85311AM [IDT]

Low Skew Clock Driver, 85311 Series, 2 True Output(s), 0 Inverted Output(s), PDSO8, 3.90 X 4.90 MM, 1.37 MM HEIGHT, MS-012, SOIC-8;
85311AM
型号: 85311AM
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Low Skew Clock Driver, 85311 Series, 2 True Output(s), 0 Inverted Output(s), PDSO8, 3.90 X 4.90 MM, 1.37 MM HEIGHT, MS-012, SOIC-8

驱动 光电二极管 逻辑集成电路
文件: 总16页 (文件大小:2574K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LOW SKEW, 1-TO-2, DIFFERENTIAL-TO-LVPECL/ECL  
FANOUT BUFFER  
ICS85311  
General Description  
Features  
The ICS85311 is a low skew, high perfor- mance  
Two differential 2.5V/3.3V LVPECL / ECL outputs  
One CLK, nCLK input pair  
S
IC  
1-to-2 Differential-to-2.5V/3.3V ECL/LVPECL  
Fanout Buffer and a member of the HiPerClockS™  
family of High Performance Clock Solutions from  
IDT. The CLK, nCLK pair can accept most standard  
HiPerClockS™  
CLK, nCLK pair can accept the following differential input levels:  
LVDS, LVPECL, LVHSTL, SSTL, HCSL  
Maximum output frequency: 1GHz  
differential input levels.The ICS85311 is characterized to operate  
from either a 2.5V or a 3.3V power supply. Guaranteed output and  
part-to-part skew characteristics make the ICS85311 ideal for  
those clock distribution applications demanding well defined  
performance and repeatability.  
Translates any single ended input signal to 3.3V LVPECL levels  
with resistor bias on nCLK input  
Output skew: 15ps (maximum)  
Part-to-part skew: 100ps (maximum)  
Propagation delay: 1.4ns (maximum)  
Additive phase jitter, RMS: 0.14ps (typical), 3.3V  
LVPECL mode operating voltage supply range:  
VCC = 2.375V to 3.465V, VEE = 0V  
ECL mode operating voltage supply range:  
VCC = 0V, VEE = -2.375V to -3.465V  
0°C to 70°C ambient operating temperature  
Available in both standard (RoHS 5) and lead-free (RoHS 6)  
packages  
Block Diagram  
Pin Assignment  
Q0  
nQ0  
Q0  
nQ0  
Q1  
VCC  
1
2
3
4
8
7
6
5
Pulldown  
Pullup  
CLK  
nCLK  
CLK  
nCLK  
VEE  
Q1  
nQ1  
nQ1  
ICS85311  
8-Lead SOIC  
3.90mm x 4.903mm x 1.37mm package body  
M Package  
Top View  
IDT™ / ICS™ LVPECL/ECL FANOUT BUFFER  
1
ICS85311AM REV. D OCTOBER 22, 2008  
ICS85311  
LOW SKEW, 1-TO-2, DIFFERENTIAL-TO-LVPECL/ECLFANOUT BUFFER  
Table 1. Pin Descriptions  
Number  
1, 2  
Name  
Q0, nQ0  
Q1, nQ1  
VEE  
Type  
Description  
Output  
Output  
Power  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Negative supply pin.  
3, 4  
5
6
nCLK  
Input  
Pullup  
Pulldown  
Inverting differential clock input.  
7
8
CLK  
VCC  
Input  
Non-inverting differential clock input.  
Positive supply pin.  
Power  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
Table 2. Pin Characteristics  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
pF  
Input Capacitance  
Input Pullup Resistor  
4
RPULLUP  
51  
51  
kΩ  
RPULLDOWN Input Pulldown Resistor  
kΩ  
IDT™ / ICS™ LVPECL/ECL FANOUT BUFFER  
2
ICS85311AM REV. D OCTOBER 22, 2008  
ICS85311  
LOW SKEW, 1-TO-2, DIFFERENTIAL-TO-LVPECL/ECLFANOUT BUFFER  
Absolute Maximum Ratings  
NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.  
These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond  
those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect product reliability.  
Item  
Rating  
Supply Voltage, VCC  
Inputs, VI  
4.6V  
-0.5V to VCC + 0.5V  
Outputs, IO  
Continuos Current  
Surge Current  
50mA  
100mA  
Storage Temperature, TSTG  
-65°C to 150°C  
Package Thermal Impedance, θJA  
112°C/W (0 lfpm)  
DC Electrical Characteristics  
Table 3A. Power Supply DC Characteristics, VCC = 3.3V 5% or 2.5V 5%, VEE = 0V, TA = 0°C to 70°C  
Symbol  
VCC  
Parameter  
Test Conditions  
Minimum  
3.135  
Typical  
3.3  
Maximum  
3.465  
2.625  
25  
Units  
V
Positive Supply Voltage  
Power Supply Current  
2.375  
2.5  
V
IEE  
mA  
Table 3B. Differential DC Characteristics, VCC = 3.3V 5% or 2.5V 5%, VEE = 0V, TA = 0°C to 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
µA  
nCLK  
CLK  
VCC = VIN = 3.465V or 2.625V  
VCC = VIN = 3.465V or 2.625V  
CC = 3.465V or 2.625V, VIN = 0V  
CC = 3.465V or 2.625V, VIN = 0V  
5
IIH Input High Current  
150  
µA  
nCLK  
CLK  
V
V
-150  
-5  
µA  
IIL  
Input Low Cureent  
µA  
Peak-to-Peak Input Voltage;  
NOTE 1  
VPP  
0.15  
1.3  
V
V
Common Mode Input Voltage;  
NOTE 1, 2  
VCMR  
VEE + 0.5  
VCC – 0.85  
NOTE 1: VIL should not be less than -0.3V.  
NOTE 2: Common mode voltage is defined as VIH.  
IDT™ / ICS™ LVPECL/ECL FANOUT BUFFER  
3
ICS85311AM REV. D OCTOBER 22, 2008  
ICS85311  
LOW SKEW, 1-TO-2, DIFFERENTIAL-TO-LVPECL/ECLFANOUT BUFFER  
Table 3C. LVPECL DC Characteristics, VCC = 3.3V 5% or 2.5V 5%, VEE = 0V, TA = 0°C to 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
VCC – 1.4  
VCC – 2.0  
0.65  
Typical  
Maximum Units  
VOH  
Output High Current; NOTE 1  
VCC – 0.9  
VCC – 1.7  
1.0  
V
V
V
VOL  
Output Low Current; NOTE 1  
VSWING  
Peak-to-Peak Output Voltage Swing  
NOTE1: Outputs terminated with 50to VCC – 2V.  
AC Electrical Characteristics  
Table 4A. AC Characteristics, VCC = 3.3V 5%, VEE = 0V, TA = 0°C to 70°C  
Symbol Parameter  
fMAX Maximum Output Frequency  
tPD  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
GHz  
ns  
1
Propagation Delay; NOTE 1  
ƒ 1GHz  
0.9  
1.4  
Buffer Additive Phase Jitter,  
RMS; refer to Additive Phase  
Jitter Section  
156.25MHz, Integration Range  
(12kHz – 20MHz)  
tjit  
0.14  
ps  
tsk(o)  
tsk(pp)  
tR / tF  
odc  
Output Skew; NOTE 2, 4  
Part-to-Part Skew; NOTE 3, 4  
Output Rise/Fall Time  
Output Duty Cycle  
15  
100  
700  
52  
ps  
ps  
ps  
%
20% to 80% @ 50MHz  
300  
48  
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when device  
is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. Device will meet specifications after thermal  
equilibrium has been reached under these conditions.  
All parameters are measured 500MHz unless otherwise noted.  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at the differential cross  
points.  
NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions.  
Using the same type of inputs on each device, the outputs are measured at the differential cross points.  
NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.  
Table 4B. AC Characteristics, VCC = 2.5V 5%, VEE = 0V, TA = 0°C to 70°C  
Symbol Parameter  
fMAX Maximum Output Frequency  
tPD  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
GHz  
ns  
1
Propagation Delay; NOTE 1  
ƒ 1GHz  
0.9  
1.4  
Buffer Additive Phase Jitter,  
RMS; refer to Additive Phase  
Jitter Section  
156.25MHz, Integration Range  
(12kHz – 20MHz)  
tjit  
0.135  
ps  
tsk(o)  
tsk(pp)  
tR / tF  
odc  
Output Skew; NOTE 2, 4  
Part-to-Part Skew; NOTE 3, 4  
Output Rise/Fall Time  
Output Duty Cycle  
15  
100  
700  
52  
ps  
ps  
ps  
%
20% to 80% @ 50MHz  
300  
48  
See Table 5A for NOTES.  
IDT™ / ICS™ LVPECL/ECL FANOUT BUFFER  
4
ICS85311AM REV. D OCTOBER 22, 2008  
ICS85311  
LOW SKEW, 1-TO-2, DIFFERENTIAL-TO-LVPECL/ECLFANOUT BUFFER  
Additive Phase Jitter (3.3V)  
The spectral purity in a band at a specific offset from the  
to the power in the fundamental. When the required offset is  
fundamental compared to the power of the fundamental is called  
the dBc Phase Noise. This value is normally expressed using a  
Phase noise plot and is most often the specified plot in many  
applications. Phase noise is defined as the ratio of the noise power  
present in a 1Hz band at a specified offset from the fundamental  
frequency to the power value of the fundamental. This ratio is  
expressed in decibels (dBm) or a ratio of the power in the 1Hz band  
specified, the phase noise is called a dBc value, which simply  
means dBm at a specified offset from the fundamental. By  
investigating jitter in the frequency domain, we get a better  
understanding of its effects on the desired application over the  
entire time record of the signal. It is mathematically possible to  
calculate an expected bit error rate given a phase noise plot.  
Additive Phase Jitter @ 156.25MHz  
12kHz to 20MHz = 0.14ps (typical)  
Offset Frequency (Hz)  
As with most timing specifications, phase noise measurements  
has issues relating to the limitations of the equipment. Often the  
noise floor of the equipment is higher than the noise floor of the  
device. This is illustrated above. The device meets the noise floor  
of what is shown, but can actually be lower. The phase noise is  
dependent on the input source and measurement equipment.  
IDT™ / ICS™ LVPECL/ECL FANOUT BUFFER  
5
ICS85311AM REV. D OCTOBER 22, 2008  
ICS85311  
LOW SKEW, 1-TO-2, DIFFERENTIAL-TO-LVPECL/ECLFANOUT BUFFER  
Parameter Measurement Information  
2V  
2V  
SCOPE  
SCOPE  
VCC  
Qx  
VCC  
Qx  
LVPECL  
LVPECL  
nQx  
nQx  
VEE  
VEE  
-1.3V 0.165V  
-0.5V 0.125V  
3.3V Core/ 3.3V LVPECL Output Load AC Test Circuit  
2.5V Core/ 2.5V LVPECL Output Load AC Test Circuit  
V
CC  
nQx  
Qx  
nCLK  
nQy  
VPP  
VCMR  
Cross Points  
CLK  
Qy  
tsk(o)  
V
EE  
Differential Input Level  
Output Skew  
Part 1  
nQx  
nCLK  
CLK  
Qx  
Part 2  
nQy  
nQ[0:1]  
Qy  
Q[0:1]  
tPD  
tsk(pp)  
Part-to-Part Skew  
Propagation Delay  
IDT™ / ICS™ LVPECL/ECL FANOUT BUFFER  
6
ICS85311AM REV. D OCTOBER 22, 2008  
ICS85311  
LOW SKEW, 1-TO-2, DIFFERENTIAL-TO-LVPECL/ECLFANOUT BUFFER  
Parameter Measurement Information, continued  
nQ[0:1]  
Q[0:1]  
nQ[0:1]  
80%  
tF  
80%  
tR  
VSWING  
20%  
tPW  
tPERIOD  
20%  
Q[0:1]  
tPW  
odc =  
x 100%  
tPERIOD  
Output Duty Cycle/Pulse Width/Period  
Output Rise/Fall Time  
Application Information  
Wiring the Differential Input to Accept Single Ended Levels  
Figure 1 shows how the differential input can be wired to accept  
single ended levels. The reference voltage V_REF = VCC/2 is  
generated by the bias resistors R1, R2 and C1. This bias circuit  
should be located as close as possible to the input pin. The ratio of  
R1 and R2 might need to be adjusted to position the V_REF in the  
center of the input voltage swing. For example, if the input clock  
swing is only 2.5V and VCC = 3.3V, V_REF should be 1.25V and  
VCC  
R1  
1K  
Single Ended Clock Input  
R2/R1 = 0.609.  
CLK  
V_REF  
nCLK  
C1  
0.1u  
R2  
1K  
Figure 1. Single-Ended Signal Driving Differential Input  
IDT™ / ICS™ LVPECL/ECL FANOUT BUFFER  
7
ICS85311AM REV. D OCTOBER 22, 2008  
ICS85311  
LOW SKEW, 1-TO-2, DIFFERENTIAL-TO-LVPECL/ECLFANOUT BUFFER  
Differential Clock Input Interface  
The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL  
and other differential signals. Both signals must meet the VPP and  
VCMR input requirements. Figures 2A to 2F show interface  
examples for the HiPerClockS CLK/nCLK input driven by the most  
common driver types. The input interfaces suggested here are  
examples only. Please consult with the vendor of the driver  
component to confirm the driver termination requirements. For  
example, in Figure 2A, the input termination applies for IDT  
HiPerClockS open emitter LVHSTL drivers. If you are using an  
LVHSTL driver from another vendor, use their termination  
recommendation.  
3.3V  
3.3V  
3.3V  
1.8V  
Zo = 50  
Zo = 50Ω  
CLK  
CLK  
Zo = 50Ω  
nCLK  
Zo = 50Ω  
HiPerClockS  
Input  
nCLK  
LVPECL  
HiPerClockS  
LVHSTL  
R1  
50  
R2  
50  
Input  
R1  
50  
R2  
50  
IDT  
HiPerClockS  
LVHSTL Driver  
R2  
50  
Figure 2A. HiPerClockS CLK/nCLK Input  
Driven by an IDT Open Emitter  
HiPerClockS LVHSTL Driver  
Figure 2B. HiPerClockS CLK/nCLK Input  
Driven by a 3.3V LVPECL Driver  
3.3V  
3.3V  
3.3V  
3.3V  
R3  
125  
R4  
125  
3.3V  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
CLK  
CLK  
R1  
100  
nCLK  
nCLK  
Zo = 50Ω  
HiPerClockS  
Input  
LVPECL  
Receiver  
LVDS  
R1  
84  
R2  
84  
Figure 2C. HiPerClockS CLK/nCLK Input  
Driven by a 3.3V LVPECL Driver  
Figure 2D. HiPerClockS CLK/nCLK Input  
Driven by a 3.3V LVDS Driver  
2.5V  
2.5V  
3.3V  
3.3V  
2.5V  
R3  
R4  
120  
120  
Zo = 50Ω  
*R3  
*R4  
33  
33  
Zo = 60Ω  
Zo = 60Ω  
CLK  
CLK  
Zo = 50Ω  
nCLK  
nCLK  
HiPerClockS  
HiPerClockS  
Input  
SSTL  
HCSL  
R1  
50  
R2  
50  
R1  
120  
R2  
120  
*Optional – R3 and R4 can be 0Ω  
Figure 2E. HiPerClockS CLK/nCLK Input  
Driven by a 3.3V HCSL Driver  
Figure 2F. HiPerClockS CLK/nCLK Input  
Driven by a 2.5V SSTL Driver  
IDT™ / ICS™ LVPECL/ECL FANOUT BUFFER  
8
ICS85311AM REV. D OCTOBER 22, 2008  
ICS85311  
LOW SKEW, 1-TO-2, DIFFERENTIAL-TO-LVPECL/ECLFANOUT BUFFER  
Recommendations for Unused Output Pins  
Outputs:  
LVPECL Outputs  
All unused LVPECL outputs can be left floating. We recommend  
that there is no trace attached. Both sides of the differential output  
pair should either be left floating or terminated.  
Termination for 3.3V LVPECL Outputs  
The clock layout topology shown below is a typical termination for  
LVPECL outputs. The two different layouts mentioned are  
recommended only as guidelines.  
transmission lines. Matched impedance techniques should be  
used to maximize operating frequency and minimize signal  
distortion. Figures 3A and 3B show two different layouts which are  
recommended only as guidelines. Other suitable clock layouts may  
exist and it would be recommended that the board designers  
simulate to guarantee compatibility across all printed circuit and  
clock component process variations.  
FOUT and nFOUT are low impedance follower outputs that  
generate ECL/LVPECL compatible outputs. Therefore, terminating  
resistors (DC current path to ground) or current sources must be  
used for functionality. These outputs are designed to drive 50Ω  
3.3V  
Z
o = 50  
125Ω  
125Ω  
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
((VOH + VOL) / (VCC – 2)) – 2  
84Ω  
84Ω  
Figure 3A. 3.3V LVPECL Output Termination  
Figure 3B. 3.3V LVPECL Output Termination  
IDT™ / ICS™ LVPECL/ECL FANOUT BUFFER  
9
ICS85311AM REV. D OCTOBER 22, 2008  
ICS85311  
LOW SKEW, 1-TO-2, DIFFERENTIAL-TO-LVPECL/ECLFANOUT BUFFER  
Termination for 2.5V LVPECL Outputs  
Figure 4A and Figure 4B show examples of termination for 2.5V  
LVPECL driver. These terminations are equivalent to terminating  
50to VCC – 2V. For VCC = 2.5V, the VCC – 2V is very close to  
ground level. The R3 in Figure 4B can be eliminated and the  
termination is shown in Figure 4C.  
2.5V  
VCC = 2.5V  
2.5V  
2.5V  
VCC = 2.5V  
R1  
R3  
50Ω  
250  
250  
+
50Ω  
50Ω  
+
50Ω  
2.5V LVPECL Driver  
R1  
50  
R2  
50  
2.5V LVPECL Driver  
R2  
62.5  
R4  
62.5  
R3  
18  
Figure 4A. 2.5V LVPECL Driver Termination Example  
Figure 4B. 2.5V LVPECL Driver Termination Example  
2.5V  
VCC = 2.5V  
50Ω  
+
50Ω  
2.5V LVPECL Driver  
R1  
50  
R2  
50  
Figure 4C. 2.5V LVPECL Driver Termination Example  
IDT™ / ICS™ LVPECL/ECL FANOUT BUFFER  
10  
ICS85311AM REV. D OCTOBER 22, 2008  
ICS85311  
LOW SKEW, 1-TO-2, DIFFERENTIAL-TO-LVPECL/ECLFANOUT BUFFER  
Power Considerations  
This section provides information on power dissipation and junction temperature for the ICS85311.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS85311 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC= 3.3V + 5% = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.465V * 25mA = 86.6mW  
Power (outputs)MAX = 30mW/Loaded Output pair  
If all outputs are loaded, the total power is 2 * 30mW = 60mW  
Total Power_MAX (3.3V, with all outputs switching) = 86.6mW + 60mW = 146.6mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device.  
The maximum recommended junction temperature for HiPerClockS devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a moderate  
air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 103.3°C/W per Table 5 below.  
Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:  
70°C + 0.147W * 103.3°C/W = 85.2°C. This is well below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type  
of board (single layer or multi-layer).  
Table 5. Thermal Resistance θJA for 24 Lead TSSOP, Forced Convection  
θJA vs. Air Flow  
Linear Feet per Minute  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
153.3°C/W  
112.7°C/W  
128.5°C/W  
103.3°C/W  
115.5°C/W  
97.1°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
IDT™ / ICS™ LVPECL/ECL FANOUT BUFFER  
11  
ICS85311AM REV. D OCTOBER 22, 2008  
ICS85311  
LOW SKEW, 1-TO-2, DIFFERENTIAL-TO-LVPECL/ECLFANOUT BUFFER  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVPECL output driver circuit and termination are shown in Figure 5.  
VCC  
Q1  
VOUT  
RL  
50Ω  
VCC - 2V  
Figure 5. LVPECL Driver Circuit and Termination  
To calculate worst case power dissipation into the load, use the following equations which assume a 50load, and a termination voltage  
of VCC – 2V.  
For logic high, VOUT = VOH_MAX = VCC_MAX – 0.9V  
(VCC_MAX – VOH_MAX) = 0.9V  
For logic low, VOUT = VOL_MAX = VCC_MAX – 1.7V  
(VCC_MAX – VOL_MAX) = 1.7V  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
Pd_H = [(VOH_MAX – (VCC_MAX – 2V))/RL] * (VCC_MAX – VOH_MAX) = [(2V – (VCC_MAX – VOH_MAX))/RL] * (VCC_MAX – VOH_MAX) =  
[(2V – 0.9V)/50] * 0.9V = 19.8mW  
Pd_L = [(VOL_MAX – (VCC_MAX – 2V))/RL] * (VCC_MAX – VOL_MAX) = [(2V – (VCC_MAX – VOL_MAX))/RL] * (VCC_MAX – VOL_MAX) =  
[(2V – 1.7V)/50] * 1.7V = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW  
IDT™ / ICS™ LVPECL/ECL FANOUT BUFFER  
12  
ICS85311AM REV. D OCTOBER 22, 2008  
ICS85311  
LOW SKEW, 1-TO-2, DIFFERENTIAL-TO-LVPECL/ECLFANOUT BUFFER  
Reliability Information  
Table 6. θJA vs. Air Flow Table for a 8 Lead SOIC  
θJA by Velocity  
Linear Feet per Minute  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
153.3°C/W  
112.7°C/W  
128.5°C/W  
103.3°C/W  
115.5°C/W  
97.1°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
Transistor Count  
The transistor count for ICS85311 is: 225  
Package Outline and Package Dimensions  
Package Outline - M Suffix for 8 Lead SOIC  
Table 7. Package Dimensions  
All Dimensions in Millimeters  
Symbol  
Minimum  
Maximum  
N
A
A1  
B
C
D
E
8
1.35  
0.10  
0.33  
0.19  
4.80  
3.80  
1.75  
0.25  
0.51  
0.25  
5.00  
4.00  
e
1.27 Basic  
H
h
5.80  
0.25  
0.40  
0°  
6.20  
0.50  
1.27  
8°  
L
α
Reference Document: JEDEC Publication 95, MS-012  
150 il
 
(N  
B d )
 
SOIC  
IDT™ / ICS™ LVPECL/ECL FANOUT BUFFER  
13  
ICS85311AM REV. D OCTOBER 22, 2008  
ICS85311  
LOW SKEW, 1-TO-2, DIFFERENTIAL-TO-LVPECL/ECLFANOUT BUFFER  
Ordering Information  
Table 8. Ordering Information  
Part/Order Number  
85311AM  
85311AMT  
85311AMLF  
85311AMLFT  
Marking  
85311AM  
85311AM  
85311ALF  
85311ALF  
Package  
8 Lead SOIC  
8 Lead SOIC  
Shipping Packaging  
Tube  
2500 Tape & Reel  
Tube  
Temperature  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
“Lead-Free” 8 Lead SOIC  
“Lead-Free” 8 Lead SOIC  
2500 Tape & Reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for  
the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial applications. Any other applications, such as those requiring extended temperature ragnes, high reliability or other extraordinary environmental requirements  
are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any  
IDT product for use in life support devices or critical medical instruments.  
IDT™ / ICS™ LVPECL/ECL FANOUT BUFFER  
14  
ICS85311AM REV. D OCTOBER 22, 2008  
ICS85311  
LOW SKEW, 1-TO-2, DIFFERENTIAL-TO-LVPECL/ECLFANOUT BUFFER  
Revision History Sheet  
Rev  
Table  
Page  
Description of Change  
Date  
A
8
5
Added Termination for LVPECL Outputs section.  
5/30/02  
3.3V Output Load Test Circuit Diagram - corrected VEE equation to read  
-1.3V 0.165V from 0.135V.  
A
9/23/02  
7
Updated Output Rise/Fall Time Diagram.  
1
2
3
3
5
6
7
8
Add Lead-Free bullet in Features section.  
T2  
T8  
Pin Characteristics table - changed CIN 4pF max. to 4pF typical.  
Absolute Maximum Ratings, updated Outputs rating.  
Combined 3.3V & 2.5V Power tables and Differential DC Characteristics tables.  
Updated Parameter Measurement Information.  
Updated Single Ended Signal Driving Differential Input diagram.  
Added Termination for 2.5V LVPECL Output section.  
Added Differential Clock Input Interface section.  
B
6/17/04  
13  
Ordering Information table - added Lead Free part number.  
7
13  
Added Recommendations for Unused Input and Output Pins.  
Ordering Information Table - corrected Lead-Free marking and added  
Lead-Free Note.  
B
C
T8  
T3  
7/28/05  
4/11/07  
3
LVPECL DC Characteristics Table -corrected VOH max. from VCC - 1.0V to VCCO  
0.9V; and VSWING max. from 0.9V to 1.0V.  
-
9 - 10  
4
Power Considerations - corrected power dissipation to reflect VOH max in Table 3C.  
T4A - T4B  
Added 2.5V AC Characteristics Table. Added Additive Phase Jitter spec to both AC  
Tables.  
D
10/22/08  
5
8
Added Additive Phase Jitter plot.  
Updated Differential Input Clock Interface section.  
IDT™ / ICS™ LVPECL/ECL FANOUT BUFFER  
15  
ICS85311AM REV. D OCTOBER 22, 2008  
ICS85311  
LOW SKEW, 1-TO-2, DIFFERENTIAL-TO-LVPECL/ECLFANOUT BUFFER  
Contact Information:  
www.IDT.com  
Corporate Headquarters  
Sales  
Technical Support  
Integrated Device Technology, Inc.  
800-345-7015 (inside USA)  
+408-284-8200 (outside USA)  
Fax: 408-284-2775  
netcom@idt.com  
+480-763-2056  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
United States  
800-345-7015 (inside USA)  
+408-284-8200 (outside USA)  
www.IDT.com/go/contactIDT  
© 2008 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT and the IDT logo are trademarks of Integrated Device  
Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered  
trademarks used to identify products or services of their respective owners.  
www.IDT.com  
Printed in USA  

相关型号:

85311AMILF

Low Skew, 1-to-2 , Different ial-to-2.5V, 3.3V LVPECL/ ECL Fanout Buffer
IDT

85311AMILFT

Low Skew, 1-to-2 , Different ial-to-2.5V, 3.3V LVPECL/ ECL Fanout Buffer
IDT

85311AMLF

Low Skew, 1-to-2 , Different ial-to-2 .5V, 3.3V LVPECL/ ECL Fanout Buffer
IDT

85311AMLFT

Low Skew, 1-to-2 , Different ial-to-2 .5V, 3.3V LVPECL/ ECL Fanout Buffer
IDT

85311I

Low Skew, 1-to-2 , Different ial-to-2.5V, 3.3V LVPECL/ ECL Fanout Buffer
IDT

85314AG-01

Low Skew Clock Driver, PDSO20
IDT

85314AG-01T

Low Skew Clock Driver, PDSO20
IDT

85314AGI-11

Low Skew Clock Driver, 85314 Series, 5 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, MO-153, TSSOP-20
IDT

85314AGI-11LF

LVPECL Fanout Buffer
IDT

85314AGI-11LFT

LVPECL Fanout Buffer
IDT

85314AM-01T

Low Skew Clock Driver, PDSO20
IDT

85314AMI-11

Low Skew Clock Driver, 85314 Series, 5 True Output(s), 0 Inverted Output(s), PDSO20, 7.50 X 12.80 MM, 2.30 MM HEIGHT, MS-013, MO-119, SOIC-20
IDT