844441 [IDT]

FemtoClock SAS/ SATA Clock Generator;
844441
型号: 844441
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

FemtoClock SAS/ SATA Clock Generator

文件: 总15页 (文件大小:356K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FemtoClock® SAS/ SATA Clock Generator  
844441  
Datasheet  
General Description  
Features  
The 844441 is a low jitter, high performance clock generator and a  
member of the FemtoClock® family of silicon timing products. The  
844441 is designed for use in applications using the SAS and SATA  
interconnect. The 844441 uses an external, 25MHz, parallel  
resonant crystal to generate four selectable output frequencies:  
75MHz, 100MHz, 150MHz, and 300MHz. This silicon based  
approach provides excellent frequency stability and reliability. The  
844441 features down and center spread spectrum (SSC) clocking  
techniques.  
Designed for use in SAS, SAS-2, and SATA systems  
Center (±0.17%) Spread Spectrum Clocking (SSC)  
Down (-0.23% or -0.5%) SSC  
Better frequency stability than SAW oscillators  
One differential 2.5V LVDS output  
Crystal oscillator interface designed for 25MHz  
(CL = 12pF) frequency  
External fundamental crystal frequency ensures high reliability  
and low aging  
Applications  
SAS/SATA Host Bus Adapters  
SATA Port Multipliers  
Selectable output frequencies: 75MHz, 100MHz, 150MHz,  
300MHz  
Output frequency is tunable with external capacitors  
SAS I/O Controllers  
RMS phase jitter @ 100MHz, using a 25MHz crystal  
TapeDrive and HDD Array Controllers  
SAS Edge and Fanout Expanders  
HDDs and TapeDrives  
(12kHz – 20MHz): 1.1936ps (typical)  
2.5V operating supply  
-40°C to 85°C ambient operating temperature  
Lead-free (RoHS 6) packaging  
Disk Storage Enterprise  
Pin Assignment  
Block Diagrams  
1
2
3
4
8
7
6
5
XTAL_OUT  
XTAL_IN  
GND  
nQ  
SSC_SEL0  
SSC_SEL1  
Q
XTAL_IN  
VDD  
25MHz  
XTAL  
00 = SSC Off  
FemtoClock  
OSC  
01 = 0.5% Down-spread  
10 = 0.23% Down-spread  
11 = 0.5% Center-spread  
Q
nQ  
844441  
8-Lead SOIC, 3.90mm x 4.90mm Package  
PLL  
XTAL_OUT  
SSC Output  
Control Logic  
Pulldown:Pulldown  
SSC_SEL(1:0)  
nPLL_SEL  
8-Lead SOIC  
Pulldown  
GND  
16  
15  
14  
13  
12  
11  
10  
9
F_SEL1  
GND  
1
2
XTAL_IN  
XTAL_OUT  
XTAL_IN  
FemtoClock™  
PLL  
25MHz  
XTAL  
nPLL_SEL  
nQ  
3
4
OSC  
0
1
00 = 75MHz  
01 = 100MHz  
10 = 150MHz (default)  
11 = 300MHz  
SSC_SEL0  
nc  
Q
nQ  
XTAL_OUT  
Q
5
6
7
8
nc  
nc  
VDD  
F_SEL0  
VDD  
Pullup:Pulldown  
F_SEL(1:0)  
SSC_SEL1  
Clock Output  
Control Logic  
Pulldown:Pulldown  
SSC_SEL(1:0)  
16-Lead TSSOP  
844441  
16-Lead TSSOP, 4.4mm x 5.0mm Package  
©2016 Integrated Device Technology, Inc.  
1
Revison E, November 2, 2016  
844441 Datasheet  
Pin Description and Pin Characteristic Tables  
Table 1. Pin Descriptions  
Name  
Type  
Description  
XTAL_OUT,  
XTAL_IN  
Input  
Input  
Crystal oscillator interface. XTAL_IN is the input, XTAL_OUT is the output.  
SSC_SEL0,  
SSC_SEL1  
Pulldown  
SSC select pins. See Table 3A. LVCMOS/LVTTL interface levels.  
F_SEL0  
F_SEL1  
nPLL_SEL  
Q, nQ  
GND  
Input  
Input  
Pulldown  
Pullup  
Output frequency select pin. See Table 3B. LVCMOS/LVTTL interface levels.  
Output frequency select pin. See Table 3B. LVCMOS/LVTTL interface levels.  
PLL Bypass pin. LVCMOS/LVTTL interface levels.  
Differential clock outputs. LVDS interface levels.  
Power supply ground.  
Input  
Pulldown  
Output  
Power  
Power  
Unused  
VDD  
Power supply pin.  
nc  
No connect.  
NOTE: Pullup/Pulldown refers to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
Table 2. Pin Characteristics  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum Typical  
Maximum Units  
Input Capacitance  
Input Pulldown Resistor  
Input Pullup Resistor  
nPLL_SEL, F_SEL[1:0], SSC_SEL[1:0]  
4
pF  
k  
k  
RPULLDOWN  
RPULLUP  
51  
51  
Function Tables  
Table 3A. SSC_SEL[1:0] Function Table  
Inputs  
Table 3B. F_SEL[1:0] Function Table  
Inputs  
SSC_SEL1  
SSC_SEL0  
Mode  
F_SEL1  
F_SEL0  
Output Frequency (MHz)  
0 (default)  
0 (default)  
SSC Off  
0
0
75  
0
1
1
1
0
1
0.5% Down-spread  
0.23% Down-spread  
0.34% Center-spread  
0
1 (default)  
1
1
0 (default)  
1
100  
150  
300  
©2016 Integrated Device Technology, Inc.  
2
Revison E, November 2, 2016  
844441 Datasheet  
Absolute Maximum Ratings  
NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress  
specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the DC Characteristics or AC  
Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.  
Item  
Rating  
Supply Voltage, VDD  
Inputs, VI  
4.6V  
-0.5V to VDD + 0.5V  
Outputs, IO  
Continuous Current  
Surge Current  
10mA  
15mA  
Package Thermal Impedance, JA  
16 Lead TSSOP  
8 Lead SOIC  
81.2°C/W (0 mps)  
96.0°C/W (0 lfpm)  
Storage Temperature, TSTG  
-65C to 150C  
DC Electrical Characteristics  
Table 4A. Power Supply DC Characteristics, V = 2.5V ± 5%, T = -40°C to 85°C  
DD  
A
Symbol  
VDD  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
2.625  
73  
Units  
V
Power Supply Voltage  
Power Supply Current  
2.375  
2.5  
IDD  
mA  
Table 4B. LVCMOS/LVTTL DC Characteristics,V = 2.5V ± 5%, T = -40°C to 85°C  
DD  
A
Symbol  
VIH  
Parameter  
Test Conditions  
Minimum  
1.7  
Typical  
Maximum  
Units  
V
Input High Voltage  
Input Low Voltage  
VDD + 0.3  
VIL  
-0.3  
0.7  
5
V
F_SEL1  
Input  
High  
Current  
VDD = VIN = 2.5V  
VDD = VIN = 2.5V  
µA  
IIH  
SSC_SEL[0:1],  
F_SEL0, nPLL_SEL  
150  
µA  
µA  
µA  
F_SEL1  
VDD = 2.5V, VIN = 0V  
VDD = 2.5V, VIN = 0V  
-150  
-5  
Input  
Low  
Current  
IIL  
SSC_SEL[0:1],  
F_SEL0, nPLL_SEL  
Table 4C. LVDS DC Characteristics, V = 2.5V ± 5%, T = -40°C to 85°C  
DD  
A
Symbol  
VOD  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
454  
Units  
mV  
mV  
V
Differential Output Voltage  
VOD Magnitude Change  
Offset Voltage  
200  
VOD  
VOS  
50  
1
1.375  
50  
VOS  
VOS Magnitude Change  
mV  
©2016 Integrated Device Technology, Inc.  
3
Revison E, November 2, 2016  
844441 Datasheet  
Table 4D. Crystal Characteristics  
Parameter  
Test Conditions  
Minimum  
Typical  
Fundamental  
25  
Maximum  
Units  
Mode of Oscillation  
Frequency  
MHz  
Ohm  
pF  
Equivalent Series Resistance (ESR)  
Shunt Capacitance  
50  
7
Load Capacitance (CL)  
12  
pF  
AC Electrical Characteristics  
Table 5. AC Characteristics, V = 2.5V ± 5%, T = -40°C to 85°C  
DD  
A
Symbol  
Parameter  
Test Conditions  
F_SEL(1:0) = 00  
F_SEL(1:0) = 01  
F_SEL(1:0) = 10  
F_SEL(1:0) = 11  
Minimum  
Typical  
75  
Maximum  
Units  
MHz  
MHz  
MHz  
MHz  
100  
fOUT  
Output Frequency  
150  
300  
75MHz, Integration Range:  
12kHz – 20MHz  
1.19602  
1.1936  
ps  
ps  
ps  
ps  
100MHz, Integration Range:  
12kHz – 20MHz  
RMS Phase Jitter  
(Random); NOTE 1  
tjit(Ø)  
150MHz, Integration Range:  
12kHz – 20MHz  
1.22743  
1.15011  
300MHz, Integration Range:  
12kHz – 20MHz  
tR / tF  
odc  
Output Rise/Fall Time  
Output Duty Cycle  
20% to 80%  
100  
45  
400  
55  
ps  
%
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device  
is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal  
equilibrium has been reached under these conditions.  
NOTE: Characterized using a 25MHz, 12pF quartz crystal.  
NOTE 1: Please refer to the Phase Noise plot.  
©2016 Integrated Device Technology, Inc.  
4
Revison E, November 2, 2016  
844441 Datasheet  
Typical Phase Noise at 100MHz  
Offset Frequency (Hz)  
©2016 Integrated Device Technology, Inc.  
5
Revison E, November 2, 2016  
844441 Datasheet  
Parameter Measurement Information  
V
DD  
2.5V LVDS Output Load Test Circuit  
RMS Phase Jitter  
nQ  
Q
nQ  
80%  
80%  
VOD  
20%  
20%  
Q
tF  
tR  
Output Rise/Fall Time  
Output Duty Cycle/Pulse Width/Period  
Offset Voltage Setup  
Differential Output Voltage Setup  
©2016 Integrated Device Technology, Inc.  
6
Revison E, November 2, 2016  
844441 Datasheet  
Application Information  
Overdriving the XTAL Interface  
The XTAL_IN input can be overdriven by an LVCMOS driver or by  
one side of a differential driver through an AC coupling capacitor. The  
XTAL_OUT pin can be left floating. The amplitude of the input signal  
should be between 500mV and 1.8V and the slew rate should not be  
less than 0.2V/ns. For 3.3V LVCMOS inputs, the amplitude must be  
reduced from full swing to at least half the swing in order to prevent  
signal interference with the power rail and to reduce internal noise.  
Figure 1A shows an example of the interface diagram for a high  
speed 3.3V LVCMOS driver. This configuration requires that the sum  
of the output impedance of the driver (Ro) and the series resistance  
(Rs) equals the transmission line impedance. In addition, matched  
termination at the crystal input will attenuate the signal in half. This  
can be done in one of two ways. First, R1 and R2 in parallel should  
equal the transmission line impedance. For most 50applications,  
R1 and R2 can be 100. This can also be accomplished by removing  
R1 and changing R2 to 50. The values of the resistors can be  
increased to reduce the loading for a slower and weaker LVCMOS  
driver. Figure 1B shows an example of the interface diagram for an  
LVPECL driver. This is a standard LVPECL termination with one side  
of the driver feeding the XTAL_IN input. It is recommended that all  
components in the schematics be placed in the layout. Though some  
components might not be used, they can be utilized for debugging  
purposes. The datasheet specifications are characterized and  
guaranteed by using a quartz crystal as the input.  
VCC  
XTAL_OUT  
R1  
100  
C1  
Rs  
Zo = 50 ohms  
Ro  
XTAL_IN  
.1uf  
R2  
100  
Zo = Ro + Rs  
LVCMOS Driver  
Figure 1A. General Diagram for LVCMOS Driver to XTAL Input Interface  
XTAL_OU T  
C2  
Zo = 50 ohms  
XTAL_I N  
.1uf  
Zo = 50 ohms  
R1  
50  
R2  
50  
LVPECL Driver  
R3  
50  
Figure 1B. General Diagram for LVPECL Driver to XTAL Input Interface  
©2016 Integrated Device Technology, Inc.  
7
Revison E, November 2, 2016  
844441 Datasheet  
Recommendations for Unused Input Pins  
Inputs:  
LVCMOS Control Pins  
All control pins have internal pull-ups; additional resistance is not  
required but can be added for additional protection. A 1kresistor  
can be used.  
LVDS Driver Termination  
For a general LVDS interface, the recommended value for the  
termination impedance (ZT) is between 90and 132. The actual  
value should be selected to match the differential impedance (Z0) of  
your transmission line. A typical point-to-point LVDS design uses a  
100parallel resistor at the receiver and a 100differential  
transmission-line environment. In order to avoid any  
transmission-line reflection issues, the components should be  
surface mounted and must be placed as close to the receiver as  
possible. IDT offers a full line of LVDS compliant devices with two  
types of output structures: current source and voltage source. The  
standard termination schematic as shown in Figure 2A can be used  
with either type of output structure. Figure 2B, which can also be  
used with both output types, is an optional termination with center tap  
capacitance to help filter common mode noise. The capacitor value  
should be approximately 50pF. If using a non-standard termination, it  
is recommended to contact IDT and confirm if the output structure is  
current source or voltage source type. In addition, since these  
outputs are LVDS compatible, the input receiver’s amplitude and  
common-mode input range should be verified for compatibility with  
the output.  
ZO ZT  
LVDS  
Receiver  
LVDS  
Driver  
ZT  
Figure 2A. Standard Termination  
ZT  
ZO ZT  
LVDS  
LVDS  
2
ZT  
2
Receiver  
Driver  
C
Figure 2B. Optional Termination  
LVDS Termination  
©2016 Integrated Device Technology, Inc.  
8
Revison E, November 2, 2016  
844441 Datasheet  
Schematic Example  
Figures 3A and 3B are example 844441 application schematics for  
either the 8 pin M package or the 16 pin G package. The schematic  
examples focus on functional connections and are not configuration  
specific. Refer to the pin description and functional tables in the  
datasheet to ensure that the logic control inputs are properly set.  
In order to achieve the best possible filtering, it is recommended that  
the placement of the power filter components be on the device side  
of the PCB as close to the power pins as possible. If space is limited,  
the 0.1µF capacitor in each power pin filter should be placed on the  
device side. The other components can be on the opposite side of the  
PCB.  
In this example, the device is operated at VDD = 2.5V. A 12pF parallel  
resonant 25MHz crystal is used with tuning capacitors C1 = C2  
=14pF, which are recommended for frequency accuracy. Depending  
on the variation of the parasitic stray capacity of the printed circuit  
board traces between the crystal and the Xtal_In and Xtal_Out pins,  
the values of C1 and C2 might require a slight adjustment to optimize  
the frequency accuracy. Crystals with other load capacitance  
specifications can be used, but this will require adjusting C1 and C2.  
In circuit board design, return the capacitors to ground through a  
single point contact close to the package. Two examples of  
terminations for LVDS receivers without built-in termination are  
shown in this schematic.  
Power supply filter recommendations are a general guideline to be  
used for reducing external noise from coupling into the devices. The  
filter performance is designed for a wide range of noise frequencies.  
This low-pass filter starts to attenuate noise at approximately 10kHz.  
If a specific frequency noise component is known, such as switching  
power supplies frequencies, it is recommended that component  
values be adjusted and if required, additional filtering be added.  
Additionally, good general design practices for power plane voltage  
stability suggests adding bulk capacitance in the local area of all  
devices.  
FOX 603-25-173 crystal  
,'7ꢀꢁꢂꢃꢄꢅꢆꢄꢇꢈꢃꢀ&U\VWDO  
R20  
0
XTA L_OU T  
25MHz(12pf)  
X1  
Zo = 50 O hm  
U 1  
4
2
1
8
XTA L_OU T  
XTA L_IN  
SS C _SE L0  
SS C _SE L1  
G ND  
nQ  
+
-
1
3
2
7
XT AL_ IN  
S SC _S EL0  
S SC _S EL1  
nQ  
Q
R1  
3
6
100  
Q
4
5
V DD  
Zo = 50 O hm  
C1  
14pF  
C2  
14pF  
C 3  
0. 1uF  
Place the 0.1uF bypass cap  
directly adjacent to the VDD pin.  
2. 5V  
F B1  
1
2
VD D  
B LM18 BB 221S N 1  
C 5  
0. 1u F  
C6  
10uF  
Z o = 50 O hm  
Q
Logic Input Pin Examples  
Set Logic  
R3  
50  
Set Logic  
Input to'0'  
+
V DD  
V DD  
Input t o '1'  
C 9  
-
RU 1  
1K  
RU2  
Not Install  
0. 1u F  
R4  
50  
To Logic  
Input  
To Logic  
Z o = 50 O hm  
nQ  
Input  
pins  
pi ns  
RD 1  
RD2  
1K  
Not Install  
Alternat e LVDS Termination  
Figure 3A. 844441 Schematic Example  
©2016 Integrated Device Technology, Inc.  
9
Revison E, November 2, 2016  
844441 Datasheet  
Place one of the 0.1uF bypass caps directly adjacent to one of the VDD pins.  
FB2  
2.5V  
2
1
VDD  
BLM18BB221SN1  
C13  
C4  
C1 1  
10uF  
C10  
0.1uF  
0.1uF  
0.1uF  
U7  
4
8
SSC_SEL0  
SSC_SEL1  
SSC_SEL0  
SSC_SEL1  
F_SEL0  
F_SEL1  
10  
16  
F_SEL0  
F_SEL1  
Zo = 50 Ohm  
Zo = 50 Ohm  
14  
nPLL_SEL  
nPLL_SEL  
FOX 603-25-173 crystal  
12  
13  
Q
,'7ꢂꢃꢄꢅꢆꢄꢇꢈꢃ&U\VWDO  
Q
+
-
R2  
R19  
0
100  
XTAL _I N  
3
2
XTA L_IN  
nQ  
nQ  
25MHz(12pf)  
4
X1  
XTA L_OUT  
1
3
5
6
7
XT AL_ OU T  
nc  
nc  
nc  
2
C1  
14pF  
C2  
14pF  
Zo = 50 Ohm  
Q
Logic Input Pin Examples  
Set Logic  
R5  
50  
Set Logic  
Input to '0'  
+
-
VDD  
VDD  
Input to '1'  
C12  
0.1uF  
R6  
50  
RU3  
1K  
RU4  
Not Install  
To Logic  
Inpu t  
pins  
To Logic  
Zo = 50 Ohm  
In p ut  
pins  
nQ  
RD4  
Not Install  
RD3  
1K  
Alternate LVDS Termination  
Figure 3B. 844441 Schematic Example  
©2016 Integrated Device Technology, Inc.  
10  
Revison E, November 2, 2016  
844441 Datasheet  
Power Considerations  
This section provides information on power dissipation and junction temperature for the 844441.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the 844441 is the sum of the core power plus the power dissipated due to loading.  
The following is the power dissipation for VDD = 2.5V + 5% = 2.625V, which gives worst case results.  
Total Power MAX = VDD_MAX * IDD_MAX = 2.625V * 73mA = 191.7mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad, and directly affects the reliability of the device. The  
maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, Tj, to 125°C ensures that the bond  
wire and bond pad temperature remains below 125°C.  
The equation for Tj is as follows: Tj = JA * Pd_total + TA  
Tj = Junction Temperature  
JA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance JA must be used. Assuming no air flow and  
a multi-layer board, the appropriate value is 96°C/W per Table 6B below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.192W * 96°C/W = 103.4°C. This is well below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the supply voltage, air flow and the type of board (multi-layer).  
Table 6A. Thermal Resistance JA for 16 Lead TSSOP, Forced Convection  
JA vs. Air Flow  
Meters per Second  
0
1
2.5  
Multi-Layer PCB, JEDEC Standard Test Boards  
81.2°C/W  
73.9°C/W  
70.2°C/W  
Table 6B. Thermal Resistance JA for 8 Lead SOIC, Forced Convection  
JA vs. Air Flow  
Linear Feet per Second  
0
200  
500  
Multi-Layer PCB, JEDEC Standard Test Boards  
96°C/W  
87°C/W  
82°C/W  
©2016 Integrated Device Technology, Inc.  
11  
Revison E, November 2, 2016  
844441 Datasheet  
Reliability Information  
Table 7A. JA vs. Air Flow Table for a 16 Lead TSSOP  
JA vs. Air Flow  
Meters per Second  
0
1
2.5  
Multi-Layer PCB, JEDEC Standard Test Boards  
81.2°C/W  
73.9°C/W  
70.2°C/W  
Table 7B. JA vs. Air Flow Table for a 8 Lead SOIC  
JA vs. Air Flow  
Linear Feet per Second  
0
200  
500  
Multi-Layer PCB, JEDEC Standard Test Boards  
96°C/W  
87°C/W  
82°C/W  
Transistor Count  
The transistor count for 844441 is: 3374  
©2016 Integrated Device Technology, Inc.  
12  
Revison E, November 2, 2016  
844441 Datasheet  
Package Outline and Package Dimensions  
Package Outline - G Suffix for 16-Lead TSSOP  
Package Outline - M Suffix for 8 Lead SOIC  
Table 8B. Package Dimensions for 8 Lead SOIC  
All Dimensions in Millimeters  
Table 8A. Package Dimensions for 16 Lead TSSOP  
All Dimensions in Millimeters  
Symbol  
Minimum  
Maximum  
Symbol  
Minimum  
Maximum  
N
A
A1  
B
C
D
E
8
N
A
16  
1.35  
0.10  
0.33  
0.19  
4.80  
3.80  
1.75  
0.25  
0.51  
0.25  
5.00  
4.00  
1.20  
0.15  
1.05  
0.30  
0.20  
5.10  
A1  
A2  
b
0.05  
0.80  
0.19  
0.09  
4.90  
c
D
e
1.27 Basic  
E
6.40 Basic  
H
h
5.80  
0.25  
0.40  
0°  
6.20  
0.50  
1.27  
8°  
E1  
e
4.30  
4.50  
0.65 Basic  
L
L
0.45  
0°  
0.75  
8°  
aaa  
0.10  
Reference Document: JEDEC Publication 95, MS-012  
Reference Document: JEDEC Publication 95, MO-153  
©2016 Integrated Device Technology, Inc.  
13  
Revison E, November 2, 2016  
844441 Datasheet  
Ordering Information  
Table 9. Ordering Information  
Output Frequency  
(MHz)  
Part/Order Number  
844441DGILF  
Marking  
44441DIL  
44441DIL  
441DI75L  
441DI75L  
41DI100L  
41DI100L  
41DI150L  
41DI150L  
41DI300L  
41DI300L  
Package  
Shipping Packaging  
Tube  
Temperature  
-40C to 85C  
-40C to 85C  
-40C to 85C  
-40C to 85C  
-40C to 85C  
-40C to 85C  
-40C to 85C  
-40C to 85C  
-40C to 85C  
-40C to 85C  
75, 100, 150, 300  
16 Lead TSSOP, Lead-Free  
16 Lead TSSOP, Lead-Free  
8 Lead SOIC, Lead-Free  
8 Lead SOIC, Lead-Free  
8 Lead SOIC, Lead-Free  
8 Lead SOIC, Lead-Free  
8 Lead SOIC, Lead-Free  
8 Lead SOIC, Lead-Free  
8 Lead SOIC, Lead-Free  
8 Lead SOIC, Lead-Free  
844441DGILFT  
75, 100, 150, 300  
Tape & Reel  
Tube  
844441DMI-75LF  
844441DMI-75LFT  
844441DMI-100LF  
844441DMI-100LFT  
844441DMI-150LF  
844441DMI-150LFT  
844441DMI-300LF  
844441DMI-300LFT  
75  
75  
Tape & Reel  
Tube  
100  
100  
150  
150  
300  
300  
Tape & Reel  
Tube  
Tape & Reel  
Tube  
Tape & Reel  
Revision History Sheet  
Rev  
Table  
Page  
Description of Change  
Date  
1
4
Features Section, Crystal Oscillator bullet, added additional crystal recommendation.  
Crystal Characteristics Table - added crystal recommendation note.  
AC Characteristics Table - added additional crystal recommendation to 2nd note.  
Application Schematics - in schematics, added additional crystal recommendation.  
Deleted part number prefix/suffix throughout the datasheet.  
T4D  
T5  
4
B
5/5/15  
9 - 10  
Updated datasheet header/footer.  
C
D
9 - 10  
1
Updated Application Schematics.  
7/31/15  
PDN #CQ-15-04 Product Discontinuance Notice –  
Last Time buy Expires on August 14, 2016.  
08/21/15  
The 844441 datasheet is obsolete per PDN #CQ-15-04.  
E
11/2/16  
9 - 10  
Application Schematic, IDT crystal part number was replaced by FOX part number.  
©2016 Integrated Device Technology, Inc.  
14  
Revison E, November 2, 2016  
844441 Datasheet  
Corporate Headquarters  
6024 Silver Creek Valley Road  
San Jose, CA 95138 USA  
www.IDT.com  
Sales  
Tech Support  
www.IDT.com/go/support  
1-800-345-7015 or 408-284-8200  
Fax: 408-284-2775  
www.IDT.com/go/sales  
DISCLAIMER Integrated Device Technology, Inc. (IDT) reserves the right to modify the products and/or specifications described herein at any time, without notice, at IDT's sole discretion. Performance spec-  
ifications and operating parameters of the described products are determined in an independent state and are not guaranteed to perform the same way when installed in customer products. The information  
contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied  
warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of  
IDT or any third parties.  
IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be rea-  
sonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.  
Integrated Device Technology, IDT and the IDT logo are trademarks or registered trademarks of IDT and its subsidiaries in the United States and other countries. Other trademarks used herein are the property  
of IDT or their respective third party owners. For datasheet type definitions and a glossary of common terms, visit www.idt.com/go/glossary. Integrated Device Technology, Inc. All rights reserved.  
©2016 Integrated Device Technology, Inc  
15  
Revison E, November 2, 2016  

相关型号:

844441AGI

Clock Generator, 300MHz, PDSO16, 4.40 X 5 MM, 0.925 MM HEIGHT, MO-153, TSSOP-16
IDT

844441AGILFT

Clock Generator, 300MHz, PDSO16, 4.40 X 5 MM, 0.925 MM HEIGHT, ROHS COMPLIANT, MO-153, TSSOP-16
IDT

844441AGIT

Clock Generator, 300MHz, PDSO16, 4.40 X 5 MM, 0.925 MM HEIGHT, MO-153, TSSOP-16
IDT

844441AMI-100

Clock Generator, 300MHz, PDSO8, 3.90 X 4.90 MM, 1.375 HEIGHT, MS-102, SOIC-8
IDT

844441AMI-100LF

Clock Generator, 300MHz, PDSO8, 3.90 X 4.90 MM, 1.375 HEIGHT, ROHS COMPLIANT, MS-102, SOIC-8
IDT

844441AMI-100LFT

Clock Generator, 300MHz, PDSO8, 3.90 X 4.90 MM, 1.375 HEIGHT, ROHS COMPLIANT, MS-102, SOIC-8
IDT

844441AMI-100T

Clock Generator, 300MHz, PDSO8, 3.90 X 4.90 MM, 1.375 HEIGHT, MS-102, SOIC-8
IDT

844441AMI-150

Clock Generator, 300MHz, PDSO8, 3.90 X 4.90 MM, 1.375 MM HEIGHT, MS-012, SOIC-8
IDT

844441AMI-150LFT

Clock Generator, 300MHz, PDSO8, 3.90 X 4.90 MM, 1.375 MM HEIGHT, ROHS COMPLIANT, MS-012, SOIC-8
IDT

844441AMI-150T

Clock Generator, 300MHz, PDSO8, 3.90 X 4.90 MM, 1.375 MM HEIGHT, MS-012, SOIC-8
IDT

844441AMI-300LF

Clock Generator, 300MHz, PDSO8, 3.90 X 4.90 MM, 1.375 MM HEIGHT, ROHS COMPLIANT, MS-012, SOIC-8
IDT

844441AMI-75

Clock Generator, 300MHz, PDSO8, 3.90 X 4.90 MM, 1.375 HEIGHT, MS-102, SOIC-8
IDT