ICS853011BGT [IDT]

Low Skew Clock Driver, 853011 Series, 2 True Output(s), 0 Inverted Output(s), PDSO8, 3 X 3 MM, 0.95 MM HEIGHT, MO-187, TSSOP-8;
ICS853011BGT
型号: ICS853011BGT
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Low Skew Clock Driver, 853011 Series, 2 True Output(s), 0 Inverted Output(s), PDSO8, 3 X 3 MM, 0.95 MM HEIGHT, MO-187, TSSOP-8

光电二极管
文件: 总17页 (文件大小:473K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
ICS853011  
LOW SKEW, 1-TO-2 DIFFERENTIAL-TO-2.5V/3.3V  
LVPECL/ECL FANOUT BUFFER  
GENERAL DESCRIPTION  
FEATURES  
The ICS853011 is a low skew, high perfor- 2 differential 2.5V/3.3V LVPECL / ECL outputs  
ICS  
HiPerClockS™  
mance 1-to-2 Differential-to-2.5V/3.3V LVPECL/  
1 differential PCLK, nPCLK input pair  
ECL Fanout Buffer and a member of the  
HiPerClockS™ family of High Performance  
Clock Solutions from ICS. The ICS853011  
PCLK, nPCLK pair can accept the following  
differential input levels: LVPECL, LVDS, CML, SSTL  
is characterized to operate from either a 2.5V or a 3.3V  
power supply. Guaranteed output and part-to-part skew  
characteristics make the ICS853011 ideal for those  
clock distribution applications demanding well defined  
performance and repeatability.  
Maximum output frequency: >3GHz  
Translates any single ended input signal to 3.3V  
LVPECL levels with resistor bias on nPCLK input  
Output skew: 5ps (typical)  
Part-to-part skew: 130ps (maximum)  
Propagation delay: 390ps (maximum)  
Additive phase jitter, RMS: 0.06ps (typical)  
LVPECL mode operating voltage supply range:  
VCC = 2.375V to 3.8V, VEE = 0V  
ECL mode operating voltage supply range:  
VCC = 0V, VEE = -3.8V to -2.375V  
-40°C to 85°C ambient operating temperature  
Available in both Standard and lead-free RoHS compliant  
packages  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
Q0  
nQ0  
Q1  
Vcc  
1
2
3
4
8
7
6
5
Q0  
nQ0  
PCLK  
nPCLK  
VEE  
PCLK  
nPCLK  
Q1  
nQ1  
nQ1  
ICS853011  
8-Lead SOIC  
3.90mm x 4.90mm x 1.37mm package body  
M Package  
TopView  
ICS853011  
8-Lead TSSOP, 118 mil  
3mm x 3mm x 0.95mm package body  
G Package  
Top View  
IDT™ / ICS™ LOW SKEW, 1-TO-2 DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
ICS853011  
1
ICS853011  
TSD  
LOW SKEW, 1-TO-2DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
TABLE 1. PIN DESCRIPTIONS  
Number  
1, 2  
Name  
Q0, nQ0  
Q1, nQ1  
VEE  
Type  
Description  
Output  
Output  
Power  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Negative supply pin.  
3, 4  
5
Pullup/  
Pulldown  
6
nPCLK  
Input  
Clock input. VCC/2 default when left floating. LVPECL interface levels.  
7
8
PCLK  
VCC  
Input  
Pulldown Clock input. Default LOW when left floating. LVPECL interface levels.  
Positive supply pin.  
Power  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
RPULLDOWN  
RVCC/2  
Parameter  
Test Conditions  
Minimum Typical Maximum Units  
Input Pulldown Resistor  
Pullup/Pulldown Resistors  
75  
50  
kΩ  
kΩ  
IDT™ / ICS™ LOW SKEW, 1-TO-2 DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
ICS853011  
2
ICS853011  
TSD  
LOW SKEW, 1-TO-2DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
ABSOLUTE MAXIMUM RATINGS  
SupplyVoltage, VCC  
4.6V (LVPECL mode, VEE = 0) NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage  
to the device. These ratings are stress specifi-  
cations only. Functional operation of product at  
these conditions or any conditions beyond those  
listed in the DC Characteristics or AC Character-  
istics is not implied. Exposure to absolute maxi-  
mum rating conditions for extended periods may  
affect product reliability.  
Negative Supply Voltage, VEE  
Inputs, VI (LVPECL mode)  
Inputs, VI (ECL mode)  
-4.6V (ECL mode, VCC = 0)  
-0.5V to VCC + 0.5V  
0.5V to VEE - 0.5V  
Outputs, IO  
Continuous Current  
Surge Current  
50mA  
100mA  
OperatingTemperature Range, TA -40°C to +85°C  
Storage Temperature, TSTG -65°C to 150°C  
Package Thermal Impedance, θJA 112.7°C/W (0 lfpm)  
(Junction-to-Ambient) for 8 Lead SOIC  
Package Thermal Impedance, θJA 101.7°C/W (0 m/s)  
(Junction-to-Ambient) for 8 Lead TSSOP  
TABLE 3A. POWER SUPPLY DC CHARACTERISTICS, VCC = 2.375V TO 3.8V; VEE = 0V  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
VCC  
IEE  
Positive Supply Voltage  
Power Supply Current  
2.375  
3.3  
3.8  
25  
V
mA  
TABLE 3B. LVPECL DC CHARACTERISTICS, VCC = 3.3V; VEE = 0V  
-40°C  
25°C  
85°C  
Typ  
Symbol Parameter  
Units  
Min  
2.175 2.275 2.38 2.225 2.295 2.37  
1.405 1.545 1.68 1.425  
Typ  
Max  
Min  
Typ  
Max  
Min  
Max  
2.22  
2.295 2.365  
1.535 1.63  
V
V
V
VOH  
VOL  
VPP  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
Peak-to-Peak Input Voltage  
1.52 1.615 1.44  
150  
1.2  
800  
1200  
3.3  
150  
1.2  
800  
1200  
3.3  
150  
1.2  
800  
1200  
3.3  
Input High Voltage  
Common Mode Range; NOTE 2, 3  
V
VCMR  
IIH  
Input  
150  
150  
150  
µA  
PCLK, nPCLK  
High Current  
-10  
-10  
µA  
µA  
PCLK  
-10  
Input  
Low Current  
IIL  
-150  
-150  
nPCLK  
-150  
Input and output parameters vary 1:1 with VCC. VEE can vary +0.925V to -0.5V.  
NOTE 1: Outputs terminated with 50Ω to VCCO - 2V.  
NOTE 2: Common mode voltage is defined as VIH.  
NOTE 3: For single-ended applications, the maximum input voltage for PCLK, nPCLK is VCC + 0.3V.  
IDT™ / ICS™ LOW SKEW, 1-TO-2 DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
ICS853011  
3
ICS853011  
TSD  
LOW SKEW, 1-TO-2DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
TABLE 3C. LVPECL DC CHARACTERISTICS, VCC = 2.5V;VEE = 0V  
-40°C  
Typ  
25°C  
Typ  
85°C  
Typ  
Symbol Parameter  
Units  
Min  
Max  
Min  
Max  
Min  
Max  
1.375 1.475 1.58  
0.605 0.745 0.88  
1.425 1.495 1.57  
1.42 1.495 1.565  
V
V
V
VOH  
VOL  
VPP  
Output High Voltage; NOTE 1  
0.625 0.72 0.815 0.64 0.735 0.83  
Output Low Voltage; NOTE 1  
Peak-to-Peak Input Voltage  
150  
1.2  
800  
1200  
2.5  
150  
1.2  
800  
1200  
2.5  
150  
1.2  
800  
1200  
2.5  
Input High Voltage  
Common Mode Range; NOTE 2, 3  
V
VCMR  
IIH  
Input  
150  
150  
150  
µA  
PCLK, nPCLK  
High Current  
-10  
-10  
-10  
µA  
µA  
PCLK  
Input  
Low Current  
IIL  
-150  
-150  
-150  
nPCLK  
For notes see above Table 3B, 3.3V LVPECL DC Characteristics.  
TABLE 3D. ECL DC CHARACTERISTICS, VCC = 0V; VEE = -3.8V TO -2.375V  
-40°C  
25°C  
85°C  
Symbol Parameter  
Units  
Min  
-1.125  
-1.895  
150  
Typ Max  
Min  
-1.075  
-1.875  
150  
Typ Max  
Min  
-1.08  
-1.86  
150  
Typ Max  
-1.025  
-1.755  
800  
-0.92  
-1.62  
1200  
-1.005  
-1.78  
800  
-0.93  
-1.685  
1200  
-1.005 -0.935  
V
V
V
VOH  
VOL  
VPP  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
Peak-to-Peak Input Voltage  
-1.765  
800  
-1.67  
1200  
Input High Voltage  
Common Mode Range; NOTE 2, 3  
VEE+1.2V  
0
VEE+1.2V  
0
VEE+1.2V  
0
V
VCMR  
IIH  
Input  
150  
150  
150  
µA  
PCLK, nPCLK  
High Current  
-10  
-10  
-10  
µA  
µA  
Input  
PCLK  
IIL  
-150  
-150  
-150  
Low Current nPCLK  
Input and output parameters vary 1:1 with VCC. VEE can vary +0.925V to -0.5V.  
NOTE 1: Outputs terminated with 50Ω to VCCO - 2V.  
NOTE 2: Common mode voltage is defined as VIH.  
NOTE 3: For single-ended applications, the maximum input voltage for PCLK, nPCLK is VCC + 0.3V.  
TABLE 4. AC CHARACTERISTICS, VCC = 0V; VEE = -3.8V TO -2.375V OR VCC = 2.375 TO 3.8V; VEE = 0V  
-40°C  
Min Typ  
25°C  
Max Min Typ  
85°C  
Symbol Parameter  
Units  
Max Min Typ  
Max  
>3  
fMAX  
Output Frequency  
>3  
375  
20  
>3  
390  
20  
GHz  
ps  
tPD  
Propagation Delay; NOTE 1  
Output Skew; NOTE 2, 4  
245  
260  
275  
415  
20  
tsk(o)  
tsk(pp)  
5
5
5
ps  
Part-to-Part Skew; NOTE 3, 4  
130  
130  
150  
ps  
Buffer Additive Phase Jitter, RMS;  
refer to Additive Phase Jitter Section,  
Integration Range: 12KHz to 20MHz  
tjit  
0.06  
0.06  
0.06  
ps  
tR/tF  
odc  
Output Rise/Fall Time  
Output Duty Cycle  
20% to 80%  
70  
48  
250  
52  
80  
48  
250  
52  
100  
48  
250  
52  
ps  
%
f 1GHz  
50  
50  
50  
All parameters are measured at f 1.7GHz, unless otherwise noted.  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load  
conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points.  
NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.  
IDT™ / ICS™ LOW SKEW, 1-TO-2 DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
ICS853011  
4
ICS853011  
TSD  
LOW SKEW, 1-TO-2DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
ADDITIVE PHASE JITTER  
the 1Hz band to the power in the fundamental. When the re-  
quired offset is specified, the phase noise is called a dBc value,  
which simply means dBm at a specified offset from the funda-  
mental. By investigating jitter in the frequency domain, we get a  
better understanding of its effects on the desired application over  
the entire time record of the signal. It is mathematically possible  
to calculate an expected bit error rate given a phase noise plot.  
The spectral purity in a band at a specific offset from the funda-  
mental compared to the power of the fundamental is called the  
dBc Phase Noise. This value is normally expressed using a  
Phase noise plot and is most often the specified plot in many  
applications. Phase noise is defined as the ratio of the noise  
power present in a 1Hz band at a specified offset from the fun-  
damental frequency to the power value of the fundamental.This  
ratio is expressed in decibels (dBm) or a ratio of the power in  
0
Additive Phase Jitter  
155.52MHz@12kHz to 20MHz  
= 0.06ps (typical)  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-180  
-190  
1k  
10k  
100k  
1M  
10M  
100M  
OFFSET FROM CARRIER FREQUENCY (HZ)  
As with most timing specifications, phase noise measurements vice meets the noise floor of what is shown, but can actually be  
have issues.The primary issue relates to the limitations of the lower. The phase noise is dependant on the input source and  
equipment. Often the noise floor of the equipment is higher than measurement equipment.  
the noise floor of the device. This is illustrated above. The de-  
IDT™ / ICS™ LOW SKEW, 1-TO-2 DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
ICS853011  
5
ICS853011  
TSD  
LOW SKEW, 1-TO-2DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
PARAMETER MEASUREMENT INFORMATION  
2V  
VCC  
SCOPE  
VCC  
,
Qx  
VCCO  
nPCLK  
LVPECL  
VEE  
VPP  
VCMR  
Cross Points  
PCLK  
VEE  
nQx  
-1.8V to -0.375V  
OUTPUT LOAD AC TEST CIRCUIT  
DIFFERENTIAL INPUT LEVEL  
nQx  
PART 1  
Qx  
nQx  
Qx  
nQy  
nQy  
PART 2  
Qy  
Qy  
tsk(pp)  
tsk(o)  
PART-TO-PART SKEW  
OUTPUT SKEW  
nPCLK  
PCLK  
80%  
tF  
80%  
VSWING  
20%  
nQ0, nQ1  
Clock  
20%  
Outputs  
tR  
Q0, Q1  
tPD  
OUTPUT RISE/FALL TIME  
PROPAGATION DELAY  
nQ0, nQ1  
Q0, Q1  
tPW  
tPERIOD  
tPW  
odc =  
x 100%  
tPERIOD  
OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD  
IDT™ / ICS™ LOW SKEW, 1-TO-2 DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
ICS853011  
6
ICS853011  
TSD  
LOW SKEW, 1-TO-2DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
APPLICATION INFORMATION  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS  
Figure 1 shows how the differential input can be wired to accept  
single ended levels. The reference voltage V_REF = VCC/2 is  
generated by the bias resistors R1, R2 and C1.This bias circuit  
should be located as close as possible to the input pin.The ratio  
of R1 and R2 might need to be adjusted to position theV_REF in  
the center of the input voltage swing. For example, if the input  
clock swing is only 2.5V andVCC = 3.3V, V_REF should be 1.25V  
and R2/R1 = 0.609.  
VCC  
R1  
1K  
Single Ended Clock Input  
V_REF  
PCLK  
nPCLK  
C1  
0.1u  
R2  
1K  
FIGURE 1. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT  
RECOMMENDATIONS FOR UNUSED OUTPUT PINS  
OUTPUTS:  
LVPECL OUTPUT  
All unused LVPECL outputs can be left floating.We recommend  
that there is no trace attached. Both sides of the differential  
output pair should either be left floating or terminated.  
IDT™ / ICS™ LOW SKEW, 1-TO-2 DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
ICS853011  
7
ICS853011  
TSD  
LOW SKEW, 1-TO-2DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
LVPECL CLOCK INPUT INTERFACE  
The PCLK /nPCLK accepts LVPECL, CML, SSTL and other gested here are examples only. If the driver is from another  
differential signals. Both VSWING and VOH must meet the VPP vendor, use their termination recommendation. Please con-  
and VCMR input requirements. Figures 2A to 2E show inter- sult with the vendor of the driver component to confirm the  
face examples for the HiPerClockS PCLK/nPCLK input driven driver termination requirements.  
by the most common driver types. The input interfaces sug-  
2.5V  
3.3V  
3.3V  
3.3V  
2.5V  
3.3V  
R3  
120  
R4  
120  
R1  
50  
R2  
50  
SSTL  
Zo = 60 Ohm  
Zo = 60 Ohm  
CML  
Zo = 50 Ohm  
Zo = 50 Ohm  
PCLK  
PCLK  
nPCLK  
HiPerClockS  
PCLK/nPCLK  
nPCLK  
HiPerClockS  
R1  
120  
R2  
120  
PCLK/nPCLK  
FIGURE 2A. HIPERCLOCKS PCLK/NPCLK INPUT DRIVEN  
BY A CML DRIVER  
FIGURE 2B. HIPERCLOCKS PCLK/NPCLK INPUT DRIVEN  
BY AN SSTL DRIVER  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
R3  
125  
R4  
125  
Zo = 50 Ohm  
R3  
1K  
R4  
1K  
C1  
C2  
Zo = 50 Ohm  
Zo = 50 Ohm  
LVDS  
PCLK  
PCLK  
R5  
100  
nPCLK  
Zo = 50 Ohm  
HiPerClockS  
PCLK/nPCLK  
nPCLK  
HiPerClockS  
Input  
LVPECL  
R1  
1K  
R2  
1K  
R1  
84  
R2  
84  
FIGURE 2C. HIPERCLOCKS PCLK/NPCLK INPUT DRIVEN  
BY A 3.3V LVPECL DRIVER  
FIGURE 2D. HIPERCLOCKS PCLK/NPCLK INPUT DRIVEN  
BY A 3.3V LVDS DRIVER  
3.3V  
3.3V  
3.3V  
R3  
84  
R4  
84  
C1  
C2  
3.3V LVPECL  
Zo = 50 Ohm  
Zo = 50 Ohm  
PCLK  
nPCLK  
HiPerClockS  
PCLK/nPCLK  
R5  
100 - 200  
R6  
100 - 200  
R1  
125  
R2  
125  
FIGURE 2E. HIPERCLOCKS PCLK/NPCLK INPUT DRIVEN  
BY A 3.3V LVPECL DRIVER WITH AC COUPLE  
IDT™ / ICS™ LOW SKEW, 1-TO-2 DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
ICS853011  
8
ICS853011  
TSD  
LOW SKEW, 1-TO-2DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
TERMINATION FOR 3.3V LVPECL OUTPUTS  
The clock layout topology shown below is a typical termina-  
tion for LVPECL outputs.The two different layouts mentioned  
are recommended only as guidelines.  
designed to drive 50Ω transmission lines. Matched imped-  
ance techniques should be used to maximize operating  
frequency and minimize signal distortion. Figures 3A and  
3B show two different layouts which are recommended only  
as guidelines. Other suitable clock layouts may exist and it  
would be recommended that the board designers simulate  
to guarantee compatibility across all printed circuit and clock  
component process variations.  
FOUT and nFOUT are low impedance follower outputs that  
generate ECL/LVPECL compatible outputs. Therefore, ter-  
minating resistors (DC current path to ground) or current  
sources must be used for functionality. These outputs are  
3.3V  
Z
o = 50Ω  
125Ω  
125Ω  
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
84Ω  
84Ω  
((VOH + VOL) / (VCC – 2)) – 2  
FIGURE 3A. LVPECL OUTPUTTERMINATION  
FIGURE 3B. LVPECL OUTPUTTERMINATION  
IDT™ / ICS™ LOW SKEW, 1-TO-2 DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
ICS853011  
9
ICS853011  
TSD  
LOW SKEW, 1-TO-2DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
TERMINATION FOR 2.5V LVPECL OUTPUT  
Figure 4A and Figure 4B show examples of termination for close to ground level. The R3 in Figure 4B can be eliminated  
2.5V LVPECL driver.These terminations are equivalent to ter- and the termination is shown in Figure 4C.  
minating 50Ω to VCC - 2V. For VCC = 2.5V, the VCC - 2V is very  
2.5V  
2.5V  
2.5V  
VCCO=2.5V  
VCCO=2.5V  
R1  
250  
R3  
250  
Zo = 50 Ohm  
Zo = 50 Ohm  
Zo = 50 Ohm  
Zo = 50 Ohm  
+
-
+
-
2,5V LVPECL  
Driver  
2,5V LVPECL  
Driv er  
R1  
50  
R2  
50  
R2  
62.5  
R4  
62.5  
R3  
18  
FIGURE 4A. 2.5V LVPECL DRIVERT ERMINATION EXAMPLE  
FIGURE 4B. 2.5V LVPECL DRIVERT ERMINATION EXAMPLE  
2.5V  
VCCO=2.5V  
Zo = 50 Ohm  
+
Zo = 50 Ohm  
-
2,5V LVPECL  
Driver  
R1  
50  
R2  
50  
FIGURE 4C. 2.5V LVPECLTERMINATION EXAMPLE  
IDT™ / ICS™ LOW SKEW, 1-TO-2 DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
ICS853011  
10  
ICS853011  
TSD  
LOW SKEW, 1-TO-2DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS853011.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS853011 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.8V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.8V * 25mA = 95mW  
Power (outputs)MAX = 30.94mW/Loaded Output pair  
If all outputs are loaded, the total power is 2 * 30.94mW = 61.88mW  
Total Power_MAX (3.8V, with all outputs switching) = 95mW + 61.88mW = 156.88mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device.The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = JunctionTemperature  
θJA = Junction-to-AmbientThermal Resistance  
Pd_total =Total Device Power Dissipation (example calculation is in section 1 above)  
TA = AmbientTemperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used.  
Assuming a moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 103.3°C/W  
per Table 5A below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.157W * 103.3°C/W = 101.2°C. This is well below the limit of 125°C.  
This calculation is only an example.Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 5A. THERMAL RESISTANCE θJA FOR 8-PIN SOIC, FORCED CONVECTION  
θJA byVelocity (Linear Feet per Minute)  
0
200  
128.5°C/W  
103.3°C/W  
500  
115.5°C/W  
97.1°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
153.3°C/W  
112.7°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
TABLE 5B. THERMAL RESISTANCE θJA FOR 8-PINTSSOP, FORCED CONVECTION  
θ
JA by Velocity (Meters per Second)  
0
1
2
Multi-Layer PCB, JEDEC Standard Test Boards  
101.7°C/W  
90.5°C/W  
89.8°C/W  
IDT™ / ICS™ LOW SKEW, 1-TO-2 DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
ICS853011  
11  
ICS853011  
TSD  
LOW SKEW, 1-TO-2DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVPECL output driver circuit and termination are shown in Figure 5.  
VCC  
Q1  
VOUT  
RL  
50  
VCC - 2V  
FIGURE 5. LVPECL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination  
voltage of V - 2V.  
CC  
For logic high, VOUT = V  
= V  
–0.935V  
CC_MAX  
OH_MAX  
)
= 0.935V  
OH_MAX  
(V  
- V  
CC_MAX  
For logic low, VOUT = V  
= V  
– 1.67V  
OL_MAX  
CC_MAX  
)
= 1.67V  
OL_MAX  
(V  
- V  
CC_MAX  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
))  
Pd_H = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
- V  
/R ] * (V  
- V  
) =  
OH_MAX  
CC_MAX  
CC_MAX  
OH_MAX  
CC_MAX  
OH_MAX  
CC_MAX  
OH_MAX  
L
L
[(2V - 0.935V)/50Ω] * 0.935V = 19.92mW  
))  
Pd_L = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
/R ] * (V  
- V  
) =  
OL_MAX  
CC_MAX  
CC_MAX  
OL_MAX  
CC_MAX  
OL_MAX  
CC_MAX  
OL_MAX  
L
L
[(2V - 1.67V)/50Ω] * 1.67V = 11.02mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30.94mW  
IDT™ / ICS™ LOW SKEW, 1-TO-2 DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
ICS853011  
12  
ICS853011  
TSD  
LOW SKEW, 1-TO-2DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
RELIABILITY INFORMATION  
TABLE 6A. θJAVS. AIR FLOWTABLE FOR 8 LEAD SOIC  
θJA byVelocity (Linear Feet per Minute)  
0
200  
128.5°C/W  
103.3°C/W  
500  
115.5°C/W  
97.1°C/W  
Single-Layer PCB, JEDEC StandardTest Boards  
Multi-Layer PCB, JEDEC StandardTest Boards  
153.3°C/W  
112.7°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
TABLE 6B. θJAVS. AIR FLOWT ABLE FOR 8 LEAD TSSOP  
θ
JA by Velocity (Meters per Second)  
0
1
2
Multi-Layer PCB, JEDEC Standard Test Boards  
101.7°C/W  
90.5°C/W  
89.8°C/W  
TRANSISTOR COUNT  
The transistor count for ICS853011 is: 96  
Pin compatible with MC100LVEP11 and SY100EP11U  
IDT™ / ICS™ LOW SKEW, 1-TO-2 DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
ICS853011  
13  
ICS853011  
TSD  
LOW SKEW, 1-TO-2DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
PACKAGE OUTLINE - M SUFFIX FOR 8 LEAD SOIC  
PACKAGE OUTLINE - G SUFFIX FOR 8 LEADTSSOP  
TABLE 7A. PACKAGE DIMENSIONS  
TABLE 7B. PACKAGE DIMENSIONS  
Millimeters  
SYMBOL  
Millimeters  
SYMBOL  
Minimum  
Maximum  
MINIMUN  
MAXIMUM  
N
A
8
N
A
A1  
B
C
D
E
e
8
--  
1.10  
0.15  
0.97  
0.38  
0.23  
1.35  
0.10  
0.33  
0.19  
4.80  
3.80  
1.75  
0.25  
0.51  
0.25  
5.00  
4.00  
A1  
A2  
b
0
0.79  
0.22  
0.08  
c
D
3.00 BASIC  
4.90 BASIC  
3.00 BASIC  
0.65 BASIC  
1.95 BASIC  
E
1.27 BASIC  
E1  
e
H
h
5.80  
0.25  
0.40  
0°  
6.20  
0.50  
1.27  
8°  
e1  
L
L
0.40  
0°  
0.80  
8°  
α
α
Reference Document: JEDEC Publication 95, MS-012  
aaa  
--  
0.10  
Reference Document: JEDEC Publication 95, MO-187  
IDT™ / ICS™ LOW SKEW, 1-TO-2 DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
ICS853011  
14  
ICS853011  
TSD  
LOW SKEW, 1-TO-2DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
TABLE 8. ORDERING INFORMATION  
Part/Order Number  
Marking  
Package  
8 lead SOIC  
Shipping Packaging  
Temperature  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
ICS853011BM  
ICS853011BMT  
ICS853011BMLF  
ICS853011BMLFT  
ICS853011BG  
853011BM  
853011BM  
tube  
2500  
tube  
2500  
tube  
2500  
tube  
2500  
8 lead SOIC  
853011BL  
853011BL  
011B  
8 lead "Lead Free" SOIC  
8 lead "Lead Free" SOIC  
8 lead TSSOP  
ICS853011BGT  
ICS853011BGLF  
ICS853011BGLFT  
011B  
8 lead TSSOP  
11BL  
8 lead "Lead Free" TSSOP  
8 lead "Lead Free" TSSOP  
11BL  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
The aforementioned trademark, HiPerClockS is a trademark of Integrated Circuit Systems, Inc. or its subsidiaries in the United States and/or other countries.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use  
or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial and industrial applications. Any other applications such as those requiring high reliability or other extraordinary environmental requirements are not  
recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product  
for use in life support devices or critical medical instruments.  
IDT™ / ICS™ LOW SKEW, 1-TO-2 DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
ICS853011  
15  
ICS853011  
TSD  
LOW SKEW, 1-TO-2DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
REVISION HISTORY SHEET  
Rev  
Table  
Page  
Description of Change  
Date  
T3B  
3
3.3V LVPECL Table - changed VOH @ 85° , from 2.295V min. to 2.22V min.  
and 2.33V typical to 2.295V typical.  
T3C  
T3D  
4
4
2.5V LVPECL Table - changed VOH @ 85°, from 1.495V min. to 1.42V min. and  
1.53V typical to 1.495V typical.  
B
9/2/03  
ECL Table - changed VOH @ 85°, from -1.005V min. to -1.08V min. and --  
0.97V typical to -1.005V typical.  
6
8
8
Updated LVPECL Output Termination Diagrams.  
Updated LVPECL Clock Input Inteface Figure 4D.  
Corrected Figure 4C.  
B
C
11/12/03  
9/7/04  
Added "Lead Free" Part/Order Number rows.  
AC Characteristics Table - added Additive Phase Jitter.  
Added Additive Phase Jitter Section.  
13  
4
5
T4  
T8  
1
Features Section - added Lead-Free bullet.  
10  
15  
Added "Recommendations for Unused Input and Output Pins".  
C
C
7/13/05  
11/2/05  
Ordering Information Table - corrected Lead-Free marking and added Lead-  
Free note.  
Pin Assignment - added 8 Lead TSSOP package.  
Absolute Maximum Ratings - added TSSOP to Package Thermal Impedance.  
Power Considerations - added 8 Lead TSSOP Thermal Resistance.  
Added 8 Lead TSSOP Reliability Information.  
1
3
11  
13  
14  
15  
T5B  
T6B  
Added TSSOP Package Outline and Dimensions.  
Ordering Information - Added 8 Lead TSSOP part number and marking.  
T8  
IDT™ / ICS™ LOW SKEW, 1-TO-2 DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
ICS853011  
16  
85301
LO22.5V/3.3VLVPECL/ECLFANOUT BUFFER  
Innovate with IDT and accelerate your future networks. Contact:  
www.IDT.com  
For Sales  
800-345-7015  
408-284-8200  
Fax: 408-284-2775  
For Tech Support  
clockhelp@idt.com  
408-284-8200  
Corporate Headquarters  
Integrated Device Technology, Inc.  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
United States  
800 345 7015  
Asia Pacific and Japan  
Integrated Device Technology  
Singapore (1997) Pte. Ltd.  
Reg. No. 199707558G  
435 Orchard Road  
#20-03 Wisma Atria  
Singapore 238877  
Europe  
IDT Europe, Limited  
Prime House  
Barnett Wood Lane  
Leatherhead, Surrey  
United Kingdom KT22 7DE  
+44 1372 363 339  
+408 284 8200 (outside U.S.)  
+65 6 887 5505  
© 2006 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT and the IDT logo are trademarks of Integrated Device  
Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered  
trademarks used to identify products or services of their respective owners.  
Printed in USA  
XX-XXXX-XXXXX  

相关型号:

ICS853011BM

LOW SKEW, 1-TO-2 DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER
ICSI

ICS853011BMLF

LOW SKEW, 1-TO-2 DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER
ICSI

ICS853011BMLFT

LOW SKEW, 1-TO-2 DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER
ICSI

ICS853011BMT

LOW SKEW, 1-TO-2 DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER
ICSI

ICS853011C

LOW SKEW, 1-TO-2 DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER
ICSI

ICS853011CG

LOW SKEW, 1-TO-2 DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER
ICSI

ICS853011CGLF

Low Skew Clock Driver, 853011 Series, 2 True Output(s), 0 Inverted Output(s), PDSO8, 3 X 3 MM, 0.95 MM HEIGHT, ROHS COMPLIANT, MO-187, TSSOP-8
IDT

ICS853011CGLFT

Low Skew Clock Driver, 853011 Series, 2 True Output(s), 0 Inverted Output(s), PDSO8, 3 X 3 MM, 0.95 MM HEIGHT, ROHS COMPLIANT, MO-187, TSSOP-8
IDT

ICS853011CGT

LOW SKEW, 1-TO-2 DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER
ICSI

ICS853011CM

LOW SKEW, 1-TO-2 DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER
ICSI

ICS853011CMLF

LOW SKEW, 1-TO-2 DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER
ICSI

ICS853011CMLF

Low Skew Clock Driver, 853011 Series, 2 True Output(s), 0 Inverted Output(s), PDSO8, 3.90 X 4.90 MM, 1.37 MM HEIGHT, ROHS COMPLIANT, MS-012, SOIC-8
IDT