SUPPLY  
All transmit driver power supplies must be 5.0 V or 3.3 V.  
In harsh cable environment, series resistors are required to improve  
the transmit return loss performance and protect the device from surges  
coupling into the device.  
In E1 mode, despite the power supply voltage, the 75 /120 lines  
are driven through a pair of 9.5 series resistors and a 1:2 transformer.  
(1)  
Table-7 Transformer Specifications  
Electrical Specification @ 25°C  
OCL @ 25°C (mH MIN) LL (µH MAX)  
Part No.  
Turns Ratio (Pri: sec ± 2%)  
CW/W (pF MAX)  
Receive Transmit Receive  
.6 35 35  
Package/Schematic  
TOU/3  
STD Temp. EXT Temp.  
Transmit  
1:2CT  
Receive  
1CT:2  
Transmit  
1.2  
Receive  
1.2  
Transmit  
.6  
T1124  
T1114  
1. Pulse T1124 transformer is recommended to be used in Standard (STD) operating temperature range (0°C to 70°C), while Pulse T1114 transformer is recommended to be used in  
Extended (EXT) operating temperature range is -40°C to +85°C.  
2.8 POWER DRIVER FAILURE MONITOR  
2.9 TRANSMIT LINE SIDE SHORT CIRCUIT  
An internal power Driver Failure Monitor (DFMON), parallel  
connected with TTIPn and TRINGn, can detect short circuit failure  
between TTIPn and TRINGn pins. Bit SCPB in register GCF decides  
whether the output driver short circuit protection is enabled. When the  
short circuit protection is enabled, the driver output current is limited to a  
typical value: 180 mAp. Also, register DF, DFI and DFM will be available.  
When DFMON will detect a short circuit, register DF will be set. With a  
short circuit failure detected, register DFI will be set and an interrupt will  
be generated on pin INT.  
In E1 or T1 with 5 V VDDT, a pair of 9.5 serial resistors connect  
with TTIPn and TRINGn pins and limit the output current. In this case,  
the output current is a limited value which is always lower than the  
typical line short circuit current 180 mAp, even if the transmit line side is  
shorted.  
Refer to Table-6 External Components Values for details.  
15  
 
IDT82V2048L OCTAL T1/E1 SHORT HAUL ANALOG FRONT END  
INDUSTRIAL TEMPERATURE RANGES  
2.10 LINE PROTECTION  
2.12 TRANSMIT ALL ONES (TAOS)  
In transmit side, the Schottky diodes D1~D4 are required to protect  
the line driver and improve the design robustness. In receive side, the  
series resistors of 1 kare used to protect the receiver against current  
surges coupled in the device. The series resistors do not affect the  
receiver sensitivity, since the receiver impedance is as high as 120 kΩ  
typically.  
In hardware mode, the TAOS mode is set by pulling pin TCLKn high  
for more than 16 MCLK cycles. In host mode, TAOS mode is set by  
programming register TAO. In addition, automatic TAOS signals are  
inserted by setting register ATAO when Loss of Signal occurs. Note that  
the TAOS generator adopts MCLK as a timing reference. In order to  
assure that the output frequency is within specified limits, MCLK must  
have the applicable stability.  
2.11 HITLESS PROTECTION SWITCHING (HPS)  
Refer to Figure-8 TAOS Data Path.  
The IDT82V2048L transceivers include an output driver with high  
impedance feature for T1/E1 redundancy applications. This feature  
reduces the cost of redundancy protection by eliminating external relays.  
Details of HPS are described in relative Application Note.  
One of Eight Identical Channels  
LOS  
Detector  
LOSn  
RCn  
RDPn  
RDNn  
RTIPn  
Slicer  
RRINGn  
Peak  
Detector  
TCLKn  
TDPn  
TDNn  
TTIPn  
Line  
Driver  
Waveform  
Shaper  
TRINGn  
Transmit  
All Ones  
Figure-8 TAOS Data Path  
In monitoring mode, a clock and data recovery circuit can be enabled  
for Remote Loopback operation. In Remote Loopback operation, the  
signal which is being monitored will be also output on TTIP0 and  
TRING0 pins. The output signal can then be connected to a standard  
test equipment for non-intrusive monitoring. RC0 pin will also output the  
recovered clock (DPLL).  
2.13 G.772 MONITORING  
The eight channels of IDT82V2048L can all be configured to work as  
regular transceivers. In applications using only seven channels (chan-  
nels 1 to 7), channel 0 is configured to non-intrusively monitor any of the  
other channels’ inputs or outputs on the line side. The monitoring is non-  
intrusive per ITU-T G.772. Figure-9 shows the Monitoring Principle. The  
receiver path or transmitter path to be monitored is configured by pin  
MC[3:0] in hardware mode or by PMON in host mode.  
The remote loopback is only available in host mode operation.  
To enable the remote loopback, bit 0 in register RL0 has to be set,  
and bit 0 in register e-AFE has to be cleared. The register setting are:  
register RL0 set ‘01’H, register e-AFE set ‘FE’H.  
The signal which is monitored can be observed digitally at the output  
pin RC0, RDP0 and RDN0. LOS detector is still in use in channel 0 for  
the monitored signal.  
For normal operation register RL0 has to be set ‘00H’ and register e-  
AFE has to be set ‘FFH’.  
16  
 
IDT82V2048L OCTAL T1/E1 SHORT HAUL ANALOG FRONT END  
INDUSTRIAL TEMPERATURE RANGES  
Channel N ( 7 > N > 1 )  
LOS  
Detector  
LOSn  
RCn  
RDPn  
RDNn  
RTIPn  
Slicer  
RRINGn  
Peak  
Detector  
TTIPn  
TCLKn  
TDPn  
TDNn  
Line  
Driver  
Waveform  
Shaper  
TRINGn  
Transmit  
All Ones  
Channel 0  
G.772  
Monitor  
LOS  
Detector  
LOS0  
Remote  
Loopback  
CDR  
RC0  
RDP0  
RDN0  
RTIP0  
Slicer  
RRING0  
Remote  
Loopback  
Peak  
Detector  
TCLK0  
TDP0  
TDN0  
TTIP0  
Line  
Driver  
Waveform  
Shaper  
TRING0  
Transmit  
All Ones  
Figure-9 Monitoring Principle  
2.14 SOFTWARE RESET  
2.16 POWER DOWN  
Writing register RS will cause software reset by initiating about 1 µs  
reset cycle. This operation set all the registers to their default value.  
Each transmit channel will be powered down by pulling pin TCLKn  
low for more than 64 MCLK cycles (if MCLK is available) or about 30 µs  
(if MCLK is not available). In host mode, each transmit channel will also  
be powered down by setting bit TPDNn in register e-TPDN to ‘1’.  
2.15 POWER ON RESET  
During power up, an internal reset signal sets all the registers to  
default values. The power-on reset takes at least 10 µs, starting from  
when the power supply exceeds 2/3 VDDA.  
All the receivers will be powered down when MCLK is low. When  
MCLK is clocked or high, setting bit RPDNn in register e-RPDN to ‘1’ will  
configure the corresponding receiver to be powered down.  
2.17 INTERFACE WITH 5 V LOGIC  
The IDT82V2048L can interface directly with 5 V TTL family devices.  
The internal input pads are tolerant to 5 V output from TTL and CMOS  
family devices.  
17  
IDT82V2048L OCTAL T1/E1 SHORT HAUL ANALOG FRONT END  
INDUSTRIAL TEMPERATURE RANGES  
2.18.1 PARALLEL HOST INTERFACE  
2.18 HOST INTERFACE  
The interface is compatible with Motorola and Intel host. Pins  
MODE[1:0] are used to select the operating mode of the parallel host  
interface. When pin MODE1 is pulled low, the host uses separate  
address bus and data bus. When high, multiplexed address/data bus is  
used. When pin MODE0 is pulled low, the parallel host interface is  
configured for Motorola compatible hosts. When pin MODE0 is pulled  
high, the parallel host interface is configured for Intel compatible hosts.  
See Table-1 Pin Description for more details. The host interface pins in  
each operation mode is tabulated in Table-8:  
The host interface provides access to read and write the registers in  
the device. The interface consists of serial host interface and parallel  
host interface. By pulling pin MODE2 to VDDIO/2 or high, the device can  
be set to work in serial mode and in parallel mode respectively. In host  
mode operation, expanded register e-FAE has to be set to ‘FFH’ for  
proper device operation. See Expanded Register Description on page  
28 for details.  
Table-8 Parallel Host Interface Pins  
MODE[2:0]  
100  
Host Interface  
Generic Control, Data and Output Pin  
CS, ACK, DS, R/W, AS, A[4:0], D[7:0], INT  
CS, RDY, WR, RD, ALE, A[4:0], D[7:0], INT  
CS, ACK, DS, R/W, AS, AD[7:0], INT  
CS, RDY, WR, RD, ALE, AD[7:0], INT  
Non-multiplexed Motorola interface  
Non-multiplexed Intel interface  
Multiplexed Motorola interface  
Multiplexed Intel interface  
101  
110  
111  
CS  
SCLK  
SDI  
A1 A2 A3 A4 A5 A62 A72 D0 D1 D2 D3 D4 D5 D6 D7  
1
R/W  
Address/Command Byte  
Input Data Byte  
SDO  
D0 D1 D2 D3 D4 D5 D6 D7  
High Impedance  
Driven while R/W=1  
1. While R/W=1, read from IDT82V2048L; While R/W=0, write to IDT82V2048L.  
2. Ignored.  
Figure-10 Serial Host Mode Timing  
2.18.2 SERIAL HOST INTERFACE  
By pulling pin MODE2 to VDDIO/2, the device operates in the serial  
host Mode. In this mode, the registers are accessible through a 16-bit  
word which contains an 8-bit command/address byte (bit R/W and 5-  
address-bit A1~A5, A6 and A7 bits are ignored) and a subsequent 8-bit  
data byte (D7~D0), as shown in Figure-10. When bit R/W is set to ‘1’,  
data is read out from pin SDO. When bit R/W is set to ‘0’, data on pin  
SDI is written into the register whose address is indicated by address  
bits A5~A1. Refer to Figure-10 Serial Host Mode Timing.  
18  
 
 
IDT82V2048L OCTAL T1/E1 SHORT HAUL ANALOG FRONT END  
INDUSTRIAL TEMPERATURE RANGES  
2.19.2 INTERRUPT ENABLE  
2.19 INTERRUPT HANDLING  
The IDT82V2048L provides a latched interrupt output (INT) and the  
two kinds of interrupts are all reported by this pin. When the Interrupt  
Mask register: LOSM and DFM, are set to ‘1’, the Interrupt Status  
register: LOSI and DFI, are enabled respectively. Whenever there is a  
transition (‘0’ to ‘1’ or ‘1’ to ‘0’) in the corresponding status register, the  
Interrupt Status register will change into ‘1’, which means an interrupt  
occurs, and there will be a high to low transition on INT pin. An external  
pull-up resistor of approximately 10 kis required to support the wire-  
OR operation of INT. When any of the two Interrupt Mask registers is set  
to ‘0’ (the power-on default value is ‘0’), the corresponding Interrupt  
Status register is disabled and the transition on status register is  
ignored.  
2.19.1 INTERRUPT SOURCES  
There are two kinds of interrupt sources:  
1. Status change in register LOS. The analog/digital loss of signal  
detector continuously monitors the received signal to update the  
specific bit in register LOS which indicates presence or absence  
of a LOS condition.  
2. Status change in register DF. The automatic power driver circuit  
continuously monitors the output drivers signal to update the  
specific bit in register DFM which indicates presence or absence  
of an output driver short circuit condition.  
2.19.3 INTERRUPT CLEARING  
When an interrupt occurs, the Interrupt Status registers: LOSI and  
DFI, are read to identify the interrupt source. These registers will be  
cleared to ‘0’ after the corresponding status registers: LOS and DF are  
read. The Status registers will be cleared once the corresponding condi-  
tions are met.  
Interrupt Allowed  
Pin INT is pulled high when there is no pending interrupt left. The  
interrupt handling in the interrupt service routine is shown in Figure-11.  
No  
Interrupt Condition  
Exist?  
Yes  
Read Interrupt Status Register  
Read Corresponding Status  
Register  
Service the Interrupt  
Figure-11 Interrupt Service Routine  
19  
 
IDT82V2048L OCTAL T1/E1 SHORT HAUL ANALOG FRONT END  
INDUSTRIAL TEMPERATURE RANGES  
The Register ADDP, addressed as 11111 or 1F Hex, switches  
between primary registers bank and expanded registers bank.  
3
PROGRAMMING INFORMATION  
3.1 REGISTER LIST AND MAP  
There are 18 primary registers (including an Address Pointer Control  
Register and 4 expanded registers in the device).  
By setting register ADDP to ‘AAH’, the 5 address bits point to the  
expanded register bank, that is, 4 expanded registers are available. By  
clearing register ADDP, the primary registers are available.  
Whatever the control interface is, 5 address bits are used to set the  
registers. In non-multiplexed parallel interface mode, the five dedicated  
address bits are A[4:0]. In multiplexed parallel interface mode, AD[4:0]  
carries the address information. In serial interface mode, A[5:1] are used  
to address the register.  
3.2 RESERVED AND TEST REGISTERS  
Primary Registers, whose address are 01H, 0CH, 13H to 1EH, are  
reserved. Expanded registers, whose address are 00H, 01H, 05H, 06H,  
08H to 0FH, are reserved. Expanded registers, whose address are 10H  
to 1EH, are used for test and must be set to ‘0’ (default).  
Table-9 Primary Register List  
Address  
Register R/W  
Explanation  
Hex Serial Interface A7-A1 Parallel Interface A7-A0  
ID  
R
Device ID Register  
Reserved  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
XX00000  
XX00001  
XX00010  
XX00011  
XX00100  
XX00101  
XX00110  
XX00111  
XX01000  
XX01001  
XX01010  
XX01011  
XX01100  
XX01101  
XX01110  
XX01111  
XX10000  
XX10001  
XX10010  
XX10011  
XX10100  
XX10101  
XX10110  
XX10111  
XX11000  
XX11001  
XX11010  
XX11011  
XX11100  
XX11101  
XX11110  
XXX00000  
XXX00001  
XXX00010  
XXX00011  
XXX00100  
XXX00101  
XXX00110  
XXX00111  
XXX01000  
XXX01001  
XXX01010  
XXX01011  
XXX01100  
XXX01101  
XXX01110  
XXX01111  
XXX10000  
XXX10001  
XXX10010  
XXX10011  
XXX10100  
XXX10101  
XXX10110  
XXX10111  
XXX11000  
XXX11001  
XXX11010  
XXX11011  
XXX11100  
XXX11101  
XXX11110  
RL0  
TAO  
LOS  
DF  
LOSM  
DFM  
LOSI  
DFI  
R/W G.772 Monitoring, Remote Loopback Configuration Register  
R/W Transmit All Ones Configuration Register  
R
R
R/W LOS Interrupt Mask Register  
R/W Driver Fault Interrupt Mask Register  
R
R
W
R/W Performance Monitor Configuration Register  
Reserved  
R/W LOS/AIS Criteria Configuration Register  
R/W Automatic TAOS Configuration Register  
R/W Global Configuration Register  
R/W Indirect Address Register for Transmit Template Select  
R/W Transmit Template Select Register  
R/W Output Enable Configuration Register  
Loss of Signal Status Register  
Driver Fault Status Register  
LOS Interrupt Status Register  
Driver Fault Interrupt Status Register  
Software Reset Register  
RS  
PMON  
LAC  
ATAO  
GCF  
TSIA  
TS  
OE  
Reserved  
Address pointer control Register for switching between primary register bank and  
expanded register bank  
ADDP  
R/W  
1F  
XX11111  
XXX11111  
20  
IDT82V2048L OCTAL T1/E1 SHORT HAUL ANALOG FRONT END  
INDUSTRIAL TEMPERATURE RANGES  
Table-10 Expanded (Indirect Address Mode) Register List  
Address  
Register R/W  
Explanation  
Hex Serial Interface A7-A1 Parallel Interface A7-A0  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
XX00000  
XX00001  
XX00010  
XX00011  
XX00100  
XX00101  
XX00110  
XX00111  
XX01000  
XX01001  
XX01010  
XX01011  
XX01100  
XX01101  
XX01110  
XX01111  
XX10000  
XX10001  
XX10010  
XX10011  
XX10100  
XX10101  
XX10110  
XX10111  
XX11000  
XX11001  
XX11010  
XX11011  
XX11100  
XX11101  
XX11110  
XXX00000  
XXX00001  
XXX00010  
XXX00011  
XXX00100  
XXX00101  
XXX00110  
XXX00111  
XXX01000  
XXX01001  
XXX01010  
XXX01011  
XXX01100  
XXX01101  
XXX01110  
XXX01111  
XXX10000  
XXX10001  
XXX10010  
XXX10011  
XXX10100  
XXX10101  
XXX10110  
XXX10111  
XXX11000  
XXX11001  
XXX11010  
XXX11011  
XXX11100  
XXX11101  
XXX11110  
Reserved  
e-AFE  
e-RPDN R/W  
e-TPDN R/W  
R/W  
AFE Enable Register  
Receiver n Powerdown Enable/Disable Register  
Transmitter n Powerdown Enable/Disable Register  
Reserved  
e-EQUA R/W  
Enable Equalizer Enable/Disable Register  
Reserved  
Test  
Address pointer control register for switching between primary register bank  
and expanded register bank  
1F  
XX11111  
XXX11111  
ADDP  
R/W  
21  
IDT82V2048L OCTAL T1/E1 SHORT HAUL ANALOG FRONT END  
INDUSTRIAL TEMPERATURE RANGES  
Table-11 Primary Register Map  
Address  
Register  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
R/W  
Default  
00H  
R
Default  
ID 7  
R
0
ID 6  
R
0
ID 5  
R
0
ID 4  
R
1
ID 3  
R
0
ID 2  
R
0
ID 1  
R
0
ID 0  
R
0
ID  
RL0  
02H  
R/W  
Default  
-
R/W  
0
-
R/W  
0
-
R/W  
0
-
R/W  
0
-
R/W  
0
-
R/W  
0
-
R/W  
0
RL0  
R/W  
0
03H  
R/W  
Default  
TAO 7  
R/W  
0
TAO 6  
R/W  
0
TAO 5  
R/W  
0
TAO 4  
R/W  
0
TAO 3  
R/W  
0
TAO 2  
R/W  
0
TAO 1  
R/W  
0
TAO 0  
R/W  
0
TAO  
LOS  
DF  
04H  
R
Default  
LOS 7  
R
0
LOS 6  
R
0
LOS 5  
R
0
LOS 4  
R
0
LOS 3  
R
0
LOS 2  
R
0
LOS 1  
R
0
LOS 0  
R
0
05H  
R
DF 7  
R
DF 6  
R
DF 5  
R
DF 4  
R
DF 3  
R
DF 2  
R
DF 1  
R
DF 0  
R
Default  
0
0
0
0
0
0
0
0
06H  
R/W  
Default  
LOSM 7  
R/W  
0
LOSM 6  
R/W  
0
LOSM 5  
R/W  
0
LOSM 4  
R/W  
0
LOSM 3  
R/W  
0
LOSM 2  
R/W  
0
LOSM 1  
R/W  
0
LOSM 0  
R/W  
0
LOSM  
DFM  
LOSI  
DFI  
07H  
R/W  
Default  
DFM 7  
R/W  
0
DFM 6  
R/W  
0
DFM 5  
R/W  
0
DFM 4  
R/W  
0
DFM 3  
R/W  
0
DFM 2  
R/W  
0
DFM 1  
R/W  
0
DFM 0  
R/W  
0
08H  
R
Default  
LOSI 7  
R
0
LOSI 6  
R
0
LOSI 5  
R
0
LOSI 4  
R
0
LOSI 3  
R
0
LOSI 2  
R
0
LOSI 1  
R
0
LOSI 0  
R
0
09H  
R
Default  
DFI 7  
R
0
DFI 6  
R
0
DFI 5  
R
0
DFI 4  
R
0
DFI 3  
R
0
DFI 2  
R
0
DFI 1  
R
0
DFI 0  
R
0
0AH  
W
RS 7  
W
RS 6  
W
RS 5  
W
RS 4  
W
RS 3  
W
RS 2  
W
RS 1  
W
RS 0  
W
RS  
Default  
1
1
1
1
1
1
1
1
0BH  
R/W  
Default  
-
R/W  
0
-
R/W  
0
-
R/W  
0
-
R/W  
0
MC 3  
R/W  
0
MC 2  
R/W  
0
MC 1  
R/W  
0
MC 0  
R/W  
0
PMON  
LAC  
ATAO  
GCF  
TSIA  
0DH  
R/W  
Default  
LAC 7  
R/W  
0
LAC 6  
R/W  
0
LAC 5  
R/W  
0
LAC 4  
R/W  
0
LAC 3  
R/W  
0
LAC 2  
R/W  
0
LAC 1  
R/W  
0
LAC 0  
R/W  
0
0EH  
R/W  
Default  
ATAO 7  
R/W  
0
ATAO 6  
R/W  
0
ATAO 5  
R/W  
0
ATAO 4  
R/W  
0
ATAO 3  
R/W  
0
ATAO 2  
R/W  
0
ATAO 1  
R/W  
0
ATAO 0  
R/W  
0
0FH  
R/W  
Default  
-
R/W  
0
-
R/W  
0
SCPB  
R/W  
0
-
R/W  
0
-
R/W  
0
-
R/W  
0
-
R/W  
0
-
R/W  
0
10 Hex  
R/W  
Default  
-
R/W  
0
-
R/W  
0
-
R/W  
0
-
R/W  
0
-
R/W  
0
TSIA 2  
R/W  
0
TSIA 1  
R/W  
0
TSIA 0  
R/W  
0
22  
IDT82V2048L OCTAL T1/E1 SHORT HAUL ANALOG FRONT END  
INDUSTRIAL TEMPERATURE RANGES  
Table-11 Primary Register Map (Continued)  
Address  
R/W  
Register  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Default  
11 Hex  
R/W  
Default  
-
R/W  
0
-
R/W  
0
-
R/W  
0
-
R/W  
0
-
R/W  
0
TS 2  
R/W  
0
TS 1  
R/W  
0
TS 0  
R/W  
0
TS  
OE  
12 Hex  
R/W  
Default  
OE 7  
R/W  
0
OE 6  
R/W  
0
OE 5  
R/W  
0
OE 4  
R/W  
0
OE 3  
R/W  
0
OE 2  
R/W  
0
OE 1  
R/W  
0
OE 0  
R/W  
0
1F Hex  
R/W  
Default  
ADDP 7  
R/W  
0
ADDP 6  
R/W  
0
ADDP 5  
R/W  
0
ADDP 4  
R/W  
0
ADDP 3  
R/W  
0
ADDP 2  
R/W  
0
ADDP 1  
R/W  
0
ADDP 0  
R/W  
0
ADDP  
23  
IDT82V2048L OCTAL T1/E1 SHORT HAUL ANALOG FRONT END  
INDUSTRIAL TEMPERATURE RANGES  
Table-12 Expanded (Indirect Address Mode) Register Map  
Address  
Register  
R/W  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Default  
02H  
R/W  
Default  
03H  
R/W  
Default  
04H  
R/W  
Default  
AFE 7  
R/W  
0
RPDN 7  
R/W  
0
TPDN 7  
R/W  
0
EQUA 7  
R/W  
0
AFE 6  
R/W  
0
RPDN 6  
R/W  
0
TPDN 6  
R/W  
0
EQUA 6  
R/W  
0
AFE 5  
R/W  
0
RPDN 5  
R/W  
0
TPDN 5  
R/W  
0
EQUA 5  
R/W  
0
AFE 4  
R/W  
0
RPDN 4  
R/W  
0
TPDN 4  
R/W  
0
EQUA 4  
R/W  
0
AFE 3  
R/W  
0
RPDN 3  
R/W  
0
TPDN 3  
R/W  
0
EQUA 3  
R/W  
0
AFE 2  
R/W  
0
RPDN 2  
R/W  
0
TPDN 2  
R/W  
0
EQUA 2  
R/W  
0
AFE 1  
R/W  
0
RPDN 1  
R/W  
0
TPDN 1  
R/W  
0
EQUA 1  
R/W  
0
AFE 0  
R/W  
0
RPDN 0  
R/W  
0
TPDN 0  
R/W  
0
EQUA 0  
R/W  
0
e-AFE(1)  
e-RPDN  
e-TPDN  
e-EQUA  
07H  
R/W  
Default  
1FH  
R/W  
Default  
ADDP 7  
R/W  
0
ADDP 6  
R/W  
0
ADDP 5  
R/W  
0
ADDP 4  
R/W  
0
ADDP 3  
R/W  
0
ADDP 2  
R/W  
0
ADDP 1  
R/W  
0
ADDP 0  
R/W  
0
ADDP  
1. In host mode, register e-AFE has to be set to ‘FFH’ for proper device operation. See e-AFE: AFE Enable Selection Register (R/W, Expanded Address = 02H) on page 28 for more details.  
24  
IDT82V2048L OCTAL T1/E1 SHORT HAUL ANALOG FRONT END  
INDUSTRIAL TEMPERATURE RANGES  
3.3 REGISTER DESCRIPTION  
3.3.1 PRIMARY REGISTERS  
ID: Device ID Register (R, Address = 00H)  
Symbol  
Position Default  
Description  
An 8-bit word is pre-set into the device as the identification and revision number. This number is different with the functional  
changes and is mask programmed.  
ID[7:0]  
ID.7-0  
10H  
RL0: G.772 Monitoring, Remote Loopback Configuration Register (R/W, Address = 02H)  
Symbol  
Position  
Default  
Description  
-
RL.7-1  
0000000 Reserved  
0 = Normal operation. (Default)  
1 = Remote loopback enabled.  
RL[0]  
RL.0  
0
TAO: Transmit All Ones Configuration Register (R/W, Address = 03H)  
Symbol  
Position Default  
Description  
Description  
Description  
Description  
Description  
Description  
0 = Normal operation. (Default)  
1 = Transmit all ones.  
TAO[7:0]  
TAO.7-0  
00H  
LOS: Loss of Signal Status Register (R, Address = 04H)  
Symbol  
Position Default  
0 = Normal operation. (Default)  
1 = Loss of signal detected.  
LOS[7:0]  
LOS.7-0  
00H  
DF: Driver Fault Status Register (R, Address = 05H)  
Symbol  
Position Default  
0 = Normal operation. (Default)  
1 = Driver fault detected.  
DF[7:0]  
DF.7-0  
00H  
LOSM: Loss of Signal Interrupt Mask Register (R/W, Address = 06H)  
Symbol  
Position Default  
0 = LOS interrupt is not allowed. (Default)  
1 = LOS interrupt is allowed.  
LOSM[7:0]  
LOSM.7-0  
00H  
DFM: Driver Fault Interrupt Mask Register (R/W, Address = 07H)  
Symbol  
Position Default  
0 = Driver fault interrupt not allowed. (Default)  
1 = Driver fault interrupt allowed.  
DFM[7:0]  
DFM.7-0  
00H  
LOSI: Loss of Signal Interrupt Status Register (R, Address = 08H)  
Symbol  
Position Default  
0 = (Default). Or after a LOS read operation.  
1 = Any transition on LOSn (Corresponding LOSMn is set to ‘1’).  
LOSI[7:0]  
LOSI.7-0  
00H  
25  
IDT82V2048L OCTAL T1/E1 SHORT HAUL ANALOG FRONT END  
INDUSTRIAL TEMPERATURE RANGES  
DFI: Driver Fault Interrupt Status Register (R, Address = 09H)  
Symbol  
Position Default  
Description  
0 = (Default). Or after a DF read operation.  
1 = Any transition on DFn (Corresponding DFMn is set to ‘1’).  
DFI[7:0]  
DFI.7-0  
00H  
RS: Software Reset Register (W, Address = 0AH)  
Symbol  
Position Default  
Description  
Writing to this register will not change the content in this register but initiate a 1 µs reset cycle, which means all the registers  
in the device are set to their default values.  
RS[7:0]  
RS.7-0  
FFH  
PMON: Performance Monitor Configuration Register (R/W, Address = 0BH)  
Symbol  
Position  
Default  
Description  
0 = Normal operation. (Default)  
1 = Reserved.  
-
PMON.7-4  
0000  
0000 = Normal operation without monitoring (Default)  
0001 = Monitor Receiver 1  
0010 = Monitor Receiver 2  
0011 = Monitor Receiver 3  
0100 = Monitor Receiver 4  
0101 = Monitor Receiver 5  
0110 = Monitor Receiver 6  
0111 = Monitor Receiver 7  
MC[3:0]  
PMON.3-0  
0000  
1000 = Normal operation without monitoring  
1001 = Monitor Transmitter 1  
1010 = Monitor Transmitter 2  
1011 = Monitor Transmitter 3  
1100 = Monitor Transmitter 4  
1101 = Monitor Transmitter 5  
1110 = Monitor Transmitter 6  
1111 = Monitor Transmitter 7  
LAC: LOS/AIS Criteria Configuration Register (R/W, Address = 0DH)  
Symbol  
Position  
Default  
Description  
For E1 mode, the criterion is selected as below:  
0 = G.775 (Default)  
1 = ETSI 300 233  
LAC[7:0]  
LAC.7-0  
00H  
For T1 mode, the criterion meets T1.231.  
ATAO: Automatic TAOS Configuration Register (R/W, Address = 0EH)  
Symbol  
Position  
Default  
Description  
0 = No automatic transmit all ones. (Default)  
1 = Automatic transmit all ones to the line side during LOS.  
ATAO[7:0]  
ATAO.7-0  
00H  
26  
IDT82V2048L OCTAL T1/E1 SHORT HAUL ANALOG FRONT END  
INDUSTRIAL TEMPERATURE RANGES  
GCF: Global Configuration Register (R/W, Address = 0FH)  
Symbol  
Position  
Default  
Description  
0 = Normal operation.  
1 = Reserved.  
-
GCF.7-6  
00  
0 = Short circuit protection is enabled.  
1 = Short circuit protection is disabled.  
0 = Normal operation.  
SCPB  
-
GCF.5  
0
GCF.4-0  
00000  
1 = Reserved.  
TSIA: Indirect Address Register for Transmit Template Select Registers (R/W, Address = 10H)  
Symbol  
Position  
Default  
Description  
0 = Normal operation. (Default)  
1 = Reserved.  
-
TSIA.7-3  
00000  
000 = Channel 0 (Default)  
001 = Channel 1  
010 = Channel 2  
011 = Channel 3  
100 = Channel 4  
TSIA[2:0]  
TSIA.2-0  
000  
101 = Channel 5  
110 = Channel 6  
111 = Channel 7  
TS: Transmit Template Select Register (R/W, Address = 11H)  
Symbol  
Position  
Default  
Description  
0 = Normal operation. (Default)  
1 = Reserved.  
-
TS.7-3  
00000  
TS[2:0] pins select one of eight built-in transmit template for different applications.  
TS[2:0]  
Mode  
Cable Length  
000  
001  
010  
011  
100  
101  
110  
111  
E1  
75 coaxial cable/120 twisted pair cable.  
Reserved.  
TS[2-0]  
TS.2-0  
000  
T1  
T1  
T1  
T1  
T1  
0 - 133 ft.  
133 - 266 ft.  
266 - 399 ft.  
399 - 533 ft.  
533 - 655 ft.  
OE: Output Enable Configuration Register (R/W, Address = 12H)  
Symbol  
Position Default  
Description  
0 = Transmit drivers enabled. (Default)  
1 = Transmit drivers in high impedance state.  
OE[7:0]  
OE.7-0  
00H  
ADDP: Address Pointer Control Register (R/W, Address = 1F H)  
Symbol  
Position Default  
Description  
Two kinds of configuration in this register can be set to switch between primary register bank and expanded register bank.  
When power up, the address pointer will point to the top address of primary register bank automatically.  
00H = The address pointer points to the top address of primary register bank (default).  
ADDP[7:0]  
ADDP.7-0  
00H  
AAH = The address pointer points to the top address of expanded register bank.  
27  
IDT82V2048L OCTAL T1/E1 SHORT HAUL ANALOG FRONT END  
INDUSTRIAL TEMPERATURE RANGES  
3.3.2 EXPANDED REGISTER DESCRIPTION  
e-AFE: AFE Enable Selection Register (R/W, Expanded Address = 02H)  
Symbol  
Position Default  
Description  
0 = Reserved (Default) Note: For remote loopback operation in G.772 monitoring mode, bit 0 can be set to '0'.  
1 = AFE mode enabled.  
AFE[7:0]  
AFE.7-0  
00H(1)  
1. In host mode, AFE[7:0] bits must be set to ‘FFH’ for normal device operation.  
e-RPDN: Receiver n Powerdown Register (R/W, Expanded Address = 03H)  
Symbol  
Position Default  
Description  
0 = Normal operation. (Default)  
1 = Receiver n is powered down.  
RPDN[7:0]  
RPDN.7-0  
00H  
e-TPDN: Transmitter n Powerdown Register (R/W, Expanded Address = 04H)  
Symbol  
Position Default  
Description  
0 = Normal operation. (Default)  
1 = Transmitter n is powered down(1) (the corresponding transmit output driver enters a low power high impedance mode).  
TPDN[7:0]  
TPDN.7-0  
00H  
1. Transmitter n is powered down when either pin TCLKn is pulled low or TPDNn is set to ‘1’  
e-EQUA: Receive Equalizer Enable/Disable Register (R/W, Expanded Address = 07H)  
Symbol  
Position Default  
Description  
0 = Normal operation. (Default)  
EQUA[7:0]  
EQUA.7-0  
00H  
1 = Equalizer in Receiver n is enabled, which can improve the receive performance when transmission length is more than  
200 m.  
28  
IDT82V2048L OCTAL T1/E1 SHORT HAUL ANALOG FRONT END  
INDUSTRIAL TEMPERATURE RANGES  
The JTAG boundary scan registers includes BSR (Boundary Scan  
Register), IDR (Device Identification Register), BR (Bypass Register)  
and IR (Instruction Register). These will be described in the following  
pages. Refer to Figure-12 for architecture.  
4
IEEE STD 1149.1 JTAG TEST  
ACCESS PORT  
The IDT82V2048L supports the digital Boundary Scan Specification  
as described in the IEEE 1149.1 standards.  
4.1 JTAG INSTRUCTIONS AND INSTRUCTION REG-  
ISTER (IR)  
The IR with instruction decode block is used to select the test to be  
executed or the data register to be accessed or both.  
The boundary scan architecture consists of data and instruction  
registers plus a Test Access Port (TAP) controller. Control of the TAP is  
achieved through signals applied to the TMS and TCK pins. Data is  
shifted into the registers via the TDI pin, and shifted out of the registers  
via the TDO pin. JTAG test data are clocked at a rate determined by  
JTAG test clock.  
The instructions are shifted in LSB first to this 3-bit register. See  
Table-13 Instruction Register Description on page 30 for details of the  
codes and the instructions related.  
Digital output pins  
Digital input pins  
parallel latched output  
BSR (Boundary Scan Register)  
MUX  
IDR (Device Identification Register)  
BR (Bypass Register)  
TDI  
TDO  
IR (Instruction Register)  
Control<6:0>  
TMS  
TAP  
Select  
TRST  
(Test Access Port)  
Controller  
High-Z Enable  
TCK  
Figure-12 JTAG Architecture  
29  
 
IDT82V2048L OCTAL T1/E1 SHORT HAUL ANALOG FRONT END  
INDUSTRIAL TEMPERATURE RANGES  
Table-13 Instruction Register Description  
IR Code  
Instruction  
Comments  
The external test instruction allows testing of the interconnection to other devices. When the current instruction is the  
EXTEST instruction, the boundary scan register is placed between TDI and TDO. The signal on the input pins can be  
sampled by loading the boundary scan register using the Capture-DR state. The sampled values can then be viewed by  
shifting the boundary scan register using the Shift-DR state. The signal on the output pins can be controlled by loading  
patterns shifted in through input TDI into the boundary scan register using the Update-DR state.  
000  
Extest  
The sample instruction samples all the device inputs and outputs. For this instruction, the boundary scan register is placed  
between TDI and TDO. The normal path between IDT82V2048L logic and the I/O pins is maintained. Primary device  
inputs and outputs can be sampled by loading the boundary scan register using the Capture-DR state. The sampled val-  
ues can then be viewed by shifting the boundary scan register using the Shift-DR state.  
100  
Sample/Preload  
The identification instruction is used to connect the identification register between TDI and TDO. The device's identifica-  
tion code can then be shifted out using the Shift-DR state.  
110  
111  
Idcode  
Bypass  
The bypass instruction shifts data from input TDI to output TDO with one TCK clock period delay. The instruction is used  
to bypass the device.  
4.2.2 BYPASS REGISTER (BR)  
Table-14 Device Identification Register Description  
The BR consists of a single bit. It can provide a serial path between  
the TDI input and TDO output, bypassing the BSR to reduce test access  
times.  
Bit No.  
0
Comments  
Set to ‘1’  
4.2.3 BOUNDARY SCAN REGISTER (BSR)  
1~11  
12~27  
28~31  
Producer Number  
Part Number  
Device Revision  
The BSR can apply and read test patterns in parallel to or from all the  
digital I/O pins. The BSR is a 98 bits long shift register and is initialized  
and read using the instruction EXTEST or SAMPLE/PRELOAD. Each  
pin is related to one or more bits in the BSR. Please refer to Table-15 for  
details of BSR bits and their functions.  
4.2 JTAG DATA REGISTER  
4.2.1 DEVICE IDENTIFICATION REGISTER (IDR)  
The IDR can be set to define the producer number, part number and  
the device revision, which can be used to verify the proper version or  
revision number that has been used in the system under test. The IDR is  
32 bits long and is partitioned as in Table-14. Data from the IDR is  
shifted out to TDO LSB first.  
Table-15 Boundary Scan Register Description  
Bit No.  
0
1
2
3
4
5
6
7
Bit Symbol  
POUT0  
PIN0  
POUT1  
PIN1  
POUT2  
PIN2  
POUT3  
PIN3  
POUT4  
PIN4  
POUT5  
PIN5  
POUT6  
PIN6  
POUT7  
PIN7  
Pin Signal  
D0  
Type  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Comments  
D0  
D1  
D1  
D2  
D2  
D3  
D3  
D4  
D4  
D5  
D5  
D6  
D6  
D7  
D7  
8
9
10  
11  
12  
13  
14  
15  
30  
 
 
IDT82V2048L OCTAL T1/E1 SHORT HAUL ANALOG FRONT END  
INDUSTRIAL TEMPERATURE RANGES  
Table-15 Boundary Scan Register Description (Continued)  
Bit No.  
Bit Symbol  
Pin Signal  
Type  
Comments  
Controls pins D[7:0].  
16  
PIOS  
N/A  
-
When ‘0’, the pins are configured as outputs. The output values to the pins are set in POUT 7~0.  
When ‘1’, the pins are in high impedance. The input values to the pins are read in PIN 7~0.  
17  
18  
19  
20  
21  
22  
TCLK1  
TDP1  
TDN1  
RC1  
RDP1  
RDN1  
TCLK1  
TDP1  
TDN1  
RC1  
RDP1  
RDN1  
I
I
I
O
O
O
Controls pin RDP1, RDN1 and RC1.  
23  
HZEN1  
N/A  
-
When ‘0’, the outputs are enabled on the pins.  
When ‘1’, the pins are in high impedance.  
24  
25  
26  
27  
28  
29  
30  
LOS1  
TCLK0  
TDP0  
TDN0  
RC0  
LOS1  
TCLK0  
TDP0  
TDN0  
RC0  
O
I
I
I
O
O
O
RDP0  
RDN0  
RDP0  
RDN0  
Controls pin RDP0, RDN0 and RC0.  
31  
HZEN0  
N/A  
-
When ‘0’, the outputs are enabled on the pins.  
When ‘1’, the pins are in high impedance.  
32  
33  
34  
35  
36  
LOS0  
MODE1  
LOS3  
RDN3  
RDP3  
LOS0  
MODE1  
LOS3  
RDN3  
RDP3  
O
I
O
O
O
Controls pin RDP3, RDN3 and RC3.  
37  
HZEN3  
N/A  
-
When ‘0’, the outputs are enabled on the pins.  
When ‘1’, the pins are in high impedance.  
38  
39  
40  
41  
42  
43  
44  
RC3  
TDN3  
TDP3  
TCLK3  
LOS2  
RDN2  
RDP2  
RC3  
TDN3  
TDP3  
TCLK3  
LOS2  
RDN2  
RDP2  
O
I
I
I
O
O
O
Controls pin RDP2, RDN2 and RC2.  
45  
HZEN2  
N/A  
-
When ‘0’, the outputs are enabled on the pins.  
When ‘1’, the pins are in high impedance.  
46  
47  
48  
49  
50  
51  
RC2  
TDN2  
TDP2  
TCLK2  
INT  
RC2  
TDN2  
TDP2  
TCLK2  
INT  
O
I
I
I
O
O
ACK  
ACK  
Control pin ACK.  
When ‘0’, the output is enabled on pin ACK.  
When ‘1’, the pin is in high impedance.  
52  
SDORDYS  
N/A  
-
53  
54  
55  
WRB  
RDB  
ALE  
I
I
I
DS  
R/W  
ALE  
31  
IDT82V2048L OCTAL T1/E1 SHORT HAUL ANALOG FRONT END  
INDUSTRIAL TEMPERATURE RANGES  
Table-15 Boundary Scan Register Description (Continued)  
Bit No.  
56  
Bit Symbol  
CSB  
Pin Signal  
CS  
MODE0  
TCLK5  
TDP5  
Type  
Comments  
I
I
I
57  
58  
59  
MODE0  
TCLK5  
TDP5  
I
60  
61  
62  
63  
TDN5  
RC5  
RDP5  
RDN5  
TDN5  
RC5  
RDP5  
RDN5  
I
O
O
O
Controls pin RDP5, RDN5 and RC5.  
64  
HZEN5  
N/A  
-
When ‘0’, the outputs are enabled on the pins.  
When ‘1’, the pins are in high impedance.  
65  
66  
67  
68  
69  
70  
71  
LOS5  
TCLK4  
TDP4  
TDN4  
RC4  
LOS5  
TCLK4  
TDP4  
TDN4  
RC4  
O
I
I
I
O
O
O
RDP4  
RDN4  
RDP4  
RDN4  
Controls pin RDP4, RDN4 and RC4.  
72  
HZEN4  
N/A  
-
When ‘0’, the outputs are enabled on the pins.  
When ‘1’, the pins are in high impedance.  
73  
74  
75  
76  
77  
78  
LOS4  
OE  
CLKE  
LOS7  
RDN7  
RDP7  
LOS4  
OE  
CLKE  
LOS7  
RDN7  
RDP7  
O
I
I
O
O
O
Controls pin RDP7, RDN7 and RC7.  
79  
HZEN7  
N/A  
-
When ‘0’, the outputs are enabled on the pins.  
When ‘1’, the pins are in high impedance.  
80  
81  
82  
83  
84  
85  
86  
RC7  
TDN7  
TDP7  
TCLK7  
LOS6  
RDN6  
RDP6  
RC7  
TDN7  
TDP7  
TCLK7  
LOS6  
RDN6  
RDP6  
O
I
I
I
O
O
O
Controls pin RDP6, RDN6 and RC6.  
87  
HZEN6  
N/A  
-
When ‘0’, the outputs are enabled on the pins.  
When ‘1’, the pins are in high impedance.  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
RC6  
TDN6  
TDP6  
TCLK6  
MCLK  
MODE2  
A4  
A3  
A2  
A1  
A0  
RC6  
TDN6  
TDP6  
TCLK6  
MCLK  
MODE2  
A4  
A3  
A2  
A1  
A0  
O
I
I
I
I
I
I
I
I
I
I
32  
IDT82V2048L OCTAL T1/E1 SHORT HAUL ANALOG FRONT END  
INDUSTRIAL TEMPERATURE RANGES  
instruction registers. The value shown next to each state transition in  
this figure states the value present at TMS at each rising edge of TCK.  
Refer to Table-16 for details of the state description.  
4.3 TEST ACCESS PORT CONTROLLER  
The TAP controller is a 16-state synchronous state machine. Figure-  
13 shows its state diagram A description of each state follows. Note that  
the figure contains two main branches to access either the data or  
Table-16 TAP Controller State Description  
State  
Description  
In this state, the test logic is disabled. The device is set to normal operation. During initialization, the device initializes the instruction register  
with the IDCODE instruction.  
Regardless of the original state of the controller, the controller enters the Test-Logic-Reset state when the TMS input is held high for at least 5  
rising edges of TCK. The controller remains in this state while TMS is high. The device processor automatically enters this state at power-up.  
Test Logic Reset  
Run-Test/Idle  
This is a controller state between scan operations. Once in this state, the controller remains in the state as long as TMS is held low. The  
instruction register and all test data registers retain their previous state. When TMS is high and a rising edge is applied to TCK, the controller  
moves to the Select-DR state.  
This is a temporary controller state and the instruction does not change in this state. The test data register selected by the current instruction  
retains its previous state. If TMS is held low and a rising edge is applied to TCK when in this state, the controller moves into the Capture-DR  
state and a scan sequence for the selected test data register is initiated. If TMS is held high and a rising edge applied to TCK, the controller  
moves to the Select-IR-Scan state.  
Select-DR-Scan  
In this state, the Boundary Scan Register captures input pin data if the current instruction is EXTEST or SAMPLE/PRELOAD. The instruction  
does not change in this state. The other test data registers, which do not have parallel input, are not changed. When the TAP controller is in  
this state and a rising edge is applied to TCK, the controller enters the Exit1-DR state if TMS is high or the Shift-DR state if TMS is low.  
Capture-DR  
Shift-DR  
In this controller state, the test data register connected between TDI and TDO as a result of the current instruction shifts data on stage toward  
its serial output on each rising edge of TCK. The instruction does not change in this state. When the TAP controller is in this state and a rising  
edge is applied to TCK, the controller enters the Exit1-DR state if TMS is high or remains in the Shift-DR state if TMS is low.  
This is a temporary state. While in this state, if TMS is held high, a rising edge applied to TCK causes the controller to enter the Update-DR  
state, which terminates the scanning process. If TMS is held low and a rising edge is applied to TCK, the controller enters the Pause-DR  
state. The test data register selected by the current instruction retains its previous value and the instruction does not change during this state.  
Exit1-DR  
The pause state allows the test controller to temporarily halt the shifting of data through the test data register in the serial path between TDI  
and TDO. For example, this state could be used to allow the tester to reload its pin memory from disk during application of a long test  
sequence. The test data register selected by the current instruction retains its previous value and the instruction does not change during this  
state. The controller remains in this state as long as TMS is low. When TMS goes high and a rising edge is applied to TCK, the controller  
moves to the Exit2-DR state.  
Pause-DR  
Exit2-DR  
This is a temporary state. While in this state, if TMS is held high, a rising edge applied to TCK causes the controller to enter the Update-DR  
state, which terminates the scanning process. If TMS is held low and a rising edge is applied to TCK, the controller enters the Shift-DR state.  
The test data register selected by the current instruction retains its previous value and the instruction does not change during this state.  
The Boundary Scan Register is provided with a latched parallel output to prevent changes while data is shifted in response to the EXTEST  
and SAMPLE/PRELOAD instructions. When the TAP controller is in this state and the Boundary Scan Register is selected, data is latched into  
the parallel output of this register from the shift-register path on the falling edge of TCK. The data held at the latched parallel output changes  
only in this state. All shift-register stages in the test data register selected by the current instruction retain their previous value and the instruc-  
tion does not change during this state.  
Update-DR  
This is a temporary controller state. The test data register selected by the current instruction retains its previous state. If TMS is held low and  
a rising edge is applied to TCK when in this state, the controller moves into the Capture-IR state, and a scan sequence for the instruction reg-  
ister is initiated. If TMS is held high and a rising edge is applied to TCK, the controller moves to the Test-Logic-Reset state. The instruction  
does not change during this state.  
Select-IR-Scan  
Capture-IR  
Shift-IR  
In this controller state, the shift register contained in the instruction register loads a fixed value of ‘100’ on the rising edge of TCK. This sup-  
ports fault-isolation of the board-level serial test data path. Data registers selected by the current instruction retain their value and the instruc-  
tion does not change during this state. When the controller is in this state and a rising edge is applied to TCK, the controller enters the Exit1-  
IR state if TMS is held high, or the Shift-IR state if TMS is held low.  
In this state, the shift register contained in the instruction register is connected between TDI and TDO and shifts data one stage towards its  
serial output on each rising edge of TCK. The test data register selected by the current instruction retains its previous value and the instruction  
does not change during this state. When the controller is in this state and a rising edge is applied to TCK, the controller enters the Exit1-IR  
state if TMS is held high, or remains in the Shift-IR state if TMS is held low.  
33  
 
IDT82V2048L OCTAL T1/E1 SHORT HAUL ANALOG FRONT END  
INDUSTRIAL TEMPERATURE RANGES  
Table-16 TAP Controller State Description (Continued)  
State  
Description  
This is a temporary state. While in this state, if TMS is held high, a rising edge applied to TCK causes the controller to enter the Update-IR  
state, which terminates the scanning process. If TMS is held low and a rising edge is applied to TCK, the controller enters the Pause-IR state.  
The test data register selected by the current instruction retains its previous value and the instruction does not change during this state.  
Exit1-IR  
The pause state allows the test controller to temporarily halt the shifting of data through the instruction register. The test data register selected  
by the current instruction retains its previous value and the instruction does not change during this state. The controller remains in this state as  
long as TMS is low. When TMS goes high and a rising edge is applied to TCK, the controller moves to the Exit2-IR state.  
Pause-IR  
Exit2-IR  
This is a temporary state. While in this state, if TMS is held high, a rising edge applied to TCK causes the controller to enter the Update-IR  
state, which terminates the scanning process. If TMS is held low and a rising edge is applied to TCK, the controller enters the Shift-IR state.  
The test data register selected by the current instruction retains its previous value and the instruction does not change during this state.  
The instruction shifted into the instruction register is latched into the parallel output from the shift-register path on the falling edge of TCK.  
When the new instruction has been latched, it becomes the current instruction. The test data registers selected by the current instruction  
retain their previous value.  
Update-IR  
1
Test-logic Reset  
0
0
1
1
1
Run Test/Idle  
Select-DR  
0
Select-IR  
0
1
1
Capture-DR  
0
Capture-IR  
0
0
0
Shift-DR  
1
Shift-IR  
1
1
1
0
Exit1-DR  
0
Exit1-IR  
0
0
Pause-DR  
1
Pause-IR  
1
0
0
Exit2-DR  
1
Exit2-IR  
1
Update-DR  
Update-IR  
0
0
1
1
Figure-13 JTAG State Diagram  
34  
IDT82V2048L OCTAL T1/E1 SHORT HAUL ANALOG FRONT END  
INDUSTRIAL TEMPERATURE RANGES  
ABSOLUTE MAXIMUM RATING  
Symbol  
Parameter  
Min  
Max  
Unit  
VDDA, VDDD  
VDDIO0, VDDIO1  
VDDT0-7  
-0.5  
-0.5  
4.0  
4.0  
7.0  
5.5  
V
V
V
V
Core Power Supply  
I/O Power Supply  
-0.5  
Transmit Power Supply  
GND-0.5  
Input Voltage, any digital pin  
VDDA+ 0.5  
VDDD+ 0.5  
V
V
Input Voltage(1), RTIPn pins and RRINGn pins  
GND-0.5  
2000  
Vin  
ESD Voltage, any pin(2)  
V
Transient Latch-up Current, any pin  
100  
10  
mA  
mA  
mA  
W
-10  
Iin  
Input Current, any digital pin(3)  
DC Input Current, any analog pin(3)  
Maximum Power Dissipation in package  
Storage Temperature  
±100  
1.6  
Pd  
Ts  
-65  
+150  
°C  
CAUTION: Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied. Exposure to absolute maximum rat-  
ing conditions for extended periods may affect device reliability.  
1. Referenced to ground  
2. Human body model  
3. Constant input current  
RECOMMENDED OPERATING CONDITIONS  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
VDDA, VDDD  
VDDIO  
VDDT(1)  
3.13  
3.13  
3.3  
3.3  
3.47  
3.47  
V
V
Core Power Supply  
I/O Power Supply  
Transmitter Supply  
3.3 V  
3.13  
4.75  
-40  
3.3  
5.0  
25  
3.47  
5.25  
85  
V
V
5 V  
TA  
RL  
°C  
Ambient Operating Temperature  
Output load at TTIPn pins and TRINGn pins  
25  
Average Core Power Supply Current(2)  
I/O Power Supply Current(3)  
Average transmitter power supply current, T1 mode(2),(4),(5)  
IVDD  
55  
15  
65  
25  
mA  
IVDDIO  
IVDDT  
mA  
50% ones density data:  
230  
440  
mA  
mA  
100% ones density data:  
1. T1 is only 5V VDDT.  
2. Maximum power and current consumption over the full operating temperature and power supply voltage range. Includes all channels.  
3. Digital output is driving 50 pF load, digital input is within 10% of the supply rails.  
4. T1 maximum values measured with maximum cable length (LEN = 111). Typical values measured with typical cable length (LEN = 101).  
5. Power consumption includes power absorbed by line load and external transmitter components.  
35  
IDT82V2048L OCTAL T1/E1 SHORT HAUL ANALOG FRONT END  
INDUSTRIAL TEMPERATURE RANGES  
POWER CONSUMPTION  
Symbol  
Parameter  
LEN  
Min  
Typ  
Max(1)(2)  
Unit  
E1, 3.3 V, 75 Load  
50% ones density data:  
100% ones density data:  
000  
000  
-
-
662  
1100  
-
mW  
mW  
1177  
E1, 3.3 V, 120 Load  
50% ones density data:  
000  
000  
-
-
576  
930  
-
mW  
mW  
100% ones density data:  
992  
E1, 5.0 V, 75 Load  
50% ones density data:  
100% ones density data:  
000  
000  
-
-
910  
1585  
-
mW  
mW  
1690  
E1, 5.0 V, 120 Load  
50% ones density data:  
100% ones density data:  
000  
000  
-
-
785  
1315  
-
mW  
mW  
1410  
T1, 5.0 V, 100 Load(3)  
101  
111  
-
-
1185  
2395  
-
mW  
mW  
50% ones density data:  
100% ones density data:  
2670  
1. Maximum power and current consumption over the full operating temperature and power supply voltage range. Includes all channels.  
2. Power consumption includes power absorbed by line load and external transmitter components.  
3. T1 maximum values measured with maximum cable length (LEN = 111). Typical values measured with typical cable length (LEN = 101).  
DC CHARACTERISTICS  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
VIL  
Input Low Level Voltage  
MODE2 and Dn pins  
All other digital inputs pins  
Input Mid Level Voltage  
MODE2 and Dn pins  
Input High Voltage  
1
3
-- VDDIO-0.2  
V
V
0.8  
VIM  
VIH  
2
1
3
1
--  
-- VDDIO+0.2  
-- VDDIO  
2
3 VDDIO-0.2  
V
2
--  
MODE2 and Dn pins  
3 VDDIO+ 0.2  
V
V
V
All other digital inputs pins  
Output Low level Voltage(1) (Iout = 1.6 mA)  
2.0  
VOL  
VOH  
0.4  
Output High level Voltage(1) (Iout = 400 µA)  
Analog Input Quiescent Voltage (RTIPn/RRINGn pin while floating)  
Input High Level Current (MODE2 and Dn pins)  
Input Low Level Current (MODE2 and Dn pins)  
2.4  
VDDIO  
1.47  
50  
V
V
VMA  
IH  
1.33  
1.4  
µA  
µA  
IL  
50  
II  
Input Leakage Current  
TMS, TDI and TRST pins  
All other digital input pins  
50  
10  
µA  
µA  
µA  
kΩ  
-10  
-10  
150  
IZL  
High Impedance Leakage Current  
10  
ZOH  
Output High Impedance on TTIPn and TRINGn pins  
1. Output drivers will output CMOS logic levels into CMOS loads.  
36  
IDT82V2048L OCTAL T1/E1 SHORT HAUL ANALOG FRONT END  
INDUSTRIAL TEMPERATURE RANGES  
TRANSMITTER CHARACTERISTICS  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Output Pulse Amplitudes(1)  
E1, 75 load  
Vo-p  
2.14  
2.7  
2.4  
2.37  
3.0  
3.0  
2.6  
3.3  
3.6  
V
V
V
E1, 120 load  
T1, 100 load  
VO-S  
Zero (space) Level  
E1, 75 load  
-0.237  
-0.3  
-0.15  
0.237  
0.3  
0.15  
V
V
V
E1, 120 load  
T1, 100 load  
-1  
+1  
%
Transmit Amplitude Variation with supply  
200  
mV  
Difference between pulse sequences for 17 consecutive pulses  
TPW  
RTX  
Output Pulse Width at 50% of nominal amplitude  
232  
338  
244  
350  
256  
362  
ns  
ns  
E1:  
T1:  
0.95  
1.05  
Ratio of the amplitudes of Positive and Negative Pulses at the center of the pulse interval  
Transmit Return Loss(2)  
51 kHz – 102 kHz  
102 kHz – 2.048 MHz  
2.048 MHz – 3.072 MHz  
15  
15  
15  
dB  
dB  
dB  
E1, 75 Ω  
51 kHz – 102 kHz  
102 kHz – 2.048 MHz  
2.048 MHz – 3.072 MHz  
15  
15  
15  
dB  
dB  
dB  
E1, 120 Ω  
51 kHz – 102 kHz  
102 kHz – 2.048 MHz  
2.048 MHz – 3.072 MHz  
15  
15  
15  
dB  
dB  
dB  
T1  
(VDDT = 5 V)  
Td  
Transmit Path Delay  
Line Short Circuit Current (3)  
3
U.I.  
ISC  
180  
mAp  
1. E1: measured at the line output ports; T1: measured at the DSX  
2. Test at IDT82V2048L evaluation board  
3. Measured on device, between TTIPn and TRINGn  
37  
IDT82V2048L OCTAL T1/E1 SHORT HAUL ANALOG FRONT END  
INDUSTRIAL TEMPERATURE RANGES  
RECEIVER CHARACTERISTICS  
Symbol  
ATT  
IA  
Parameter  
Min  
Typ  
Max  
Unit  
15  
dB  
Vp  
dB  
%
Permissible Cable Attenuation (E1: @ 1024 kHz, T1: @ 772 kHz)  
Input Amplitude  
Signal to Interference Ratio Margin(1)  
Data Decision Threshold (refer to peak input voltage)  
Data Slicer Threshold  
0.1  
-15  
0.9  
SIR  
SRE  
50  
150  
mV  
Analog Loss Of Signal(2)  
Declare/Clear:  
120/150  
200/250  
280/350  
mVp  
Allowable consecutive zeros before LOS  
E1, G.775:  
32  
2048  
175  
E1, ETSI 300 233:  
T1, T1.231-1993  
LOS Reset  
12.5  
10  
% ones  
Clock Recovery Mode  
JRXp-p  
Peak to Peak Intrinsic Receive Jitter (JA disabled)  
E1 (wide band):  
T1 (wide band):  
0.0625  
0.0625  
U.I.  
U.I.  
ZDM  
ZCM  
RRX  
120  
kΩ  
kΩ  
Receiver Differential Input Impedance  
Receiver Common Mode Input Impedance to GND  
Receive Return Loss  
51 kHz – 102 kHz  
20  
20  
20  
dB  
dB  
dB  
102 kHz – 2.048 MHz  
2.048 MHz – 3.072 MHz  
Receive Path Delay  
3
U.I.  
1. E1: per G.703, O.151 @ 6 dB cable attenuation. T1: @ 655 ft. of 22 ABAM cable  
2. Measured on device, between RTIPn and RRINGn, all ones signal  
38  
IDT82V2048L OCTAL T1/E1 SHORT HAUL ANALOG FRONT END  
INDUSTRIAL TEMPERATURE RANGES  
TRANSCEIVER TIMING CHARACTERISTICS  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
MCLK Frequency  
2.048  
1.544  
MHz  
MHz  
E1:  
T1:  
-100  
40  
100  
60  
ppm  
%
MCLK Tolerance  
MCLK Duty Cycle  
Transmit Path  
TCLK Frequency  
2.048  
1.544  
MHz  
MHz  
E1:  
T1:  
-50  
10  
40  
40  
+50  
90  
ppm  
%
TCLK Tolerance  
TCLK Duty Cycle  
t1  
t2  
ns  
Transmit Data Setup Time  
Transmit Data Hold Time  
ns  
1
µs  
µs  
Delay time of OE low to driver High Impedance  
Delay time of TCLK low to driver High Impedance  
40  
44  
48  
Receive Path  
t4  
RDN/RDP Pulse Width(1)  
200  
300  
244  
324  
ns  
ns  
E1:  
T1:  
RX Data Prop. Delay(2)  
Receive Rise Time(2)  
Receive Fall Time(2)  
t5  
t6  
t7  
40  
14  
12  
ns  
ns  
ns  
1. 0 dB cable loss  
2. 15 pF load  
39  
IDT82V2048L OCTAL T1/E1 SHORT HAUL ANALOG FRONT END  
INDUSTRIAL TEMPERATURE RANGES  
TCLKn  
t1  
t2  
TDPn  
TDNn  
Figure-14 Transmit System Interface Timing  
RTIPn, RRINGn  
t5  
t4  
t6  
t7  
RDPn  
(CLKE = 1)  
t5  
t4  
t6  
t7  
RDNn  
(CLKE = 1)  
t5  
t4  
t6  
t7  
RDPn  
(CLKE = 0)  
t5  
t4  
t4  
t6  
t7  
RDNn  
(CLKE = 0)  
t4  
t6  
t7  
t4  
XOR, RDPn + RDNn  
Figure-15 Receive System Interface Timing  
40  
IDT82V2048L OCTAL T1/E1 SHORT HAUL ANALOG FRONT END  
INDUSTRIAL TEMPERATURE RANGES  
JTAG TIMING CHARACTERISTICS  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Comments  
t1  
t2  
200  
ns  
TCK Period  
TMS to TCK setup Time  
TDI to TCK Setup Time  
50  
50  
ns  
t3  
t4  
TCK to TMS Hold Time  
TCK to TDI Hold Time  
ns  
ns  
100  
TCK to TDO Delay Time  
t1  
TCK  
t2  
t3  
TMS  
TDI  
t4  
TDO  
Figure-16 JTAG Interface Timing  
41  
IDT82V2048L OCTAL T1/E1 SHORT HAUL ANALOG FRONT END  
INDUSTRIAL TEMPERATURE RANGES  
PARALLEL HOST INTERFACE TIMING CHARACTERISTICS  
INTEL MODE READ TIMING CHARACTERISTICS  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Comments  
(1)  
t1  
t2  
Active RD Pulse Width  
Active CS to Active RD Setup Time  
Inactive RD to Inactive CS Hold Time  
Valid Address to Inactive ALE Setup Time (in Multiplexed Mode)  
Invalid RD to Address Hold Time (in Non-Multiplexed Mode)  
Active RD to Data Output Enable Time  
Inactive RD to Data High Impedance Delay Time  
Active CS to RDY delay time  
Inactive CS to RDY High Impedance Delay Time  
Inactive RD to Inactive INT Delay Time  
Address Latch Enable Pulse Width (in Multiplexed Mode)  
Address Latch Enable to RD Setup Time (in Multiplexed Mode)  
Address Setup time to Valid Data Time (in Non-Multiplexed Mode)  
Inactive RD to Active RDY Delay Time  
90  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t3  
0
t4  
5
t5  
0
t6  
7.5  
7.5  
6
15  
15  
12  
12  
20  
t7  
t8  
t9  
6
t10  
t11  
t12  
t13  
t14  
t15  
t16  
10  
0
18  
10  
30  
5
32  
15  
85  
Active RD to Active RDY Delay Time  
Inactive ALE to Address Hold Time (in Multiplexed Mode)  
1. The t1 is determined by the start time of the valid data when the RDY signal is not used.  
42  
IDT82V2048L OCTAL T1/E1 SHORT HAUL ANALOG FRONT END  
INDUSTRIAL TEMPERATURE RANGES  
t2  
t3  
CS  
t1  
RD  
ALE(=1)  
t13  
t5  
ADDRESS  
A[4:0]  
t6  
t7  
DATA OUT  
D[7:0]  
t14  
t8  
t9  
RDY  
t15  
t10  
INT  
Figure-17 Non-Multiplexed Intel Mode Read Timing  
t2  
t3  
CS  
RD  
t1  
t11  
t4  
t12  
t13  
ALE  
t16  
t6  
t7  
ADDRESS  
DATA OUT  
AD[7:0]  
t14  
t8  
t9  
RDY  
t15  
t10  
INT  
Figure-18 Multiplexed Intel Mode Read Timing  
43  
IDT82V2048L OCTAL T1/E1 SHORT HAUL ANALOG FRONT END  
INDUSTRIAL TEMPERATURE RANGES  
INTEL MODE WRITE TIMING CHARACTERISTICS  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Comments  
(1)  
t1  
t2  
Active WR Pulse Width  
Active CS to Active WR Setup Time  
Inactive WR to Inactive CS Hold Time  
Valid Address to Latch Enable Setup Time (in Multiplexed Mode)  
Invalid WR to Address Hold Time (in Non-Multiplexed Mode)  
Valid Data to Inactive WR Setup Time  
Inactive WR to Data Hold Time  
Active CS to Inactive RDY Delay Time  
90  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t3  
0
t4  
5
t5  
2
t6  
5
t7  
10  
6
t8  
12  
85  
15  
12  
t9  
Active WR to Active RDY Delay Time  
Inactive WR to Inactive RDY Delay Time  
30  
10  
6
t10  
t11  
t12  
t13  
t14  
t15  
Invalid CS to RDY High Impedance Delay Time  
Address Latch Enable Pulse Width (in Multiplexed Mode)  
Inactive ALE to WR Setup Time (in Multiplexed Mode)  
Inactive ALE to Address hold time (in Multiplexed Mode)  
Address setup time to Inactive WR time (in Non-Multiplexed Mode)  
10  
0
5
5
1. The t1 can be 15 ns when RDY signal is not used.  
CS  
t2  
t1  
t3  
WR  
ALE(=1)  
t15  
ADDRESS  
t5  
A[4:0]  
D[7:0]  
t6  
t7  
WRITE DATA  
t10  
t8  
t11  
RDY  
t9  
Figure-19 Non-Multiplexed Intel Mode Write Timing  
t2  
t3  
CS  
t1  
WR  
t12  
t4  
t13  
ALE  
t14  
t6  
t7  
ADDRESS  
t8  
WRITE DATA  
AD[7:0]  
RDY  
t11  
t9  
t10  
Figure-20 Multiplexed Intel Mode Write Timing  
44  
IDT82V2048L OCTAL T1/E1 SHORT HAUL ANALOG FRONT END  
INDUSTRIAL TEMPERATURE RANGES  
MOTOROLA MODE READ TIMING CHARACTERISTICS  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Comments  
(1)  
t1  
t2  
Active DS Pulse Width  
Active CS to Active DS Setup Time  
Inactive DS to Inactive CS Hold Time  
Valid R/W to Active DS Setup Time  
90  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t3  
0
t4  
0
t5  
Inactive DS to R/W Hold Time  
0.5  
5
t6  
Valid Address to Active DS Setup Time (in Non-Multiplexed Mode)  
Active DS to Address Hold Time (in Non-Multiplexed Mode)  
Active DS to Data Valid Delay Time (in Non-Multiplexed Mode)  
Active DS to Data Output Enable Time  
Inactive DS to Data High Impedance Delay Time  
Active DS to Active ACK Delay Time  
Inactive DS to Inactive ACK Delay Time  
Inactive DS to Invalid INT Delay Time  
Active AS to Active DS Setup Time (in Multiplexed Mode)  
t7  
10  
20  
7.5  
7.5  
30  
10  
t8  
35  
15  
15  
85  
15  
20  
t9  
t10  
t11  
t12  
t13  
t14  
5
1. The t1 is determined by the start time of the valid data when the ACK signal is not used.  
CS  
t4  
t5  
t3  
R/W  
t2  
t1  
DS  
ALE(=1)  
t6  
t7  
ADDRESS  
A[4:0]  
D[7:0]  
t10  
t8  
t9  
DATA OUT  
t12  
ACK  
INT  
t11  
t13  
Figure-21 Non-Multiplexed Motorola Mode Read Timing  
CS  
t2  
t4  
t14  
t3  
t5  
R/W  
t1  
DS  
AS  
t8  
t9  
t10  
t6  
t7  
ADDRESS  
t11  
DATA OUT  
AD[7:0]  
t12  
ACK  
INT  
t13  
Figure-22 Multiplexed Motorola Mode Read Timing  
45  
IDT82V2048L OCTAL T1/E1 SHORT HAUL ANALOG FRONT END  
INDUSTRIAL TEMPERATURE RANGES  
MOTOROLA MODE WRITE TIMING CHARACTERISTICS  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Comments  
(1)  
t1  
t2  
Active DS Pulse Width  
90  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Active CS to Active DS Setup Time  
Inactive DS to Inactive CS Hold Time  
Valid R/W to Active DS Setup Time  
Inactive DS to R/W Hold Time  
Valid Address to Active DS Setup Time (in Non-Multiplexed Mode)  
Valid DS to Address Hold Time (in Non-Multiplexed Mode)  
Valid Data to Inactive DS Setup Time  
Inactive DS to Data Hold Time  
Active DS to Active ACK Delay Time  
Inactive DS to Inactive ACK Delay Time  
Active AS to Active DS (in Multiplexed Mode)  
Inactive DS to Inactive AS Hold Time (in Multiplexed Mode)  
t3  
0
t4  
10  
0
t5  
t6  
10  
10  
5
t7  
t8  
t9  
10  
30  
10  
0
t10  
t11  
t12  
t13  
85  
15  
15  
1. The t1 can be 15ns when the ACK signal is not used.  
CS  
t4  
t5  
t3  
R/W  
t2  
t1  
DS  
ALE(=1)  
t6  
t7  
ADDRESS  
A[4:0]  
D[7:0]  
t8  
t9  
WRITE DATA  
t11  
t10  
ACK  
Figure-23 Non-Multiplexed Motorola Mode Write Timing  
CS  
t2  
t4  
t3  
t5  
t13  
R/W  
t1  
DS  
t12  
AS  
t8  
t9  
t6  
t7  
ADDRESS  
WRITE DATA  
AD[7:0]  
t10  
t11  
ACK  
Figure-24 Multiplexed Motorola Mode Writing Timing  
46  
IDT82V2048L OCTAL T1/E1 SHORT HAUL ANALOG FRONT END  
INDUSTRIAL TEMPERATURE RANGES  
SERIAL HOST INTERFACE TIMING CHARACTERISTICS  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Comments  
t1  
t2  
SCLK High Time  
25  
25  
10  
50  
50  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCLK Low Time  
t3  
Active CS to SCLK Setup Time  
Last SCLK Hold Time to Inactive CS Time  
CS Idle Time  
t4  
t5  
t6  
SDI to SCLK Setup Time  
t7  
SCLK to SDI Hold Time  
5
t8  
Rise/Fall Time (any pin)  
100  
50  
t9  
SCLK Rise and Fall Time  
SCLK to SDO Valid Delay Time  
t10  
t11  
25  
35  
Load = 50 pF  
SCLK Falling Edge to SDO High Impedance Hold Time (CLKE = 0) or CS  
Rising Edge to SDO High Impedance Hold Time (CLKE = 1)  
100  
ns  
CS  
t4  
t5  
t3 t1  
t2  
SCLK  
SDI  
t6  
t7  
t7  
MSB  
LSB  
LSB  
CONTROL BYTE  
DATA BYTE  
Figure-25 Serial Interface Write Timing  
10 11  
1
2
3
4
5
6
7
8
9
12  
13  
14  
15  
16  
SCLK  
t10  
t4  
CS  
t11  
SDO  
0
1
2
3
4
5
6
7
Figure-26 Serial Interface Read Timing with CLKE = 0  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
5
15  
16  
t4  
SCLK  
CS  
t10  
t11  
SDO  
0
1
2
3
4
6
7
Figure-27 Serial Interface Read Timing with CLKE = 1  
47  
IDT82V2048L OCTAL T1/E1 SHORT HAUL ANALOG FRONT END  
INDUSTRIAL TEMPERATURE RANGES  
ORDERING INFORMATION  
XXXXXXX  
Device Type  
XX  
Package  
X
IDT  
Process/  
Temperature  
Range  
Blank  
Industrial (-40 °C to + 85 °C)  
BBG  
Green Plastic Ball Grid Array (PBGA, BBG160)  
DAG  
Green Thin Quad Flatpack (TQFP, DAG144)  
82V2048L T1/E1 Short Haul Analog Front End  
DATASHEET DOCUMENT HISTORY  
07/29/2005  
pgs. 1, 4, 5, 7 to 10, 13, 15 to 17, 19, 20, 22, 23, 25, 25, 28, 32, 35, 37 to 40, 43 to 47  
CORPORATE HEADQUARTERS  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
for SALES:  
1-800-345-7015 or 408-284-8200  
fax: 408-284-2775  
for Tech Support:  
408-360-1552  
email:telecomhelp@idt.com  
www.idt.com  
IDT and the IDT logo are trademarks of Integrated Device Technology, Inc.  
48  

相关型号:

82V2052EPF8

PCM Transceiver, 1-Func, PQFP80, TQFP-80
IDT

82V2052EPFG8

PCM Transceiver, 1-Func, PQFP80, GREEN, TQFP-80
IDT

82V2054BB

Digital Transmission Interface, CMOS, PBGA160
IDT

82V2054BBG

Digital Transmission Interface, CMOS, PBGA160
IDT

82V2054DA

Digital Transmission Interface, CMOS, PQFP144
IDT

82V2054DAG

Digital Transmission Interface, CMOS, PQFP144
IDT

82V2058BB

PCM Transceiver, 1-Func, PBGA160, PLASTIC, BGA-160
IDT

82V2058DA

PCM Transceiver, 1-Func, PQFP144, TQFP-144
IDT

82V2081PPG8

PCM Transceiver, 1-Func, PQFP44, TQFP-44
IDT

82V2082PF

PCM Transceiver, 1-Func, PQFP80, TQFP-80
IDT

82V2082PFG8

PCM Transceiver, 1-Func, PQFP80, TQFP-80
IDT

82V2084PF

PCM Transceiver, 1-Func, PQFP128, TQFP-128
IDT