843034-06 [IDT]

FemtoClock™ Multi-Rate 3.3V LVPECL Frequency Synthesizer;
843034-06
型号: 843034-06
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

FemtoClock™ Multi-Rate 3.3V LVPECL Frequency Synthesizer

文件: 总24页 (文件大小:538K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FemtoClock™ Multi-Rate 3.3V LVPECL  
Frequency Synthesizer  
843034-06  
DATA SHEET  
GENERAL DESCRIPTION  
FEATURES  
The 843034-06 is a general purpose, low phase noise LVPECL  
synthesizer which can generate frequencies for a wide variety of  
applications.The 843034-06 has a 4:1 input multiplexer from which  
the following inputs can be selected: one differential input, one  
single-ended input, or one of two crystal oscillators, thus making  
the device ideal for frequency translation or frequency generation.  
The 843034-06 has dual LVPECL outputs that may be programmed  
for ÷2, ÷4 or ÷5 of theVCO frequency.The 843034-06 also supplies  
a buffered copy of the reference clock or crystal frequency on the  
single-ended REF_OUT pin which can be enabled or disabled  
(disabled by default). The output frequency can be programmed  
using either a serial or parallel programming interface. This device  
supports Spread Spectrum Clocking (SSC) for EMI reduction.  
Dual differential 3.3V LVPECL outputs  
4:1 Input Mux:  
One differential input  
One single-ended input  
Two crystal oscillator interfaces  
CLK, nCLK pair can accept the following differential  
input levels: LVPECL, LVDS, LVHSTL, HCSL, SSTL  
Output frequency range: 120MHz to 375MHz  
Crystal input frequency range: 12MHz to 40MHz  
VCO range: 600MHz to 750MHz  
Supports Spread Spectrum Clocking (SSC)  
Parallel or serial interface for programming feedback divider  
and output dividers  
RMS phase jitter at 166.6MHz, using a 22.222MHz crystal  
(12kHz to 30MHz): 1.33ps (typical), SSC - Off  
3.3V supply mode  
0°C to 75°C ambient operating temperature  
Available in lead-free (RoHS 6) package  
BLOCK DIAGRAM  
Pullup  
OE_A  
÷
÷
÷
001  
011  
100  
2
4
5
Pullup  
VCO_SEL  
XTAL_IN0  
FOUTA0  
nFOUTA0  
PIN ASSIGNMENT  
00  
01  
OSC  
OSC  
XTAL_OUT0  
XTAL_IN1  
0
1
VCCO_A  
XTAL_OUT1  
Phase  
Detector  
VCO  
Pullup  
CLK  
nCLK  
VCCO_B  
10  
11  
Pullup/Pulldown  
FOUTB0  
nFOUTB0  
Pulldown  
REF_CLK  
÷M  
Pulldown  
Pulldown  
SEL1  
SEL0  
Pullup  
OE_B  
MR  
VCCO_REF  
REF_OUT  
Pulldown  
Pulldown  
Pulldown  
Pulldown  
Pulldown  
Pulldown  
OE_REF  
S_LOAD  
TEST  
S_DATA  
S_CLOCK  
Configuration  
Interface  
Logic  
nP_LOAD  
M8:M0  
M0:M4 M6:M8 Pulldown, M5 Pullup  
NA2 Pulldown, NA1:0 Pullup  
NA2:NA0  
843034-06 REVISION B 8/17/15  
1
©2015 Integrated Device Technology, Inc.  
843034-06 DATA SHEET  
FUNCTIONAL DESCRIPTION  
NOTE: The functional description that follows describes operation  
using a 22.22MHz crystal. Valid PLL loop divider values for differ-  
ent crystal or input frequencies are defined in the Input Frequency  
Characteristics, Table 6, NOTE 1.  
will automatically occur during power-up. The TEST output is  
LOW when operating in the parallel input mode. The relationship  
between theVCO frequency, the crystal frequency and the M divider  
is defined as follows: fVCO = fxtal x M  
The 843034-06 features a fully integrated PLL and therefore  
requires no external components for setting the loop band-  
width. A fundamental crystal is used as the input to the on-  
chip oscillator. The output of the oscillator is fed into the phase  
detector. A 22.22MHz crystal provides a 22.22MHz phase detector  
reference frequency.The VCO of the PLL operates over a range of  
600MHz to 750MHz. The output of the M divider is also applied to  
the phase detector.  
The M value and the required values of M0 through M8 are shown  
in Table 4B to program the VCO Frequency Function Table.Valid M  
values for which the PLL will achieve lock for a 22.22MHz reference  
are defined as 26 M 33.The frequency out is defined as follows:  
FOUT = fVCO = fxtal x M  
N
N
Serial operation occurs when nP_LOAD is HIGH and S_LOAD is  
LOW.The shift register is loaded by sampling the S_DATA bits with  
the rising edge of S_CLOCK. The contents of the shift register are  
loaded into the M divider and NA output divider when S_LOAD tran-  
sitions from LOW-to-HIGH.The M divide and NA output divide values  
are latched on the HIGH-to-LOW transition of S_LOAD. If S_LOAD  
is held HIGH, data at the S_DATA input is passed directly to the M  
divider and NA output divider on each rising edge of S_CLOCK.  
The serial mode can be used to program the M and NA bits and  
test bits T1 and T0.The internal registers T0 and T1 determine the  
state of the TEST output as follows:  
The phase detector and the M divider force the VCO output  
frequency to be M times the reference frequency by adjusting the  
VCO control voltage.Note that for some values of M (either too high  
or too low), the PLL will not achieve lock. The output of the VCO is  
scaled by a divider prior to being sent to each of the LVPECL output  
buffers. The divider provides a 50% output duty cycle.  
The 843034-06 supports either serial or parallel programming  
modes to program the M feedback divider and N output divider.  
Figure 1 shows the timing diagram for each mode. In parallel  
mode, the nP_LOAD input is initially LOW. The data on the M  
and NA inputs are passed directly to the M divider and N output  
dividers. On the LOW-to-HIGH transition of the nP_LOAD input,  
the data is latched and the M and N dividers remain loaded until  
the next LOW transition on nP_LOAD or until a serial event oc-  
curs. As a result, the M and NA bits can be hardwired to set the  
M divider and NA output divider to a specific default state that  
T1 T0  
TEST Output  
LOW  
0
0
1
1
0
1
0
1
S_Data, Shift Register Output  
Output of M divider  
Same frequency as FOUTA0  
FemtoClock™ Multi-Rate 3.3V LVPECL  
Frequency Synthesizer  
2
REVISION B 8/17/15  
843034-06 DATA SHEET  
TABLE 1. SSM OPERATION  
SS Bit Pattern  
Operation  
SS3  
0
SS2  
0
SS1  
0
SS0  
0
Mode  
%
off  
0
0
0
0
1
center  
center  
center  
center  
center  
center  
center  
off  
0.25  
0.25  
0.85  
0.85  
1.45  
1.45  
1.7  
0
0
1
0
0
0
1
1
0
1
0
0
0
1
0
1
0
1
1
0
0
1
1
1
1
0
0
0
0
1
0
0
1
down  
down  
down  
down  
down  
down  
down  
-0.25  
-0.25  
-0.75  
-0.75  
-1.25  
-1.25  
-1.5  
1
0
1
0
1
0
1
1
1
1
0
0
1
1
0
1
1
1
1
0
1
1
1
1
NOTE: SS modulation frequency is approximately 32kHz using  
reference frequency of 22.22MHz, providing a VCO frequency of  
666.66MHz.  
SPREAD SPECTRUM MODULATION  
The 843034-06 offers the option of a spread spectrum modulated  
output clock. The spread spectrum is controlled via 4 bits in the  
serial bit stream. These four bits configure the SSM to be enabled  
and the amount of spread modulation to be selected. See Table  
1 for the definition of the four bits. The four bits are added at the  
beginning of the serial data stream and are labeled SS3, SS2, SS1  
and SS0. The initial state of SS3, SS2, SS1 and SS0 is 0, 0, 0, 0  
which places the 843034-06 in the mode of spread spectrum off.  
Additionally, a parallel load will result in spread spectrum modulation  
being off.The 843034-06 offers down-spread or center-spread using  
triangle-wave modulation. NOTE:PLL operation not guaranteed for  
M >31 when using center spread.  
POWER-UP OPERATION  
MR PIN OPERATION  
The 843034-06 has internal power–up reset circuitry that initiates  
the phase lock loop to automatically acquire lock on power-up. On  
power-up the M/N values for the feedback and output dividers will be  
acquired from the M and N pins if nP_Load is held Low. If nP_Load  
is High during power-up, M/N values are indeterminate. The M/N  
values may be changed by either changing the values on the M/N  
pins when nP_LOAD is low or with a serial load when nP_LOAD is  
high and S_LOAD is low.  
Any time there is a change in the input frequency, either due to an  
external change or a change in the SEL pins, the MR pin must go  
high and low to relock to the new input frequency. A change in the  
M feedback divider by either a serial or parallel load will also cause  
a relock to the new input frequency.  
REVISION B 8/17/15  
3
FemtoClock™ Multi-Rate 3.3V LVPECL Frequency Synthesizer  
843034-06 DATA SHEET  
TABLE 2. PIN DESCRIPTIONS  
Number  
Name  
Type  
Description  
1, 41, 42,  
43, 44, 45,  
47, 48  
M8, M0, M1,  
M2, M3,  
M4, M6, M7  
M divider input. Data latched on LOW-to-HIGH transition of nP_LOAD  
input. LVCMOS/LVTTL interface levels.  
Input  
Pulldown  
2, 3, 4  
RESERVED  
Reserve  
Input  
Reserved pins. Do not connect.  
Output enable. Controls enabling and disabling of REF_OUT output.  
LVCMOS/LVTTL interface levels.  
5
OE_REF  
Pulldown  
Pullup  
Output enable. Controls enabling and disabling of FOUTA0, nFOUTA0  
outputs. LVCMOS/LVTTL interface levels.  
6
7
OE_A  
OE_B  
Input  
Input  
Output enable. Controls enabling and disabling of FOUTB0, nFOUTB0  
outputs. LVCMOS/LVTTL interface levels.  
Pullup  
8, 14  
9, 10  
11  
V
Power  
Input  
Core supply pins.  
CC  
NA0, NA1  
NA2  
Pullup  
Determines output divider value as defined in Table 4C,  
Function Table. LVCMOS/LVTTL interface levels.  
Input  
Pulldown  
12, 24  
V
Power  
Negative supply pins.  
EE  
Test output which is ACTIVE in the serial mode of operation.  
Output driven LOW in parallel mode.  
13  
TEST  
Output  
LVCMOS/LVTTL interface levels.  
FOUTA0, nFOU-  
TA0  
15, 16  
17  
Output  
Power  
Output  
Differential output for the synthesizer. LVPECL interface levels.  
Output supply pin for FOUTA0, nFOUTA0.  
V
CCO_A  
FOUTB0,  
nFOUTB0  
18, 19  
Differential output for the synthesizer. LVPECL interface levels.  
20  
21  
22  
23  
V
Power  
Output  
Power  
Output supply pin for FOUTB0, nFOUTB0.  
Reference clock output. LVCMOS/LVTTL interface levels.  
Output supply pin for REF_OUT output.  
No connect.  
CCO_B  
REF_OUT  
V
CCO_REF  
nc  
Unused  
Active High Master Reset. When logic HIGH, forces the internal PLL to  
a reset condition which holds the VCO at the minumum value. When  
25  
MR  
Input  
Pulldown logic LOW, the internal dividers and the outputs are enabled. Assertion  
of MR does not affect loaded M, N, S and T values. LVCMOS/LVTTL  
interface levels.  
Clocks in serial data present at S_DATA input into the shift register on  
the rising edge of S_CLOCK. LVCMOS/LVTTL interface levels.  
26  
27  
28  
S_CLOCK  
S_DATA  
Input  
Input  
Input  
Pulldown  
Shift register serial input. Data sampled on the rising edge  
of S_CLOCK. LVCMOS/LVTTL interface levels.  
Pulldown  
Controls transition of data from shift register into the dividers. LVC-  
MOS/LVTTL interface levels.  
S_LOAD  
Pulldown  
29  
30, 31  
32  
V
Power  
Input  
Input  
Analog supply pin.  
CCA  
SEL0, SEL1  
REF_CLK  
Pulldown Clock select inputs. LVCMOS/LVTTL interface levels.  
Pulldown Reference clock input. LVCMOS/LVTTL interface levels.  
XTAL_IN0,  
XTAL_OUT0  
Crystal oscillator interface. XTAL_IN0 is the input,  
XTAL_OUT0 is the output.  
33, 34  
35, 36  
Input  
Input  
XTAL_IN1,  
XTAL_OUT1  
Crystal oscillator interface. XTAL_IN1 is the input,  
XTAL_OUT1 is the output.  
Continued on next page...  
FemtoClock™ Multi-Rate 3.3V LVPECL Frequency Synthesizer  
4
REVISION B 8/17/15  
843034-06 DATA SHEET  
TABLE 2. PIN DESCRIPTIONS, CONTINUED  
Number  
Name  
Type  
Description  
37  
CLK  
Input Pulldown Non-inverting differential clock input.  
Pullup/  
38  
nCLK  
Input  
Inverting differential clock input.V /2 default when left floating.  
CC  
Pulldown  
Parallel load input. Determines when data present at M8:M0 is loaded into  
39  
nP_LOAD  
Input Pulldown M divider, and when data present at NA2:NA0 is loaded into the N output  
dividers. LVCMOS/LVTTL interface levels.  
Determines whether synthesizer is in PLL or bypass mode.  
LVCMOS/LVTTL interface levels.  
40  
46  
VCO_SEL  
M5  
Input  
Input  
Pullup  
Pullup  
M divider input. Data latched on LOW-to-HIGH transition of nP_LOAD input.  
LVCMOS/LVTTL interface levels.  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 3, Pin Characteristics, for typical values.  
TABLE 3. PIN CHARACTERISTICS  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
C
R
R
R
Input Capacitance  
4
51  
51  
7
pF  
kΩ  
kΩ  
Ω
IN  
Input Pullup Resistor  
PULLUP  
PULLDOWN  
OUT  
Input Pulldown Resistor  
Output Impedance  
REF_OUT  
5
12  
REVISION B 8/17/15  
5
FemtoClock™ Multi-Rate 3.3V LVPECL Frequency Synthesizer  
843034-06 DATA SHEET  
TABLE 4A. PARALLEL AND SERIAL MODE FUNCTION TABLE  
Inputs  
Conditions  
MR nP_LOAD  
M
N
S_LOAD S_CLOCK S_DATA  
H
X
X
X
X
X
X
Reset the PLL.  
Data on M and N inputs passed directly to the M divider  
and N output divider. TEST output forced LOW.  
L
L
Data Data  
Data Data  
X
X
X
Data is latched into input registers and remains loaded  
until next LOW transition or until a serial event occurs.  
L
L
L
H
H
L
L
X
L
X
Serial input mode. Shift register is loaded with data on  
S_DATA on each rising edge of S_CLOCK.  
X
X
X
X
Data  
Data  
Contents of the shift register are passed to the  
M divider and N output divider.  
L
L
L
H
H
H
X
X
X
X
X
X
L
L
X
Data  
X
M divider and N output divider values are latched.  
Parallel or serial input do not affect shift registers.  
S_DATA passed directly to M divider as it is clocked.  
H
Data  
NOTE: L = LOW  
H = HIGH  
X = Don’t care  
= Rising edge transition  
= Falling edge transition  
TABLE 4B. PROGRAMMABLE VCO FREQUENCY FUNCTION TABLE  
256  
M8  
0
128  
M7  
0
64  
M6  
0
32  
M5  
0
16  
M4  
1
8
M3  
1
4
M2  
0
2
M1  
1
1
M0  
0
VCO Frequency  
(MHz)  
M Divide  
600  
27  
666.6  
30  
0
0
0
0
1
1
1
1
0
711.04 (default)  
733.3  
32  
33  
0
0
0
1
0
0
0
0
0
0
0
0
1
0
0
0
0
1
NOTE 1: These M divide values and the resulting frequencies correspond to crystal, CLK, or REF_CLK input frequency of  
22.22MHz.  
TABLE 4C. PROGRAMMABLE OUTPUT DIVIDER FUNCTION TABLE  
Inputs  
Output Frequency (MHz)  
N Divider Value  
*NA2  
*NA1  
*NA0  
Minimum  
300  
Maximum  
375  
0
0
1
0
1
0
1
1
0
2
4
5
150  
187.5 (default)  
150  
120  
*NOTE: Programming for Bank A and Bank B.  
FemtoClock™ Multi-Rate 3.3V LVPECL Frequency Synthesizer  
6
REVISION B 8/17/15  
843034-06 DATA SHEET  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage, V  
4.6V  
CC  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
device. These ratings are stress specifications only. Functional  
operation of product at these conditions or any conditions beyond  
those listed in the DC Characteristics or AC Characteristics is not  
implied. Exposure to absolute maximum rating conditions for ex-  
tended periods may affect product reliability.  
Inputs, V  
-0.5V to V + 0.5V  
I
CC  
Outputs, V (LVCMOS)  
-0.5V to V + 0.5V  
O
CCO  
Outputs, I (LVPECL)  
O
Continuous Current  
Surge Current  
50mA  
100mA  
Package Thermal Impedance, θ  
65.7°C/W (0 mps)  
-65°C to 150°C  
JA  
Storage Temperature, T  
STG  
TABLE 5A. POWER SUPPLY DC CHARACTERISTICS, V = V  
= V  
= V  
= 3.3V 5%, V = 0V, TA = 0°C TO 75°C  
CCO_REF EE  
CC  
CCO_A  
CCO_B  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
3.3  
Maximum Units  
V
V
V
Core Supply Voltage  
3.135  
3.465  
V
V
CC  
Analog Supply Voltage  
V – 0.17  
3.3  
V
CCA  
CC  
CC  
VCCO_A,  
Output Supply Voltage  
3.135  
3.3  
3.465  
V
VCCO_B,  
CCO_REF  
I
Power Supply Current  
Analog Supply Current  
173  
17  
mA  
mA  
EE  
I
CCA  
TABLE 5B. LVCMOS/LVTTL DC CHARACTERISTICS, V = V  
= 3.3V 5%, V = 0V, TA = 0°C TO 75°C  
EE  
CC  
CCO_REF  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
V
V
Input High Voltage  
Input Low Voltage  
REF_CLK, MR,  
2
V
+ 0.3  
V
V
IH  
CC  
-0.3  
0.8  
IL  
SEL[1:0], OE_REF,  
S_CLOCK, S_DATA,  
S_LOAD, nP_LOAD,  
NA2, M1:M4, M6:M8  
V
V
= V = 3.465V  
150  
5
µA  
µA  
µA  
µA  
CC  
IN  
Input  
High Current  
I
IH  
OE_A, M5, OE_B,  
VCO_SEL, NA0, NA1  
= V = 3.465V  
CC  
IN  
REF_CLK, MR,  
SEL[1:0], OE_REF,  
S_CLOCK, S_DATA,  
S_LOAD, nP_LOAD,  
NA2, M1:M4, M6:M8  
V
= 3.465V,  
CC  
-5  
V = 0V  
Input  
Low Current  
IN  
I
IL  
OE_A, M5, OE_B,  
VCO_SEL, NA0, NA1  
V
= 3.465V,  
CC  
-150  
2.6  
V = 0V  
IN  
TEST; NOTE 1  
REF_OUT  
V
V
V
V
Output  
High Voltage  
V
V
V
= 3.3V 5%  
OH  
OL  
CCO_REF  
V
- 0.3V  
CCO_REF  
TEST; NOTE 1  
REF_OUT  
0.5  
0.4  
Output  
Low Voltage  
V
= 3.3V 5%  
CCO_REF  
NOTE 1: Outputs terminated with 50Ω to V  
Circuit Diagrams.  
/2. See Parameter Measurement Information Section, “Output Load Test  
CCO_REF  
FemtoClock™ Multi-Rate 3.3V LVPECL Frequency Synthesizer  
REVISION B 8/17/15  
7
843034-06 DATA SHEET  
TABLE 5C. DIFFERENTIAL DC CHARACTERISTICS, V = V  
= V  
= 3.3V 5%, V = 0V, TA = 0°C TO 75°C  
CC  
CCO_A  
CCO_B EE  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
nCLK  
V = V = 3.465V  
150  
150  
µA  
µA  
µA  
µA  
V
IN  
CC  
I
Input High Current  
Input Low Current  
IH  
CLK  
nCLK  
CLK  
V = V = 3.465V  
IN CC  
V = 0V, V = 3.465V  
-150  
-5  
IN  
CC  
I
IL  
V = 0V, V = 3.465V  
IN  
CC  
V
V
Peak-to-Peak Input Voltage; NOTE 1  
0.15  
1.3  
PP  
Common Mode Input Voltage; NOTE 1, 2  
V
+ 0.5  
V - 0.85  
CC  
V
CMR  
EE  
NOTE 1: V should not be less than -0.3V.  
IL  
NOTE 2: Common mode voltage is defined as V .  
IH  
TABLE 5D. LVPECL DC CHARACTERISTICS, V = V  
= V  
= 3.3V 5%, V = 0V, TA = 0°C TO 75°C  
CCO_B EE  
CC  
CCO_A  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
V
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
Peak-to-Peak Output Voltage Swing  
V
V
- 1.4  
- 2.0  
V
V
- 0.9  
- 1.7  
V
V
V
OH  
CCO  
CCO  
V
OL  
CCO  
CCO  
V
0.6  
1.0  
SWING  
NOTE 1: Outputs terminated with 50Ω to V  
V
- 2V.  
CCO_A,  
CCO_B  
TABLE 6. INPUT FREQUENCY CHARACTERISTICS, V = V  
= V  
= V  
= 3.3V 5%, V = 0V, TA = 0°C TO 75°C  
CCO_REF EE  
CC  
CCO_A  
CCO_B  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
XTAL_IN0/XTAL_OUT0,  
XTAL_IN1/XTAL_OUT1  
12  
12  
40  
MHz  
f
Input Frequency  
IN  
CLK/nCLK, REF_CLK  
S_CLOCK  
40  
50  
MHz  
MHz  
NOTE: For the input crystal, CLK/nCLK and REF_CLK frequency range, the M value must be set for the VCO to operate with-  
in the 600MHz to 750MHz range. Using the minimum input frequency of 12MHz, valid values of M are 50 M 62. Using the  
maximum frequency of 40MHz, valid values of M are 15 M 18.  
TABLE 7. CRYSTAL CHARACTERISTICS  
Parameter  
Test Conditions  
Minimum Typical Maximum  
Units  
Mode of Oscillation  
Frequency  
Fundamental  
12  
40  
50  
7
MHz  
Ω
Equivalent Series Resistance (ESR)  
Shunt Capacitance  
pF  
FemtoClock™ Multi-Rate 3.3V LVPECL Frequency Synthesizer  
8
REVISION B 8/17/15  
843034-06 DATA SHEET  
TABLE 8. AC CHARACTERISTICS, V = V  
= V  
= V  
= 3.3V 5%, V = 0V, TA = 0°C TO 75°C  
EE  
CCO_REF  
CC  
CCO_A  
CCO_B  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
FOUT  
Output Frequency  
120  
375  
MHz  
166.6MHz,  
Integration Range:  
12kHz - 30MHz  
Phase Jitter, RMS (Random), SSC-Off  
NOTE 1, 2  
tjit(Ø)  
1.33  
ps  
tjit(cc)  
tsk(o)  
Cycle-to-Cycle Jitter; NOTE 2, 3, 4  
Output Skew; NOTE 2, 4, 5  
35  
ps  
ps  
120  
Output  
tR / tF  
LVPECL Outputs  
Rise/Fall Time  
20% to 80%  
200  
700  
ps  
M, N to nP_LOAD  
5
5
ns  
ns  
ns  
ns  
ns  
ns  
%
tS  
Setup Time  
Hold Time  
S_DATA to S_CLOCK  
S_CLOCK to S_LOAD  
M, N to nP_LOAD  
5
5
tH  
S_DATA to S_CLOCK  
S_CLOCK to S_LOAD  
5
5
N = 4 or N = 5  
N = 2  
48  
45  
52  
55  
odc  
Output Duty Cycle  
PLL Lock Time  
%
tLOCK  
100  
ms  
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established  
when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet  
specifications after thermal equilibrium has been reached under these conditons.“  
NOTE: Characterized using a 22.22MHz crystal producing a VCO frequency of 666.66MHz, unless otherwise noted.  
NOTE: See Parameter Measurement Information section.  
NOTE 1: Please refer to the Phase Noise Plot.  
NOTE 2: Characterized with REF_OUT output disabled.  
NOTE 3: Jitter performance using XTAL inputs.  
NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.  
NOTE 5: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
REVISION B 8/17/15  
9
FemtoClock™ Multi-Rate 3.3V LVPECL Frequency Synthesizer  
843034-06 DATA SHEET  
TYPICAL PHASE NOISE AT 166.6MHZ  
Filter  
166.6MHz  
RMS Phase Jitter (Random)  
12kHz to 30MHz = 1.33ps (typical)  
Raw Phase Noise Data  
Phase Noise Result by adding  
a Filter to raw data  
OFFSET FREQUENCY (HZ)  
FemtoClock™ Multi-Rate 3.3V LVPECL Frequency Synthesizer  
10  
REVISION B 8/17/15  
843034-06 DATA SHEET  
PARAMETER MEASUREMENT INFORMATION  
3.3V LVPECL OUTPUT LOAD AC TEST CIRCUIT  
DIFFERENTIAL INPUT LEVELS  
OUTPUT SKEW  
CYCLE-TO-CYCLE JITTER  
OUTPUT RISE/FALL TIME  
OUTPUT DUTY CYCLE/OUTPUT PULSE WIDTH/PERIOD  
FemtoClock™ Multi-Rate 3.3V LVPECL Frequency Synthesizer  
11  
REVISION B 8/17/15  
843034-06 DATA SHEET  
APPLICATION INFORMATION  
POWER SUPPLY FILTERING TECHNIQUES  
As in any high speed analog circuitry, the power supply pins  
are vulnerable to random noise. To achieve optimum jitter  
performance, power supply isolation is required. The 843034-06  
provides separate power supplies to isolate any high switching noise  
from the outputs to the internal PLL. V , V and V should be  
CC  
CCA  
CCO_X  
individually connected to the power supply plane through vias, and  
0.01µF bypass capacitors should be used for each pin. Figure 2  
illustrates this for a genericV pin and also shows thatV requires  
CC  
CCA  
that an additional10Ω resistor along with a 10µF bypass capacitor  
be connected to the V pin.  
CCA  
FIGURE 2. POWER SUPPLY FILTERING  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LVCMOS/LVTTL LEVELS  
Figure 3 shows how the differential input can be wired to accept  
single ended levels. The reference voltage V_REF = V /2 is  
generated by the bias resistors R1, R2 and C1. This bias CcCircuit  
should be located as close as possible to the input pin. The ratio  
of R1 and R2 might need to be adjusted to position the V_REF in  
the center of the input voltage swing. For example, if the input clock  
swing is only 2.5V and V = 3.3V, V_REF should be 1.25V and R2/  
CC  
R1 = 0.609.  
FIGURE 3. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT  
REVISION B 8/17/15  
12  
FemtoClock™ Multi-Rate 3.3V LVPECL Frequency Synthesizer  
843034-06 DATA SHEET  
DIFFERENTIAL CLOCK INPUT INTERFACE  
The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL and  
other differential signals. Both VSWING and VOH must meet the VPP and  
Please consult with the vendor of the driver component to confirm  
the driver termination requirements. For example in Figure 4A, the  
input termination applies for IDT HiPerClockS open emitter LVHSTL  
drivers. If you are using an LVHSTL driver from another vendor,  
use their termination recommendation.  
V
CMR input requirements. Figures 4A to 4F show interface examples  
for the HiPerClockS CLK/nCLK input driven by the most common  
driver types.The input interfaces suggested here are examples only.  
3.3V  
3.3V  
3.3V  
1.8V  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
nCLK  
Zo = 50 Ohm  
HiPerClockS  
Input  
LVPECL  
nCLK  
HiPerClockS  
Input  
LVHSTL  
R1  
50  
R2  
50  
ICS  
R1  
50  
R2  
50  
HiPerClockS  
LVHSTL Driver  
R3  
50  
FIGURE 4A. HIPERCLOCKS CLK/nCLK INPUT  
DRIVEN BY AN IDT OPEN EMITTER  
FIGURE 4B. HIPERCLOCKS CLK/nCLK INPUT  
DRIVEN BY A 3.3V LVPECL DRIVER  
HIPERCLOCKS LVHSTL DRIVER  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
Zo = 50 Ohm  
R3  
125  
R4  
125  
Zo = 50 Ohm  
Zo = 50 Ohm  
LVDS_Driver  
CLK  
CLK  
R1  
100  
nCLK  
nCLK  
Receiver  
HiPerClockS  
Input  
LVPECL  
Zo = 50 Ohm  
R1  
84  
R2  
84  
FIGURE 4C. HIPERCLOCKS CLK/nCLK INPUT  
FIGURE 4D. HIPERCLOCKS CLK/nCLK INPUT  
DRIVEN BY A 3.3V LVDS DRIVER  
DRIVEN BY A 3.3V LVPECL DRIVER  
FIGURE 4F. HIPERCLOCKS CLK/nCLK INPUT  
DRIVEN BY A 2.5V SSTL DRIVER  
FIGURE 4E. HIPERCLOCKS CLK/nCLK INPUT  
DRIVEN BY A 3.3V HCSL DRIVER  
FemtoClock™ Multi-Rate 3.3V LVPECL Frequency Synthesizer  
13  
REVISION B 8/17/15  
843034-06 DATA SHEET  
CRYSTAL INPUT INTERFACE  
The 843034-06 has been characterized with 18pF parallel resonant  
crystals.The capacitor values, C1 and C2, shown in Figure 5 below  
were determined using a 18pF parallel resonant crystal and were  
chosen to minimize the ppm error.The optimum C1 and C2 values  
can be slightly adjusted for different board layouts.  
XTAL_IN  
C1  
27pF  
X1  
18pF Parallel Crystal  
XTAL_OUT  
C2  
27pF  
FIGURE 5. CRYSTAL INPUt INTERFACE  
LVCMOS TO XTAL INTERFACE  
The XTAL_IN input can accept a single-ended LVCMOS signal  
through an AC coupling capacitor. A general interface diagram is  
shown in Figure 6. The XTAL_OUT pin can be left floating. The  
input edge rate can be as slow as 10ns. For LVCMOS signals, it  
is recommended that the amplitude be reduced from full swing to  
half swing in order to prevent signal interference with the power  
rail and to reduce noise.This configuration requires that the output  
impedance of the driver (Ro) plus the series resistance (Rs) equals  
the transmission line impedance. In addition, matched termination  
at the crystal input will attenuate the signal in half.This can be done  
in one of two ways. First, R1 and R2 in parallel should equal the  
transmission line impedance. For most 50Ω applications, R1 and  
R2 can be 100Ω. This can also be accomplished by removing R1  
and making R2 50Ω.  
VDD  
VDD  
R1  
.1uf  
Ro  
Rs  
Zo = 50  
XTAL_IN  
R2  
Zo = Ro + Rs  
XTAL_OU T  
FIGURE 6. GENERAL DIAGRAM FOR LVCMOS DRIVER TO XTAL INPUT INTERFACE  
REVISION B 8/17/15  
14  
FemtoClock™ Multi-Rate 3.3V LVPECL Frequency Synthesizer  
843034-06 DATA SHEET  
RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS  
INPUTS:  
OUTPUTS:  
CRYSTAL INPUTS  
LVCMOS OUTPUTS  
For applications not requiring the use of the crystal oscillator input,  
both XTAL_IN and XTAL_OUT can be left floating. Though not  
required, but for additional protection, a 1kΩ resistor can be tied  
from XTAL_IN to ground.  
The unused LVCMOS output can be left floating. We recommend  
that there is no trace attached.  
LVPECL OUTPUTS  
All unused LVPECL outputs can be left floating. We recommend  
that there is no trace attached. Both sides of the differential output  
pair should either be left floating or terminated.  
CLK/nCLK INPUTS  
For applications not requiring the use of the differential input, both  
CLK and nCLK can be left floating. Though not required, but for  
additional protection, a 1kΩ resistor can be tied from CLK to ground.  
REF_CLK INPUT  
For applications not requiring the use of the reference clock, it can  
be left floating.Though not required, but for additional protection, a  
1kΩ resistor can be tied from the REF_CLK to ground.  
LVCMOS CONTROL PINS  
All control pins have internal pull-ups or pull-downs; additional  
resistance is not required but can be added for additional protection.  
A 1kΩ resistor can be used.  
TERMINATION FOR 3.3V LVPECL OUTPUTS  
The clock layout topology shown below is a typical termination for  
LVPECL outputs. The two different layouts mentioned are recom-  
mended only as guidelines.  
to maximize operating frequency and minimize signal distortion.  
Figures 7A and 7B show two different layouts which are recom-  
mended only as guidelines. Other suitable clock layouts may exist  
and it would be recommended that the board designers simulate  
to guarantee compatibility across all printed circuit and clock com-  
ponent process variations.  
The differential outputs are low impedance follower outputs that  
generate ECL/LVPECL compatible outputs.Therefore, terminating  
resistors (DC current path to ground) or current sources must be  
used for functionality. These outputs are designed to drive 50Ω  
transmission lines.Matched impedance techniques should be used  
3.3V  
R3  
R4  
125  
125  
3.3V  
3.3V  
Z
o = 50  
+
_
Input  
Zo = 50  
R1  
84  
R2  
84  
FIGURE 7A. LVPECL OUTPUT TERMINATION  
FIGURE 7B. LVPECL OUTPUT TERMINATION  
FemtoClock™ Multi-Rate 3.3V LVPECL Frequency Synthesizer  
15  
REVISION B 8/17/15  
843034-06 DATA SHEET  
APPLICATION SCHEMATIC EXAMPLE  
board layout, the C1 and C2 may be slightly adjusted for  
optimizing frequency accuracy. For the LVPECL output  
drivers, only two termination examples are shown in this  
schematic. Additional termination approaches are shown in  
the LVPECL Termination Application Note.  
Figure 8 shows an example of 843034-06 application  
schematic. In this example, the device is operated at  
V =V = 3.3V. The device are be driven by a crystal,  
CC  
LVCMCOCOS or LVPECL input sources. The 18pF parallel  
resonant 25MHz crystal is used. The C1 = 27pF and C2 =  
27pF are recommended for frequency accuracy.For different  
VCC  
3.3V  
R1  
133  
R2  
133  
Zo = 50 Ohm  
Zo = 50 Ohm  
3.3V  
LVPECL  
Driver_LVPECL  
R3  
133  
R4  
133  
R5  
82.5  
R6  
82.5  
Zo = 50 Ohm  
Zo = 50 Ohm  
FOUTA0  
C1  
27pF  
25MHzX1  
18pF  
+
-
nFOUTA0  
C2  
27pF  
U1  
R7  
82.5  
R8  
82.5  
VCC  
R9  
VCC  
10  
M8  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
VCCA  
C3  
M8  
XTAL_OUT1  
XTAL_IN1  
XTAL_OUT0  
XTAL_IN0  
REF_CLK  
SEL1  
2
3
RESERVED  
RESERVED  
RESERVED  
OE_REF  
OE_A  
C4  
4
VCC=3.3V  
VCCO=3.3V  
0.01u  
OE_REF  
OE_A  
OE_B  
VCC  
NA0  
NA1  
NA2  
5
10u  
SEL1  
SEL0  
6
VCC  
7
OE_B  
VCC  
NA0  
NA1  
NA2  
VEE  
SEL0  
8
VCCA  
9
S_LOAD  
S_DATA  
S_CLOCK  
MR  
10  
11  
12  
C5  
0.1u  
MR  
Zo = 50 Ohm  
Zo = 50 Ohm  
FOUTB0  
+
-
nFOUTB0  
Logic Control Input Examples  
VCC  
R10  
50  
R11  
50  
VCCO  
Set Logic  
Input to  
'1'  
Set Logic  
Input to  
'0'  
RU2  
Not Install  
VCC  
VCC  
C6  
0.1u  
C7  
0.1u  
R12  
50  
Optional  
Y-Termination  
RU1  
1K  
VCCO  
To Logic  
Input  
pins  
To Logic  
Input  
pins  
VCCO  
C8  
0.1u  
RD1  
RD2  
1K  
Not Install  
C9  
0.1u  
R13  
33  
Zo = 50 Ohm  
REF_OUT  
LVCMOS  
FIGURE 8. 843034-06 APPLICATION SCHEMATIC EXAMPLE  
REVISION B 8/17/15  
16  
FemtoClock™ Multi-Rate 3.3V LVPECL Frequency Synthesizer  
843034-06 DATA SHEET  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the 843034-06.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the 843034-06 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for V = 3.3V + 5% = 3.465V, which gives worst case results.  
CC  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Core and LVPECL Output Power Dissipation  
Power (core) = V  
* I  
= 3.465V * 173mA = 599.45mW  
EE_MAX  
MAX  
CC_MAX  
Power (outputs) = 30mW/Loaded Output pair  
MAX  
If all outputs are loaded, the total power is 2 * 30mW = 60mW  
LVCMOS Output Power Dissipation  
Output Impedance R Power Dissipation due to Loading 50Ω to V  
/2  
OUT  
CCO_REF  
Output Current I = V  
/ [2 * (50Ω + R )] = 3.465V / [2 * (50Ω + 7Ω] = 30.4mA  
OUT  
CCO_MAX  
OUT  
Power Dissipation on the R per LVCMOS output  
OUT  
2
2
Power (R ) = R * (I ) = 7Ω * (30.4mA) = 6.97mW per output  
OUT  
OUT  
OUT  
Total Power Dissipation  
Total Power  
= Power (LVPECL) + Power (R  
)
OUT  
= 599.45mW + 60mW + 6.47mW  
= 665.92mW  
FemtoClock™ Multi-Rate 3.3V LVPECL Frequency Synthesizer  
17  
REVISION B 8/17/15  
843034-06 DATA SHEET  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of  
the device. The maximum recommended junction temperature for devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + T  
A
Tj = Junction Temperature  
θ
JA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
= Ambient Temperature  
T
A
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming no air flow  
and a multi-layer board, the appropriate value is 65.7°C/W per Table 9 below.  
Therefore, Tj for an ambient temperature of 75°C with all outputs switching is:  
75°C + 0.666W * 65.7°C/W = 118°C. This is below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 9. THERMAL RESISTANCE θJA FOR 48-PIN LQFP, FORCED CONVECTION  
θJA by Velocity (Meters per Second)  
0
1
2.5  
Multi-Layer PCB, JEDEC Standard Test Boards  
65.7°C/W  
55.9°C/W  
52.4°C/W  
REVISION B 8/17/15  
18  
FemtoClock™ Multi-Rate 3.3V LVPECL Frequency Synthesizer  
843034-06 DATA SHEET  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVPECL output driver circuit and termination are shown in Figure 9.  
FIGURE 9. LVPECL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination  
voltage of V – 2V.  
CCO  
For logic high, VOUT = VOH_MAX = VCCO_MAX – 0.9V  
)
(VCCO_MAX – VOH_MAX = 0.9V  
For logic low, VOUT = VOL_MAX = VCCO_MAX – 1.7V  
)
(VCCO_MAX – VOL_MAX = 1.7V  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
))  
Pd_H = [(VOH_MAX – (VCCO_MAX – 2V))/R ] * (VCCO_MAX – VOH_MAX) = [(2V – (VCCO_MAX – VOH_MAX /R ] * (VCCO_MAX – VOH_MAX) =  
L
L
[(2V – 0.9V)/50Ω] * 0.9V = 19.8mW  
))  
Pd_L = [(VOL_MAX – (VCCO_MAX – 2V))/R ] * (VCCO_MAX – VOL_MAX) = [(2V – (VCCO_MAX – VOL_MAX /R ] * (VCCO_MAX – VOL_MAX) =  
L
L
[(2V – 1.7V)/50Ω] * 1.7V = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW  
FemtoClock™ Multi-Rate 3.3V LVPECL Frequency Synthesizer  
19  
REVISION B 8/17/15  
843034-06 DATA SHEET  
RELIABILITY INFORMATION  
TABLE 10. θ VS. AIR FLOW TABLE FOR 48 LEAD LQFP  
JA  
θJA by Velocity (Meters per Second)  
0
1
2.5  
Multi-Layer PCB, JEDEC Standard Test Boards  
65.7°C/W  
55.9°C/W  
52.4°C/W  
TRANSISTOR COUNT  
The transistor count for 843034-06 is: 7846  
REVISION B 8/17/15  
20  
FemtoClock™ Multi-Rate 3.3V LVPECL Frequency Synthesizer  
843034-06 DATA SHEET  
PACKAGE OUTLINE -Y SUFFIX FOR 48 LEAD LQFP  
TABLE 11. PACKAGE DIMENSIONS  
JEDEC VARIATION  
ALL DIMENSIONS IN MILLIMETERS  
BBC  
SYMBOL  
MINIMUM  
NOMINAL  
MAXIMUM  
N
A
48  
--  
--  
--  
1.60  
0.15  
1.45  
0.27  
0.20  
A1  
A2  
b
0.05  
1.35  
0.17  
0.09  
1.40  
0.22  
c
--  
D
9.00 BASIC  
7.00 BASIC  
5.50 Ref.  
9.00 BASIC  
7.00 BASIC  
5.50 Ref.  
0.50 BASIC  
0.60  
D1  
D2  
E
E1  
E2  
e
L
0.45  
0°  
0.75  
7°  
--  
θ
ccc  
--  
--  
0.08  
Reference Document: JEDEC Publication 95, MS-026  
FemtoClock™ Multi-Rate 3.3V LVPECL Frequency Synthesizer  
21  
REVISION B 8/17/15  
843034-06 DATA SHEET  
TABLE 12. ORDERING INFORMATION  
Part/Order Number  
843034EY-06LF  
Marking  
Package  
Shipping Packaging  
tray  
Temperature  
ICS43034E06L  
ICS43034E06L  
48 Lead “Lead-Free” LQFP  
48 Lead “Lead-Free” LQFP  
0°C to 75°C  
0°C to 75°C  
843034EY-06LFT  
tape & reel  
NOTE: Parts that are ordered with an “LF” suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
REVISION B 8/17/15  
22  
FemtoClock™ Multi-Rate 3.3V LVPECL Frequency Synthesizer  
843034-06 DATA SHEET  
REVISION HISTORY SHEET  
Description of Change  
Rev  
Table  
Page  
Date  
A
8
16  
Added Applications Schematic.  
11/19/08  
1
6
6
8
9
Features Section - changed min. VCO from 560MHz to 600MHz.  
Programmable VCO Frequency Table - changed first row VCO frequency from  
577.7 to 600 and M Divide from 26 to 27.  
Programmable Output Divider Table - change Output Frequency Minimum columns from  
(1st row) 280 to 300; (2nd row) 140 to 150; (3rd row) 112 to 120.  
Input Frequency Characteristics - changed VCO min. from 560MHz to 600MHz. Change  
min. input frequency value from 47 to 50, changed max. value from 14 to 15.  
AC Characteristics Table - changed min. output frequency from 112MHz to 120MHz.  
T4B  
T4C  
T6  
B
B
8/10/09  
8/17/15  
T8  
Product Discontinuation Notice - Last time buy expires August 14, 2016.  
PDN CQ-15-04  
Updated data sheet format.  
FemtoClock™ Multi-Rate 3.3V LVPECL Frequency Synthesizer  
23  
REVISION B 8/17/15  
Corporate Headquarters  
6024 Silver Creek Valley Road  
San Jose, California 95138  
Sales  
800-345-7015 or +408-284-8200  
Fax: 408-284-2775  
www.IDT.com  
Technical Support  
email: clocks@idt.com  
DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT’s sole discretion. All information in  
this document, including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined  
in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, wheth-  
er express or implied, including, but not limited to, the suitability of IDT’s products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others.  
This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.  
IDT’s products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reason-  
ably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.  
Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or  
their respective third party owners.  
Copyright 2015. All rights reserved.  

相关型号:

843034AY-01

Clock Generator, 700MHz, PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, MS-026BBC, LQFP-48
IDT

843034AY-01LF

Clock Generator, 700MHz, PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, ROHS COMPLIANT, MS-026BBC, LQFP-48
IDT

843034AY-01LFT

Clock Generator, 700MHz, PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, ROHS COMPLIANT, MS-026BBC, LQFP-48
IDT

843034AY-01T

Clock Generator, 700MHz, PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, MS-026BBC, LQFP-48
IDT

843034AY-06LF

Processor Specific Clock Generator, 750MHz, PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, ROHS COMPLIANT, MS-026, LQFP-48
IDT

843034AY-06LFT

Processor Specific Clock Generator, 750MHz, PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, ROHS COMPLIANT, MS-026, LQFP-48
IDT

843034AYLF

Clock Generator, 750MHz, PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, ROHS COMPLIANT, MS-026BBC, LQFP-48
IDT

843034AYLFT

Clock Generator, 750MHz, PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, ROHS COMPLIANT, MS-026BBC, LQFP-48
IDT

843034DY-06LF

Clock Generator, 375MHz, PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, ROHS COMPLIANT, MS-026, LQFP-48
IDT

843034DY-06LFT

Clock Generator, 375MHz, PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, ROHS COMPLIANT, MS-026, LQFP-48
IDT

843034EY-06LF

FemtoClock™ Multi-Rate 3.3V LVPECL Frequency Synthesizer
IDT

843034EY-06LFT

FemtoClock™ Multi-Rate 3.3V LVPECL Frequency Synthesizer
IDT