853S314AFIT [IDT]

Low Skew Clock Driver, 853S Series, 4 True Output(s), 0 Inverted Output(s), PDSO20, 5.30 MM X 7.20 MM, 1.75 M HEIGHT, MO-150, SSOP-20;
853S314AFIT
型号: 853S314AFIT
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Low Skew Clock Driver, 853S Series, 4 True Output(s), 0 Inverted Output(s), PDSO20, 5.30 MM X 7.20 MM, 1.75 M HEIGHT, MO-150, SSOP-20

光电二极管
文件: 总16页 (文件大小:177K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Skew, 1-to-4 Differential-to-2.5V,  
3.3V LVPECL/ECL Fanout Buffer  
ICS853S314I  
Product Discontinuance Notice – Last Time Buy Expires on (1/31/2014)  
DATA SHEET  
GENERAL DESCRIPTION  
FEATURES  
The ICS853S314I is a low skew 1-to-4 Differential Fanout Buffer,  
designed with clock distribution in mind, accepting two clock  
sources into an input MUX.The MUX is controlled by a CLK_SEL  
pin. This makes the ICS853S314I very versatile, in that, it can  
operate as both a differential clock buffer as well as a signal-  
level translator and fanout buffer.  
Four differential ECL/LVPECL level outputs  
One differential ECL/LVPECL or single-ended input (CLKA)  
One differential HSTL or single-ended input (CLKB)  
Maximum output frequency: 2.7GHz  
Additive phase jitter, RMS: 0.138ps (typical) @ 156.25MHz,  
Output skew: 50ps (maximum)  
The device is designed on a SiGe process and can operate at  
frequencies in excess of 2.7GHz. This ensures negligible jitter  
introduction to the timing budget which makes it an ideal choice  
for distributing high frequency, high precision clocks across  
back planes and boards in communication systems. Internal  
temperature compensation guarantees consistent performance  
across various platforms.  
Part-to-part skew: 150ps (maximum)  
LVPECL and HSTL mode operating voltage supply range:  
VCC = 2.5V 5ꢀ or 3.3V 5ꢀ, VEE = 0V  
ECL mode operating voltage supply range:  
VEE = -3.3V 5ꢀ or -2.5V 5ꢀ, VCC = 0V  
-40°C to 85°C ambient operating temperature  
Available in both standard (RoHS 5) and lead-free (RoHS 6)  
packages  
Use replacement part: 8T33FS314  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
VCC  
1
2
20  
19  
V
CC  
Q0  
V
Q0  
nQ0  
CC  
nc  
CLKA  
3
4
18  
17  
nQ0  
Q1  
V
CC  
nCLKA  
CLK_SEL  
Q1  
nQ1  
5
6
7
16  
15  
14  
13  
12  
11  
nQ1  
Q2  
nQ2  
Q3  
CLKA  
nCLKA  
CLKB  
0
VCC  
VEE  
Q2  
nQ2  
1
8
nCLKB  
CLKB  
9
10  
nQ3  
V
V
EE  
nCLKB  
Q3  
V
CC  
CC  
nQ3  
VEE  
CLK_SEL  
ICS853S314I  
20-Lead, 209-MIL SSOP  
5.30mm x 7.20mm x 1.75mm body package  
F Package  
VEE  
Top View  
20-Lead TSSOP  
4.4mm x 6.5mm x 0.925mm body package  
G Package  
Top View  
ICS853S314AFI REVISION B OCTOBER 4, 2013  
1
©2013 Integrated Device Technology, Inc.  
ICS853S314I Data Sheet  
LOW SKEW, 1-TO4 DIFFERENTIAL-TO2.5V, 3.3V LVPECL/ECL FANOUT BUFFER  
TABLE 1. PIN DESCRIPTIONS  
Number  
1, 3, 10  
11, 20  
Name  
VCC  
Type  
Description  
Power  
Positive supply pins.  
2
nc  
Unused  
Input  
No connect.  
Clock select input. When HIGH, selects CLKB, nCLKB inputs.  
When LOW, selects CLKA, nCLKA inputs.  
Default non-inverting differential clock input.  
LVPECL/ECL interface levels.  
4
CLK_SEL  
Pulldown  
Pulldown  
5
CLKA  
Input  
Pullup/  
Pulldown  
6
7
8
nCLKA  
CLKB  
Input  
Input  
Input  
Default inverting differential clock input. LVPECL/ECL interface levels.  
Pulldown Alternative non-inverting differential clock input. HSTL interface levels.  
Pullup/  
nCLKB  
Alternative inverting differential clock input. HSTL interface levels.  
Pulldown  
9
VEE  
Power  
Output  
Output  
Output  
Output  
Negative supply pin.  
12, 13  
14, 15  
16, 17  
18, 19  
nQ3, Q3  
nQ2, Q2  
nQ1, Q1  
nQ0, Q0  
Differential output pair. LVPECL/ECL interface levels.  
Differential output pair. LVPECL/ECL interface levels.  
Differential output pair. LVPECL/ECL interface levels.  
Differential output pair. LVPECL/ECL interface levels.  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
pF  
Input Capacitance  
Input Pullup Resistor  
Input Pulldown Resistor  
4
RPULLUP  
RPULLDOWN  
75  
75  
kΩ  
kΩ  
TABLE 3. GENERAL SPECIFICATIONS  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
VTT  
Output Termination Voltage  
VCC - 2  
V
V
MM  
HBM  
CDM  
LU  
ESD Protection (Machine Model)  
200  
4000  
2000  
200  
ESD Protection (Human Body Model)  
ESD Protection (Charged Device Model)  
Latch-up Immunity  
V
V
mA  
ICS853S314AFI REVISION B OCTOBER 4, 2013  
2
©2013 Integrated Device Technology, Inc.  
ICS853S314I Data Sheet  
LOW SKEW, 1-TO4 DIFFERENTIAL-TO2.5V, 3.3V LVPECL/ECL FANOUT BUFFER  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage, VCC  
3.9V (LVPECL mode, VEE = 0V)  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the de-  
vice.These ratings are stress specifications only. Functional op-  
eration of product at these conditions or any conditions beyond  
those listed in the DC Characteristics or AC Characteristics is  
not implied. Exposure to absolute maximum rating conditions  
for extended periods may affect product reliability.  
Negative Supply Voltage, VEE  
Inputs, VI (LVPECL mode)  
Inputs, VI (ECL mode)  
-3.9V (ECL mode, VCC = 0V)  
-0.3V to VCC + 0.3 V  
0.3V to VEE - 0.3V  
Outputs, IO  
Continuous Current  
50mA  
Package Thermal Impedance, θ  
JA  
20 Lead SSOP  
80.8°C/W (0 lfpm)  
73.2°C/W (0 lfpm)  
20 Lead TSSOP  
Storage Temperature, T  
-65°C to 150°C  
STG  
TABLE 4A. LVPECL/HSTL DC CHARACTERISTICS, VCC = 2.5V 5ꢀ OR 3.3V 5ꢀ, VEE = 0V, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
Control Input CLK_SEL  
VIL  
VIH  
IIN  
Input Low Voltage  
VCC -1.810  
VCC -1.165  
VCC -1.475  
VCC -0.880  
100  
V
V
Input High Voltage  
Input Current  
VIN = VIL or VIN = VIH  
µA  
Clock Input Pair CLKA, nCLKA (LVPECL differential signals)  
VPP  
VCMR  
IIN  
Peak-to-Peak Input Voltage; NOTE 1  
Common Mode Input Voltage; NOTE 2  
Input Current  
0.1  
1.0  
1.3  
VCC -0.3  
100  
V
V
VIN = VIL or VIN = VIH  
µA  
Clock Input Pair CLKB, nCLKB (HSTL differential signals)  
VCC = 3.3V  
CC = 2.5V  
0.4  
0.4  
0
V
V
VDIF  
Differential Input Voltage; NOTE 3  
V
VX  
IIN  
Differential Crosspoint Voltage; NOTE 4  
Input Current  
0.68 - 0.9  
VCC -1.0  
200  
V
VIN = VX 0.2V  
µA  
LVPECL Clock Outputs (Q0:Q3, nQ0:nQ3)  
VOH  
Output High Voltage  
VCC -1.2  
VCC -1.9  
VCC -1.9  
VCC -1.005  
VCC -1.705  
VCC -1.705  
VCC -0.7  
VCC -1.5  
VCC -1.3  
V
V
V
VCC = 3.3V 5ꢀ  
VOL  
Output Low Voltage  
V
CC = 2.5V 5ꢀ  
Supply Current  
Maximum Quiescent Supply Current  
without Output Termination Current  
NOTE 1: VPP is the minimum differential input voltage swing required to maintain device functionality.  
IEE  
92  
mA  
NOTE 2: VCMR is the crosspoint of the differential input signal. Functional operation is obtained when the crosspoint is within  
the VCMR range and the input swing lies within the VPP specification.  
NOTE 3: VDIF is the minimum differential HSTL input voltage swing required for device functionality.  
NOTE 4: VX is the crosspoint of the differential HSTL input signal. Functional operation is obtained when the crosspoint is  
within the VX range and the input swing lies within the VPP specification.  
ICS853S314AFI REVISION B OCTOBER 4, 2013  
3
©2013 Integrated Device Technology, Inc.  
ICS853S314I Data Sheet  
LOW SKEW, 1-TO4 DIFFERENTIAL-TO2.5V, 3.3V LVPECL/ECL FANOUT BUFFER  
TABLE 4B. ECL DC CHARACTERISTICS, VCC = 0V, VEE = -2.5V 5ꢀ OR -3.3V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
Control Input CLK_SEL  
VIL  
VIH  
IIN  
Input Low Voltage  
-1.810  
-1.165  
-1.475  
-0.880  
100  
V
V
Input High Voltage  
Input Current  
VIN = VIL or VIN = VIH  
µA  
Clock Input Pair CLKA,/nCLKA (ECL differential signals)  
VPP  
VCMR  
IIN  
Peak-to-Peak Input Voltage; NOTE 1  
Common Mode Input Voltage; NOTE 2  
Input Current  
0.1  
1.3  
-0.3  
100  
V
V
VEE + 1.0  
VIN = VIL or VIN = VIH  
VEE = -3.3V 5ꢀ  
µA  
ECL Clock Outputs (Q0:Q3, nQ0:nQ3)  
VOH  
Output High Voltage  
-1.2  
-1.9  
-1.9  
-1.005  
-1.705  
-1.705  
-0.7  
-1.5  
-1.3  
V
V
V
VOL  
Output Low Voltage  
V
EE = -2.5V 5ꢀ  
Supply Current  
Maximum Quiescent Supply Current  
without Output Termination Current  
NOTE 1: VPP is the minimum differential input voltage swing required to maintain device functionality.  
IEE  
92  
mA  
NOTE 2: VCMR is the crosspoint of the differential input signal. Functional operation is obtained when the crosspoint is within  
the VCMR range and the input swing lies within the VPP specification.  
ICS853S314AFI REVISION B OCTOBER 4, 2013  
4
©2013 Integrated Device Technology, Inc.  
ICS853S314I Data Sheet  
LOW SKEW, 1-TO4 DIFFERENTIAL-TO2.5V, 3.3V LVPECL/ECL FANOUT BUFFER  
TABLE 5. AC CHARACTERISTICS, (LVPECL/HSTL): VCC = 3.3V 5ꢀ OR 2.5V 5ꢀ, VEE = 0V, OR  
(ECL): VEE = -3.3V 5ꢀ OR -2.5V 5ꢀ, VCC = 0V; TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
VPP  
VCMR  
fCLK  
tPD  
Differential Input Voltage; NOTE 1  
0.15  
1.3  
VCC - 0.3  
2.7  
V
Differential Input Crosspoint Voltage;  
NOTE 2  
V
EE + 1.0  
V
Input Frequency; NOTE 3  
GHz  
ps  
V
Propagation Delay, CLKA or CLKB to  
Output Pair  
280  
0.4  
650  
VDIF  
VX  
HSTL Differential Input Voltage; NOTE 4  
1.0  
HSTL Input Differential Crosspoint  
Voltage; NOTE 5  
V
EE + 0.01  
VCC - 1.0  
V
fO < 300MHz  
fO < 1.5GHz  
0.45  
0.3  
0.72  
0.55  
0.95  
0.95  
50  
V
V
Differential Output Voltage  
(peak-to-peak)  
VO(pp)  
tsk(o)  
Output Skew  
ps  
ps  
tsk(pp)  
Part-to-Part Skew; NOTE 6  
150  
156.25MHz @ 3.3V,  
(1.875MHz - 20MHz)  
312.5MHz @ 3.3V,  
(1.875MHz - 20MHz)  
0.138  
0.092  
ps  
ps  
Buffer Additive Phase Jitter, RMS;  
refer to Additive Phase Jitter  
Section  
tjit  
tsk(p)  
tR / tF  
Output Pulse Skew; NOTE 7  
Output Rise/Fall Time  
660MHz  
75  
ps  
ns  
20ꢀ to 80ꢀ  
0.05  
0.3  
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established  
when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet  
specifications after thermal equilibrium has been reached under these conditions.  
AC characteristics apply for parallel output termination of 50Ω to VTT.  
NOTE 1: VPP is the minimum differential ECL/LVPECL input voltage swing required to maintain AC characteristics including  
tPD and device-to-device skew.  
NOTE 2: VCMR is the crosspoint of the differential ECL/LVPECL input signal. Normal AC operation is obtained when the  
crosspoint is within the VCMR range and the input swing lies within the VPP specificatiion. Violation of VCMR or VPP impacts the  
device propagation delay, device and part-to-part skew.  
NOTE 3: The ICS853S314I is fully operational up to 2.7GHz and is characterized up to 1.5GHz.  
NOTE 4:VDIF is the minimum differential HSTL input voltage swing required to maintain AC characteristics including tPD and  
device-to-device skew.  
NOTE 5: VX is the crosspoint of the differential HSTL input signal. Normal AC operation is obtained when the crosspoint is  
within the VX range and the input swing lies within the VDIF specification. Violation of VX or VDIF impacts the device  
propgation delay, device and part-to-part skew.  
NOTE 6: This parameter is defined in accordance with JEDEC Standard 65.  
NOTE 7: Output pulse skew is the absolute value of the difference of the propagation delay times:tPLH - tPHL .  
ICS853S314AFI REVISION B OCTOBER 4, 2013  
5
©2013 Integrated Device Technology, Inc.  
ICS853S314I Data Sheet  
LOW SKEW, 1-TO4 DIFFERENTIAL-TO2.5V, 3.3V LVPECL/ECL FANOUT BUFFER  
ADDITIVE PHASE JITTER  
band to the power in the fundamental. When the required offset  
is specified, the phase noise is called a dBc value, which simply  
means dBm at a specified offset from the fundamental. By  
investigating jitter in the frequency domain, we get a better  
understanding of its effects on the desired application over the  
entire time record of the signal. It is mathematically possible to  
calculate an expected bit error rate given a phase noise plot.  
The spectral purity in a band at a specific offset from the  
fundamental compared to the power of the fundamental is called  
the dBc Phase Noise. This value is normally expressed using a  
Phase noise plot and is most often the specified plot in many  
applications.Phase noise is defined as the ratio of the noise power  
present in a 1Hz band at a specified offset from the fundamental  
frequency to the power value of the fundamental. This ratio is  
expressed in decibels (dBm) or a ratio of the power in the 1Hz  
0
-10  
-20  
-30  
Additive Phase Jitter  
3.3V @ 156.25MHz (1.875MHz to 20MHz)  
= 0.138ps (typical)  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-180  
-190  
10  
100  
1k  
10k  
100k  
1M  
10M  
41M  
OFFSET FROM CARRIER FREQUENCY (HZ)  
As with most timing specifications, phase noise measurements  
have issues. The primary issue relates to the limitations of the  
equipment. Often the noise floor of the equipment is higher than  
the noise floor of the device. This is illustrated above. The device  
meets the noise floor of what is shown, but can actually be lower.  
The phase noise is dependant on the input source and  
measurement equipment.  
ICS853S314AFI REVISION B OCTOBER 4, 2013  
6
©2013 Integrated Device Technology, Inc.  
ICS853S314I Data Sheet  
LOW SKEW, 1-TO4 DIFFERENTIAL-TO2.5V, 3.3V LVPECL/ECL FANOUT BUFFER  
PARAMETER MEASUREMENT INFORMATION  
2V  
VCC  
SCOPE  
VCC  
Qx  
nCLKA,  
nCLKB  
VPP, VDIF  
Cross Points  
LVPECL  
nQx  
CLKA,  
CLKB  
VEE  
VCMR, VX  
VEE  
-0.375V to -1.465V  
2.5V/3.3V OUTPUT LOAD AC TEST CIRCUIT  
DIFFERENTIAL INPUT LEVEL  
PART 1  
nQx  
nQx  
Qx  
Qx  
PART 2  
nQy  
nQy  
Qy  
Qy  
tsk(pp)  
tsk(o)  
OUTPUT SKEW  
PART-TO-PART SKEW  
nCLKA,  
nCLKB  
nCLKA,  
nCLKB  
CLKA  
CLKB  
CLKA  
CLKB  
nQ0:nQ3  
nQ0:nQ3  
Q0:Q3  
Q0:Q3  
tPD  
tPLH  
tPHL  
PROPAGATION DELAY  
OUTPUT PULSE SKEW  
80ꢀ  
80ꢀ  
tR  
VSWING  
20ꢀ  
Clock  
Outputs  
20ꢀ  
tF  
OUTPUT RISE/FALL TIME  
ICS853S314AFI REVISION B OCTOBER 4, 2013  
7
©2013 Integrated Device Technology, Inc.  
ICS853S314I Data Sheet  
LOW SKEW, 1-TO4 DIFFERENTIAL-TO2.5V, 3.3V LVPECL/ECL FANOUT BUFFER  
APPLICATION INFORMATION  
RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS  
INPUTS:  
OUTPUTS:  
CLKx/nCLKx INPUT:  
LVPECL OUTPUT  
For applications not requiring the use of the differential input,  
both CLKx and nCLKx can be left floating. Though not required,  
but for additional protection, a 1kΩ resistor can be tied from CLKx  
to ground.  
All unused LVPECL outputs can be left floating. We recommend  
that there is no trace attached. Both sides of the differential output  
pair should either be left floating or terminated.  
TERMINATION FOR 3.3V LVPECL OUTPUTS  
The clock layout topology shown below is a typical termination  
for LVPECL outputs. The two different layouts mentioned are  
recommended only as guidelines.  
drive 50Ω transmission lines. Matched impedance techniques  
should be used to maximize operating frequency and minimize  
signal distortion. Figures 1A and 1B show two different layouts  
which are recommended only as guidelines. Other suitable clock  
layouts may exist and it would be recommended that the board  
designers simulate to guarantee compatibility across all printed  
circuit and clock component process variations.  
FOUT and nFOUT are low impedance follower outputs that  
generate ECL/LVPECL compatible outputs. Therefore, termi-  
nating resistors (DC current path to ground) or current sources  
must be used for functionality. These outputs are designed to  
3.3V  
Zo = 50Ω  
125Ω  
125Ω  
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
Zo = 50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
((VOH + VOL) / (VCC – 2)) – 2  
84Ω  
84Ω  
FIGURE 1A. LVPECL OUTPUT TERMINATION  
FIGURE 1B. LVPECL OUTPUT TERMINATION  
ICS853S314AFI REVISION B OCTOBER 4, 2013  
8
©2013 Integrated Device Technology, Inc.  
ICS853S314I Data Sheet  
LOW SKEW, 1-TO4 DIFFERENTIAL-TO2.5V, 3.3V LVPECL/ECL FANOUT BUFFER  
TERMINATION FOR 2.5V LVPECL OUTPUT  
Figure 2A and Figure 2B show examples of termination for 2.5V  
LVPECL driver. These terminations are equivalent to  
terminating 50Ω to V - 2V. For V = 2.5V, the V - 2V is very  
close to ground level. The R3 in Figure 2B can be eliminated and  
the termination is shown in Figure 2C.  
CC  
CC  
CC  
2.5V  
VCC=2.5V  
2.5V  
2.5V  
VCC=2.5V  
Zo = 50 Ohm  
R1  
R3  
250  
250  
+
Zo = 50 Ohm  
Zo = 50 Ohm  
+
-
Zo = 50 Ohm  
-
2,5V LVPECL  
Driv er  
R1  
50  
R2  
50  
2,5V LVPECL  
Driv er  
R2  
62.5  
R4  
62.5  
R3  
18  
FIGURE 2A. 2.5V LVPECL DRIVER TERMINATION EXAMPLE  
FIGURE 2B. 2.5V LVPECL DRIVER TERMINATION EXAMPLE  
2.5V  
VCC=2.5V  
Zo = 50 Ohm  
+
Zo = 50 Ohm  
-
2,5V LVPECL  
Driv er  
R1  
50  
R2  
50  
FIGURE 2C. 2.5V LVPECL TERMINATION EXAMPLE  
ICS853S314AFI REVISION B OCTOBER 4, 2013  
9
©2013 Integrated Device Technology, Inc.  
ICS853S314I Data Sheet  
LOW SKEW, 1-TO4 DIFFERENTIAL-TO2.5V, 3.3V LVPECL/ECL FANOUT BUFFER  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS853S314I.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS853S314I is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for V = 3.465V, which gives worst case results.  
CC  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core) = V  
* I  
= 3.465V * 92mA = 318.78mW  
MAX  
CC_MAX  
EE_MAX  
Power (outputs) = 33mW/Loaded Output pair  
MAX  
If all outputs are loaded, the total power is 4 * 33mW = 132mW  
Total Power  
(3.465V, with all outputs switching) = 318.78mW + 132mW = 450.78mW  
_MAX  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
TM  
device. The maximum recommended junction temperature for HiPerClockS devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θ
= Junction-to-Ambient Thermal Resistance  
JA  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ must be used. Assuming a  
JA  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 66.6°C/W per Table 6A below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.450W * 90.4°C/W = 125°C. This is within the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 6A. THERMAL RESISTANCE θ FOR 20-PIN TSSOP, FORCED CONVECTION  
JA  
θ by Velocity (Linear Feet per Minute)  
JA  
0
200  
90.4°C/W  
500  
88.3°C/W  
Multi-Layer PCB, JEDEC Standard Test Boards  
94.8°C/W  
TABLE 6B. THERMAL RESISTANCE θ FOR 20-PIN SSOP, FORCED CONVECTION  
JA  
θ by Velocity (Linear Feet per Minute)  
JA  
0
200  
500  
Multi-Layer PCB, JEDEC Standard Test Boards  
80.8°C/W  
73.2°C/W  
69.2°C/W  
ICS853S314AFI REVISION B OCTOBER 4, 2013  
10  
©2013 Integrated Device Technology, Inc.  
ICS853S314I Data Sheet  
LOW SKEW, 1-TO4 DIFFERENTIAL-TO2.5V, 3.3V LVPECL/ECL FANOUT BUFFER  
3. Calculations and Equations.  
LVPECL output driver circuit and termination are shown in Figure 3.  
VCC  
Q1  
VOUT  
RL  
50  
VCC - 2V  
FIGURE 3. LVPECL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a  
termination  
voltage of V - 2V.  
CC  
For logic high, V = V  
= V  
– 0.7V  
OUT  
OH_MAX  
CC_MAX  
)
= 0.7V  
OH_MAX  
(V  
- V  
CC_MAX  
For logic low, V = V  
= V  
– 1.5V  
CC_MAX  
OUT  
OL_MAX  
)
= 1.5V  
OL_MAX  
(V  
- V  
CC_MAX  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
))  
Pd_H = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
- V  
/R ] * (V  
- V  
) =  
OH_MAX  
CC_MAX  
CC_MAX  
OH_MAX  
CC_MAX  
OH_MAX  
CC_MAX  
OH_MAX  
L
L
[(2V - 0.7V)/50Ω] * 0.7V = 18.0mW  
))  
Pd_L = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
/R ] * (V  
- V  
) =  
OL_MAX  
CC_MAX  
CC_MAX  
OL_MAX  
CC_MAX  
OL_MAX  
CC_MAX  
OL_MAX  
L
L
[(2V - 1.5V)/50Ω] * 1.5V = 15mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 33mW  
ICS853S314AFI REVISION B OCTOBER 4, 2013  
11  
©2013 Integrated Device Technology, Inc.  
ICS853S314I Data Sheet  
LOW SKEW, 1-TO4 DIFFERENTIAL-TO2.5V, 3.3V LVPECL/ECL FANOUT BUFFER  
RELIABILITY INFORMATION  
TABLE 7A. θ VS. AIR FLOW TABLE FOR 20 LEAD SSOP  
JA  
θ by Velocity (Linear Feet per Minute)  
JA  
0
200  
500  
Multi-Layer PCB, JEDEC Standard Test Boards  
80.8°C/W  
73.2°C/W  
69.2°C/W  
TABLE 7B. θ VS. AIR FLOW TABLE FOR 20 LEAD TSSOP  
JA  
θ by Velocity (Linear Feet per Minute)  
JA  
0
200  
90.4°C/W  
500  
88.3°C/W  
Multi-Layer PCB, JEDEC Standard Test Boards  
94.8°C/W  
TRANSISTOR COUNT  
The transistor count for ICS853S314I is: 450 (approximately)  
Pin compatible with CY2DP314  
ICS853S314AFI REVISION B OCTOBER 4, 2013  
12  
©2013 Integrated Device Technology, Inc.  
ICS853S314I Data Sheet  
LOW SKEW, 1-TO4 DIFFERENTIAL-TO2.5V, 3.3V LVPECL/ECL FANOUT BUFFER  
PACKAGE OUTLINE - F SUFFIX FOR 20 LEAD SSOP  
PACKAGE OUTLINE - G SUFFIX FOR 20 LEAD TSSOP  
TABLE 8A. PACKAGE DIMENSIONS  
TABLE 8B. PACKAGE DIMENSIONS  
Millimeters  
SYMBOL  
Millimeters  
Symbol  
Minimum  
Maximum  
Minimum  
Maximum  
N
A
20  
N
A
20  
--  
2.0  
--  
--  
1.20  
0.15  
1.05  
0.30  
0.20  
6.60  
A1  
A2  
b
0.05  
1.65  
0.22  
0.09  
6.90  
7.40  
5.0  
A1  
A2  
b
0.05  
0.80  
0.19  
0.09  
6.40  
1.85  
0.38  
0.25  
7.50  
8.20  
5.60  
c
c
D
D
E
6.40 BASIC  
0.65 BASIC  
E
E1  
e
4.30  
4.50  
E1  
e
0.65 BASIC  
L
0.45  
0°  
0.75  
8°  
L
0.55  
0°  
0.95  
8°  
α
α
aaa  
--  
0.10  
Reference Document: JEDEC Publication 95, MO-150  
Reference Document: JEDEC Publication 95, MO-153  
ICS853S314AFI REVISION B OCTOBER 4, 2013  
13  
©2013 Integrated Device Technology, Inc.  
ICS853S314I Data Sheet  
LOW SKEW, 1-TO4 DIFFERENTIAL-TO2.5V, 3.3V LVPECL/ECL FANOUT BUFFER  
TABLE 9. ORDERING INFORMATION  
Part/Order Number  
Marking  
Package  
Shipping Packaging  
tube  
Temperature  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
853S314AFI  
853S314AFIT  
853S314AFILF  
853S314AFILFT  
853S314AGI  
ICS853S314AI  
ICS853S314AI  
ICS53S314AIL  
ICS53S314AIL  
ICS53S14AGI  
ICS53S14AGI  
ICS3S314AGIL  
ICS3S314AGIL  
20 lead SSOP  
20 lead SSOP  
2500 tape & reel  
tube  
20 lead "Lead-Free" SSOP  
20 lead "Lead-Free" SSOP  
20 lead TSSOP  
2500 tape & reel  
tube  
853S314AGIT  
853S314AGILF  
853S314AGILFT  
20 lead TSSOP  
2500 tape & reel  
tube  
20 lead "Lead-Free" TSSOP  
20 lead "Lead-Free" TSSOP  
2500 tape & reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology, Incorporated (IDT) assumes no responsibility for either its use or for  
infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and  
industrial applications. Any other applications such as those requiring high reliability or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT  
reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.  
ICS853S314AFI REVISION B OCTOBER 4, 2013  
14  
©2013 Integrated Device Technology, Inc.  
ICS853S314I Data Sheet  
LOW SKEW, 1-TO4 DIFFERENTIAL-TO2.5V, 3.3V LVPECL/ECL FANOUT BUFFER  
REVISION HISTORY SHEET  
Description of Change  
Rev  
A
Table  
Page  
14  
1
Date  
T9  
Ordering Information Table - Added "Lead-Free" Marking.  
1/24/09  
2/6/13  
10/4/13  
A
Product Discontinuance Notice – Last Time Buy Expires on (1/31/2014)  
PDN# N-13-03R1 - Added Use replacement part: 8T33FS314  
B
1
ICS853S314AFI REVISION B OCTOBER 4, 2013  
15  
©2013 Integrated Device Technology, Inc.  
ICS853S314I Data Sheet  
LOW SKEW, 1-TO4 DIFFERENTIAL-TO2.5V, 3.3V LVPECL/ECL FANOUT BUFFER  
We’ve Got Your Timing Solution  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
Sales  
Techical Support  
netcom@idt.com  
+480-763-2056  
800-345-7015 (inside USA)  
+408-284-8200 (outside  
USA)  
Fax: 408-284-2775  
www.IDT.com/go/contactIDT  
DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT’s sole discretion. All  
information in this document, including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described  
products are determined in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation  
or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT’s products for any particular purpose, an implied warranty of merchantability, or non-infringement of  
the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.  
IDT’s products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be  
reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.  
Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property  
of IDT or their respective third party owners.  
Copyright 2013. All rights reserved.  

相关型号:

853S314AGI

Low Skew Clock Driver, 853S Series, 4 True Output(s), 0 Inverted Output(s), PDSO20, 4.40 MM X 6.50 MM, 0.925 MM HEIGHT, MO-153, TSSOP-20
IDT

853S314AGILF

TSSOP-20, Tube
IDT

853S314AGILFT

Low Skew Clock Driver, 853S Series, 4 True Output(s), 0 Inverted Output(s), PDSO20, 4.40 MM X 6.50 MM, 0.925 MM HEIGHT, ROHS COMPLIANT, MO-153, TSSOP-20
IDT

853S314AGIT

Low Skew Clock Driver, 853S Series, 4 True Output(s), 0 Inverted Output(s), PDSO20, 4.40 MM X 6.50 MM, 0.925 MM HEIGHT, MO-153, TSSOP-20
IDT

853S54AKI-01LF

Dual 2:1, 1:2 Differential-to-LVPECL/ ECL Multiplexer
IDT

853S54AKI-01LFT

Dual 2:1, 1:2 Differential-to-LVPECL/ ECL Multiplexer
IDT

853S54AKILF

Dual 2:1, 1:2 Differential-to-LVPECL/ECL Multiplexer
IDT

853S54AKILFT

Dual 2:1, 1:2 Differential-to-LVPECL/ECL Multiplexer
IDT

853S54I-01

Dual 2:1, 1:2 Differential-to-LVPECL/ ECL Multiplexer
IDT

853S54I-01_17

Dual 2:1, 1:2 Differential-to-LVPECL ECL Multiplexer
IDT

853S6111AYILF

PTQFP-32, Tray
IDT

853S6111AYILFT

PTQFP-32, Reel
IDT