ICS8624BYILF [IDT]

PLL Based Clock Driver, 5 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, LQFP-32;
ICS8624BYILF
型号: ICS8624BYILF
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

PLL Based Clock Driver, 5 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, LQFP-32

文件: 总16页 (文件大小:177K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICS8624I  
LOW SKEW, 1-TO-5  
DIFFERENTIAL-TO-HSTL ZERO DELAY BUFFER  
GENERAL DESCRIPTION  
FEATURES  
The ICS8624I is  
a
high performance, 1-to-5  
Fully integrated PLL  
Differential-to-HSTL zero delay buffer. The ICS8624I  
has two selectable clock input pairs. The CLK0,  
nCLK0 and CLK1, nCLK1 pair can accept most standard  
differential input levels. The VCO operates at a frequency  
range of 250MHz to 630MHz. Utilizing one of the outputs  
as feedback to the PLL, output frequencies up to 630MHz  
can be regenerated with zero delay with respect to the  
input. Dual reference clock inputs support reduntant clock  
or multiple reference applications..  
Five differential HSTL compatible outputs  
Selectable differential CLKx, nCLKx input pairs  
CLKx, nCLKx pairs can accept the following differential  
input levels: LVPECL, LVDS, HSTL, SSTL, HCSL  
Output frequency range: 31.25MHz to 630MHz  
Input frequency range: 31.25MHz to 630MHz  
VCO range: 250MHz to 630MHz  
External feedback for “zero delay” clock regeneration  
Cycle-to-cycle jitter: 35ps (maximum)  
Output skew: 50ps (maximum)  
Static phase offset: 30ps 125ps  
3.3V core, 1.8V output operating supply  
-40°C to 85°C ambient operating temperature  
Available in both standard and lead-free RoHS-compliant  
packages  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
Q0  
nQ0  
PLL_SEL  
Q1  
nQ1  
÷4, ÷8  
0
1
32 31 30 29 28 27 26 25  
CLK0  
nCLK0  
Q2  
nQ2  
0
1
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
SEL0  
SEL1  
VDDO  
Q3  
CLK1  
nCLK1  
Q3  
nQ3  
CLK0  
nQ3  
Q2  
PLL  
nCLK0  
CLK1  
Q4  
nQ4  
CLK_SEL  
ICS8624I  
nQ2  
Q1  
nCLK1  
CLK_SEL  
MR  
FB_IN  
nFB_IN  
nQ1  
VDDO  
9
10 11 12 13 14 15 16  
SEL0  
SEL1  
MR  
32-Lead LQFP  
7mm x 7mm x 1.4mm body package  
Y Package  
TopView  
8624BYI  
www.idt.com  
REV.C JULY 30, 2010  
1
ICS8624I  
LOW SKEW, 1-TO-5  
DIFFERENTIAL-TO-HSTL ZERO DELAY BUFFER  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
Type  
Pulldown  
Description  
Determines the input and output frequency range noted in Table 3.  
LVCMOS / LVTTL interface levels.  
Determines the input and output frequency range noted in Table 3.  
LVCMOS / LVTTL interface levels.  
1
SEL0  
Input  
Input  
2
SEL1  
Pulldown  
3
4
5
6
CLK0  
nCLK0  
CLK1  
Input  
Input  
Input  
Input  
Pulldown Non-inverting differential clock input.  
Pullup Inverting differential clock input.  
Pulldown Non-inverting differential clock input.  
nCLK1  
Pullup  
Inverting differential clock input.  
Clock select input. When LOW, selects CLK0, nCLK0. When HIGH, selects  
CLK1, nCLK1 inputs. LVCMOS / LVTTL interface levels.  
Active HIGH Master Reset. When logic HIGH, the internal dividers are  
reset causing the true outputs Qx to go low and the inverted outputs nQx  
to go high. When logic LOW, the internal dividers and the outputs are  
enabled. LVCMOS / LVTTL interface levels.  
7
CLK_SEL  
MR  
Input  
Pulldown  
8
Input  
Pulldown  
9, 32  
10  
VDD  
Power  
Input  
Input  
Core supply pins.  
nFB_IN  
FB_IN  
Pullup  
Feedback input to phase detector for regenerating clocks with "zero delay".  
11  
Pulldown Feedback input to phase detector for regenerating clocks with "zero delay".  
12, 13  
28, 29  
GND  
Power  
Output  
Power  
Output  
Output  
Output  
Power supply ground.  
Differential clock outputs. 50Ω typical output impedance.  
HSTL interface levels.  
14, 15  
nQ0, Q0  
VDDO  
16, 17,  
24, 25  
Output supply pins.  
Differential clock outputs. 50Ω typical output impedance.  
HSTL interface levels.  
Differential clock outputs. 50Ω typical output impedance.  
HSTL interface levels.  
Differential clock outputs. 50Ω typical output impedance.  
HSTL interface levels.  
18, 19  
20, 21  
22, 23  
nQ1, Q1  
nQ2, Q2  
nQ3, Q3  
Differential clock outputs. 50Ω typical output impedance.  
HSTL interface levels.  
26, 27  
30  
nQ4, Q4  
VDDA  
Output  
Power  
Analog supply pin.  
Selects between the PLL and clock as the input to the dividers.  
31  
PLL_SEL  
Input  
Pullup  
When HIGH, selects PLL. When LOW, selects reference clock.  
LVCMOS / LVTTL interface levels.  
NOTE 1: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
8624BYI  
www.idt.com  
REV.C JULY 30, 2010  
2
ICS8624I  
LOW SKEW, 1-TO-5  
DIFFERENTIAL-TO-HSTL ZERO DELAY BUFFER  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
Input Capacitance  
Input Pullup Resistor  
Input Pulldown Resistor  
4
pF  
kΩ  
kΩ  
RPULLUP  
RPULLDOWN  
51  
51  
TABLE 3A. CONTROL INPUT FUNCTION TABLE  
Inputs  
Outputs  
PLL_SEL = 1  
PLL Enable Mode  
SEL1  
SEL0  
Reference Frequency Range (MHz)*  
Q0:Q4, nQ0:nQ4  
0
0
1
1
0
1
0
1
250 - 630  
125 - 315  
÷ 1  
÷ 1  
÷ 1  
÷ 1  
62.5 - 157.5  
31.25 - 78.75  
*NOTE: VCO frequency range for all configurations above is 250MHz to 700MHz.  
TABLE 3B. PLL BYPASS FUNCTION TABLE  
Outputs  
Inputs  
PLL_SEL = 0  
PLL Bypass Mode  
SEL1  
SEL0  
Q0:Q4, nQ0:nQ4  
0
0
1
1
0
1
0
1
÷ 4  
÷ 4  
÷ 4  
÷ 8  
8624BYI  
www.idt.com  
REV.C JULY 30, 2010  
3
ICS8624I  
LOW SKEW, 1-TO-5  
DIFFERENTIAL-TO-HSTL ZERO DELAY BUFFER  
ABSOLUTE MAXIMUM RATINGS  
SupplyVoltage, V  
4.6V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
device.These ratings are stress specifications only.Functional  
operation of product at these conditions or any conditions be-  
yond those listed in the DC Characteristics or AC Character-  
istics is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect product reliability.  
DD  
Inputs, V  
-0.5V to VDD + 0.5V  
I
Outputs, IO  
Continuous Current  
Surge Current  
50mA  
100mA  
PackageThermal Impedance, θ  
47.9°C/W (0 lfpm)  
-65°C to 150°C  
JA  
StorageTemperature, T  
STG  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VDD = VDDA = 3.3V 5ꢀ, VDDO = 1.8V 0.2V, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
3.135  
3.135  
1.6  
Typical  
3.3  
Maximum Units  
VDD  
VDDA  
VDDO  
IDD  
Core Supply Voltage  
3.465  
3.465  
2.0  
V
V
Analog Supply Voltage  
Output Supply Voltage  
Power Supply Current  
Analog Supply Current  
Output Supply Current  
3.3  
1.8  
V
120  
15  
mA  
mA  
mA  
IDDA  
IDDO  
No Load  
0
TABLE 4B. LVCMOS / LVTTL DC CHARACTERISTICS, VDD = VDDA = 3.3V 5ꢀ, VDDO = 1.8V 0.2V, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
VIH  
VIL  
Input High Voltage  
2
VDD + 0.3  
0.8  
V
V
Input Low Voltage  
-0.3  
SEL0, SEL1,  
CLK_SEL, MR  
VDD = VIN = 3.465V  
150  
5
µA  
µA  
µA  
µA  
IIH  
Input High Current  
PLL_SEL  
V
DD = VIN = 3.465V  
DD = 3.465V, VIN = 0V  
VDD = 3.465V, VIN = 0V  
SEL0, SEL1,  
CLK_SEL, MR  
V
-5  
IIL  
Input Low Current  
PLL_SEL  
-150  
TABLE 4C. DIFFERENTIAL DC CHARACTERISTICS, VDD = VDDA = 3.3V 5ꢀ, VDDO = 1.8V 0.2V, TA = -40°C TO 85°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
CLK0, CLK1, FB_IN  
nCLK0, nCLK1, nFB_IN  
CLK0, CLK1, FB_IN  
V
DD = VIN = 3.465V  
VDD = VIN = 3.465V  
DD = 3.465V, VIN = 0V  
150  
5
µA  
µA  
µA  
µA  
V
IIH  
Input High Current  
V
-5  
IIL  
Input Low Current  
nCLK0, nCLK1, nFB_IN VDD = 3.465V, VIN = 0V  
-150  
0.15  
0.5  
VPP  
Peak-to-Peak Input Voltage  
1.3  
VCMR  
Common Mode Input Voltage; NOTE 1, 2  
VDD - 0.85  
V
NOTE 1: For single ended applications, the maximum input voltage for CLKx, nCLKx is VDD + 0.3V.  
NOTE 2: Common mode voltage is defined as VIH.  
8624BYI  
www.idt.com  
REV.C JULY 30, 2010  
4
ICS8624I  
LOW SKEW, 1-TO-5  
DIFFERENTIAL-TO-HSTL ZERO DELAY BUFFER  
TABLE 4D. HSTL DC CHARACTERISTICS, VDD = VDDA = 3.3V 5ꢀ, VDDO = 1.8V 0.2V, TA = -40°C TO 85°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
VOH  
Output High Voltage; NOTE 1  
1.0  
0
1.4  
0.4  
60  
V
V
VOL  
Output Low Voltage; NOTE 1  
VOX  
Output Crossover Voltage; NOTE 2  
Peak-to-Peak Output Voltage Swing  
40  
0.6  
V
VSWING  
1.1  
NOTE 1: Outputs terminated with 50Ω to ground.  
NOTE 2: Defined with respect to output voltage swing at a given condition.  
TABLE 5. INPUT FREQUENCY CHARACTERISTICS, VDD = VDDA = 3.3V 5ꢀ, VDDO = 1.8V 0.2V, TA = -40°C TO 85°C  
Symbol Parameter  
fIN Input Frequency  
Test Conditions  
PLL_SEL = 1  
PLL_SEL = 0  
Minimum Typical Maximum Units  
31.25  
630  
630  
MHz  
MHz  
CLK0, nCLK0,  
CLK1, nCLK1  
TABLE 6A. AC CHARACTERISTICS, VDD = VDDA = 3.3V 5ꢀ, VDDO = 1.8V 0.2V, TA = -40°C TO 85°C  
Symbol Parameter  
fMAX Output Frequency  
tPD  
Test Conditions  
Minimum  
Typical  
Maximum  
630  
4.5  
Units  
MHz  
ns  
Propagation Delay; NOTE 1  
Static Phase Offset; NOTE 2, 5  
Output Skew; NOTE 3, 5  
Cycle-to-Cycle Jitter; NOTE 5, 6  
Phase Jitter; NOTE 4, 5, 6  
PLL Lock Time  
ƒ630MHz  
PLL_SEL = 3.3V  
3.4  
-95  
3.9  
30  
t(Ø)  
tsk(o)  
tjit(cc)  
tjit(Ø)  
tL  
155  
50  
ps  
ps  
35  
ps  
50  
ps  
1
ms  
ps  
tR  
Output Rise Time  
20ꢀ to 80ꢀ  
20ꢀ to 80ꢀ  
300  
300  
700  
700  
tF  
Output Fall Time  
ps  
tPW  
Output Pulse Width  
tPeriod/2 - 85 tPeriod/2 tPeriod/2+ 85  
ps  
All parameters measured at fMAX unless noted otherwise.  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Defined as the time difference between the input reference clock and the averaged feedback input signal  
across all conditions, when the PLL is locked and the input reference frequency is stable.  
NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at output differential cross points.  
NOTE 4: Phase jitter is dependent on the input source used.  
NOTE 5: This parameter is defined in accordance with JEDEC Standard 65.  
NOTE 6: Characterized at VCO frequency of 622MHz.  
TABLE 6B. AC CHARACTERISTICS, VDD = VDDA = 3.3V 10ꢀ, VDDO = 1.8V 0.2V, TA = -40°C TO 85°C  
Symbol Parameter  
tjit(cc) Cycle-to-Cycle Jitter; NOTE 1  
NOTE 1: This parameter is defined in accordance with JEDEC Standard 65.  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
40  
ps  
8624BYI  
www.idt.com  
REV.C JULY 30, 2010  
5
ICS8624I  
LOW SKEW, 1-TO-5  
DIFFERENTIAL-TO-HSTL ZERO DELAY BUFFER  
PARAMETER MEASUREMENT INFORMATION  
1.8V 0.2V  
3.3V 5ꢀ  
or 10ꢀ  
VDD  
SCOPE  
,
VDD  
VDDA  
Qx  
nCLK0,  
nCLK1  
VDDO  
VPP  
VCMR  
Cross Points  
HSTL  
CLK0,  
CLK1  
nQx  
GND  
GND = 0V  
3.3V CORE/1.8V OUTPUT LOAD AC TEST CIRCUIT  
DIFFERENTIAL INPUT LEVEL  
nQx  
Qx  
nQx  
nQ  
tcycle n  
tcycle n+1  
nQy  
Qy  
tjit(cc) = tcycle n –tcycle n+1  
1000 Cycles  
tsk(o)  
CYCLE-TO-CYCLE JITTER  
OUTPUT SKEW  
nCLK0,  
VOH  
VOL  
nCLK1  
CLK0,  
CLK1  
VOH  
VOL  
nFB_IN  
80ꢀ  
tF  
80ꢀ  
tR  
VOD  
FB_IN  
Clock  
Outputs  
t(Ø)  
20ꢀ  
20ꢀ  
tjit(Ø) = t(Ø) — t(Ø) mean = Phase Jitter  
t(Ø) mean = Static Phase Offset  
(where t(Ø) is any random sample, and t(Ø) mean is the average  
of the sampled cycles measured on controlled edges)  
OUTPUT RISE/FALL TIME  
PHASE JITTER AND STATIC PHASE OFFSET  
nCLK0,  
nCLK1  
nQ0:nQ4  
VDDO  
2
VDDO  
2
VDDO  
2
Q0:Q4  
CLK0,  
CLK1  
Pulse Width  
nQ0:nQ4  
tPERIOD  
Q0:Q4  
tPD  
OUTPUT PULSE WIDTH/PERIOD  
PROPAGATION DELAY  
8624BYI  
www.idt.com  
REV.C JULY 30, 2010  
6
ICS8624I  
LOW SKEW, 1-TO-5  
DIFFERENTIAL-TO-HSTL ZERO DELAY BUFFER  
APPLICATION INFORMATION  
POWER SUPPLY FILTERING TECHNIQUES  
As in any high speed analog circuitry, the power supply pins  
are vulnerable to random noise.The ICS8624I provides sepa-  
rate power supplies to isolate any high switching  
noise from the outputs to the internal PLL.VDD, VDDA, and VDDO  
should be individually connected to the power supply  
plane through vias, and bypass capacitors should be  
used for each pin. To achieve optimum jitter performance,  
power supply isolation is required. Figure 1 illustrates how  
a 10Ω resistor along with a 10μF and a .01μF bypass  
capacitor should be connected to each VDDA pin.  
3.3V  
VDD  
.01μF  
.01μF  
10Ω  
VDDA  
10μF  
FIGURE 1. POWER SUPPLY FILTERING  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS  
Figure 2 shows how the differential input can be wired to accept of R1 and R2 might need to be adjusted to position theV_REF in  
single ended levels. The reference voltage V_REF = VDD/2 is the center of the input voltage swing. For example, if the input  
generated by the bias resistors R1, R2 and C1.This bias circuit clock swing is only 2.5V andVDD = 3.3V,V_REF should be 1.25V  
should be located as close as possible to the input pin.The ratio and R2/R1 = 0.609.  
VDD  
R1  
1K  
Single Ended Clock Input  
CLKx  
V_REF  
nCLKx  
C1  
0.1u  
R2  
1K  
FIGURE 2. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT  
8624BYI  
www.idt.com  
REV.C JULY 30, 2010  
7
ICS8624I  
LOW SKEW, 1-TO-5  
DIFFERENTIAL-TO-HSTL ZERO DELAY BUFFER  
RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS  
INPUTS:  
OUTPUTS:  
CLK/nCLK INPUT:  
HSTL OUTPUT  
For applications not requiring the use of the differential input, All unused HSTL outputs can be left floating. We recommend  
both CLK and nCLK can be left floating. Though not required, that there is no trace attached. Both sides of the differential  
but for additional protection, a 1kΩ resistor can be tied from output pair should either be left floating or terminated.  
CLK to ground.  
LVCMOS CONTROL PINS:  
All control pins have internal pull-ups or pull-downs; additional  
resistance is not required but can be added for additional  
protection. A 1kΩ resistor can be used.  
LAYOUT GUIDELINE  
The schematic of the ICS8624I layout example is shown in will depend on the selected component types, the density of  
Figure 3A. The ICS8624I recommended PCB board layout for the components, the density of the traces, and the stack up  
this example is shown in Figure 3B. This layout example is of the P.C. board.  
used as a general guideline. The layout in the actual system  
VDD  
SP = Space (i.e. not intstalled)  
R7  
VDD  
VDDA  
RU2  
SP  
RU3  
1K  
RU4  
1K  
RU5  
SP  
10  
C11  
0.01u  
VDD=3.3V  
C16  
10u  
VDDO=1.8V  
CLK_SEL  
PLL_SEL  
SEL0  
SEL1  
Zo = 50 Ohm  
Zo = 50 Ohm  
155.5 MHz  
DIV_SEL[1:0] = 01  
+
-
VDDO  
RD2  
1K  
RD3  
SP  
RD4  
SP  
RD5  
LVHSTL_input  
1K  
VDD  
U1  
R4A  
50  
R4B  
50  
3.3V  
(155.5 MHz)  
Zo = 50 Ohm  
SEL0  
SEL1  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
SEL0  
SEL1  
VDDO  
Q3  
nQ3  
Q2  
nQ2  
Q1  
CLK0  
nCLK0  
CLK1  
nCLK2  
CLK_SEL  
MR  
Bypass capacitor located near the power pins  
Zo = 50 Ohm  
CLK_SEL  
nQ1  
VDDO  
VDD  
(U1-9)  
(U1-32)  
3.3V PECL Driver  
C1  
0.1uF  
C6  
0.1uF  
R8  
50  
R9  
50  
8624  
VDDO  
(U1-16)  
(U1-17)  
(U1-24)  
(U1-25)  
R10  
50  
R2B  
50  
R2A  
50  
C2  
0.1uF  
C4  
0.1uF  
C5  
0.1uF  
C7  
0.1uF  
FIGURE 3A. ICS8624I HSTL ZERO DELAY BUFFER SCHEMATIC EXAMPLE  
8624BYI  
www.idt.com  
REV.C JULY 30, 2010  
8
ICS8624I  
LOW SKEW, 1-TO-5  
DIFFERENTIAL-TO-HSTL ZERO DELAY BUFFER  
The following component footprints are used in this layout  
example:  
trace delay might be restricted by the available space on the board  
and the component location.While routing the traces, the clock  
signal traces should be routed first and should be locked prior to  
routing other signal traces.  
All the resistors and capacitors are size 0603.  
POWER AND GROUNDING  
• The differential 50Ω output traces should have same  
Place the decoupling capacitors C1, C6, C2, C4, and C5, as  
close as possible to the power pins. If space allows, placement  
of the decoupling capacitor on the component side is preferred.  
This can reduce unwanted inductance between the decoupling  
capacitor and the power pin caused by the via.  
length.  
• Avoid sharp angles on the clock trace.Sharp angle  
turns cause the characteristic impedance to change on  
the transmission lines.  
• Keep the clock traces on the same layer.Whenever pos-  
sible, avoid placing vias on the clock traces. Placement  
of vias on the traces can affect the trace characteristic  
impedance and hence degrade signal integrity.  
Maximize the power and ground pad sizes and number of vias  
capacitors.This can reduce the inductance between the power  
and ground planes and the component power and ground pins.  
To prevent cross talk, avoid routing other signal traces in  
parallel with the clock traces. If running parallel traces is  
unavoidable, allow a separation of at least three trace  
widths between the differential clock trace and the other  
signal trace.  
The RC filter consisting of R7, C11, and C16 should be placed  
as close to the VDDA pin as possible.  
CLOCK TRACES AND TERMINATION  
Poor signal integrity can degrade the system performance or  
cause system failure. In synchronous high-speed digital systems,  
the clock signal is less tolerant to poor signal integrity than other  
signals. Any ringing on the rising or falling edge or excessive ring  
back can cause system failure. The shape of the trace and the  
• Make sure no other signal traces are routed between the  
clock trace pair.  
• The matching termination resistors should be located as  
close to the receiver input pins as possible.  
GND  
R7  
C16 C11  
C7  
VDDO  
C6  
C5  
VDD  
U1  
Pin 1  
VDDA  
VIA  
50 Ohm  
Traces  
C4  
C1  
C2  
FIGURE 3B. PCB BOARD LAYOUT FOR ICS8624I  
8624BYI  
www.idt.com  
REV.C JULY 30, 2010  
9
ICS8624I  
LOW SKEW, 1-TO-5  
DIFFERENTIAL-TO-HSTL ZERO DELAY BUFFER  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS8624I.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS8624I is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VDD = 3.3V + 5ꢀ = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VDD_MAX * IDD_MAX = 3.465V * 135mA = 467.8mW  
Power (outputs)MAX = 32.8mW/Loaded Output pair  
If all outputs are loaded, the total power is 5 * 32.8mW = 164mW  
Total Power_MAX (3.465V, with all outputs switching) = 467.8mW + 164mW = 631.8mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device. The maximum recommended junction temperature for the devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = JunctionTemperature  
θJA = Junction-to-AmbientThermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = AmbientTemperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 42.1°C/W perTable 7 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.632W * 42.1°C/W = 111.6°C. This is below the limit of 125°C.  
This calculation is only an example.Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 7. THERMAL RESISTANCE θJA FOR 32-PIN LQFP, FORCED CONVECTION  
θJA byVelocity (Linear Feet per Minute)  
0
200  
55.9°C/W  
42.1°C/W  
500  
50.1°C/W  
39.4°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
67.8°C/W  
47.9°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
8624BYI  
www.idt.com  
REV.C JULY 30, 2010  
10  
ICS8624I  
LOW SKEW, 1-TO-5  
DIFFERENTIAL-TO-HSTL ZERO DELAY BUFFER  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
HSTL output driver circuit and termination are shown in Figure 4.  
VDDO  
Q1  
VOUT  
RL  
50Ω  
FIGURE 4. HSTL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load.  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
Pd_H = (V  
Pd_L = (V  
/R ) * (V  
- V  
)
OH_MIN  
L
DDO_MAX  
DDO_MAX  
OH_MIN  
/R ) * (V  
- V  
)
OL_MAX  
L
OL_MAX  
Pd_H = (1V/50Ω) * (2V - 1V) = 20mW  
Pd_L = (0.4V/50Ω) * (2V - 0.4V) = 12.8mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 32.8mW  
8624BYI  
www.idt.com  
REV.C JULY 30, 2010  
11  
ICS8624I  
LOW SKEW, 1-TO-5  
DIFFERENTIAL-TO-HSTL ZERO DELAY BUFFER  
RELIABILITY INFORMATION  
TABLE 8. θJAVS. AIR FLOW TABLE FOR 32 LEAD LQFP  
θJA byVelocity (Linear Feet per Minute)  
0
200  
55.9°C/W  
42.1°C/W  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
67.8°C/W  
50.1°C/W  
47.9°C/W  
39.4°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS8624I is: 1565  
8624BYI  
www.idt.com  
REV.C JULY 30, 2010  
12  
ICS8624I  
LOW SKEW, 1-TO-5  
DIFFERENTIAL-TO-HSTL ZERO DELAY BUFFER  
PACKAGE OUTLINE - Y SUFFIX FOR 32 LEAD LQFP  
TABLE 9. PACKAGE DIMENISIONS  
JEDEC VARIATION  
ALL DIMENSIONS IN MILLIMETERS  
BBA  
SYMBOL  
MINIMUM  
NOMINAL  
MAXIMUM  
N
A
32  
1.60  
0.15  
1.45  
0.45  
0.20  
A1  
A2  
b
0.05  
1.35  
0.30  
0.09  
1.40  
0.37  
c
D
9.00 BASIC  
7.00 BASIC  
5.60  
D1  
D2  
E
9.00 BASIC  
7.00 BASIC  
5.60  
E1  
E2  
e
0.80 BASIC  
0.60  
L
0.45  
0.75  
θ
0°  
7°  
ccc  
0.10  
Reference Document: JEDEC Publication 95, MS-026  
8624BYI  
www.idt.com  
REV.C JULY 30, 2010  
13  
ICS8624I  
LOW SKEW, 1-TO-5  
DIFFERENTIAL-TO-HSTL ZERO DELAY BUFFER  
TABLE 10. ORDERING INFORMATION  
Part/Order Number  
8624BYI  
Marking  
Package  
Shipping Packaging  
tray  
Temperature  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
ICS8624BYI  
ICS8624BYI  
32 Lead LQFP  
8624BYIT  
32 Lead LQFP  
1000 tape & reel  
tray  
8624BYILF  
ICS8624BYILF  
ICS8624BYILF  
32 Lead "Lead-Free" LQFP  
32 Lead "Lead-Free" LQFP  
8624BYILFT  
1000 tape & reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
While the information presented herein has been checked for both accuracy and reliability, Integrated DeviceTechnology, Inc.(IDT) assumes no responsibility for either its use or for infringement of  
any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and industrial  
applications.Any other applications such as those requiring high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves  
the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments  
8624BYI  
www.idt.com  
REV.C JULY 30, 2010  
14  
ICS8624I  
LOW SKEW, 1-TO-5  
DIFFERENTIAL-TO-HSTL ZERO DELAY BUFFER  
REVISION HISTORY SHEET  
Description of Change  
Rev  
Table  
Page  
11 - 12 Revised Figures 3A & 3B.  
Date  
A
8/13/02  
T1  
2
Pin Description Table - revised VDD description to Core supply pins from  
Positive supply pins.  
T3A  
T4A  
3
Control Input Function Table - corrected note to read ...250MHz to 630MHz  
from ...250 to 700MHz.  
A
B
10/8/02  
2/19/04  
4
Power Supply Table - revised VDD Parameter description to read  
Core Supply Voltage from Positive Supply Voltage.  
13  
Corrected power dissipation equation. Replaced VOH_MIN with VOH_MAX.  
T2  
3
4
5
Pin Characteristics Table - changed CIN 4pF max. to 4pF typical.  
Absolute Maximum Ratings - updated Output rating.  
HSTL DC Characteristics Table - changed VOX to 40ꢀ min. - 60ꢀ max. and  
added note.  
T4D  
T6B  
5
Added Table 6B AC Characteristics Table with VDD = VDDA = 3.3V 10ꢀ.  
Changed LVHSTL to HSTL throughout the data sheet.  
Added lead-free bullet.  
1
8
Added Recommendations for Unused Input and Output Pins.  
B
C
11/15/05  
7/30/10  
10-11 Corrected Power Considerations, Power Dissipation calculation.  
14  
T10  
T10  
Ordering Information Table - added lead-free part number and note.  
Updated datasheet's header/footer with IDT from ICS.  
Removed ICS prefix from Part/Order Number column.  
Added Contact Page.  
14  
16  
8624BYI  
www.idt.com  
REV.C JULY 30, 2010  
15  
ICS8624I  
LOW SKEW, 1-TO-5  
DIFFERENTIAL-TO-HSTL ZERO DELAY BUFFER  
We’ve Got Your Timing Solution.  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
Sales  
Tech Support  
netcom@idt.com  
800-345-7015 (inside USA)  
+408-284-8200 (outside USA)  
Fax: 408-284-2775  
© 2010 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT, the IDT logo, ICS and HiPerClockS are trademarks of Integrated Device Technology, Inc.  
Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered trademarks used to identify products or services of  
their respective owners.  
Printed in USA  
8624BYI  
www.idt.com  
REV.C JULY 30, 2010  
16  

相关型号:

ICS8624BYILFT

PLL Based Clock Driver, 5 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, LQFP-32
IDT

ICS8624BYIT

PLL Based Clock Driver, 5 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, LQFP-32
IDT

ICS8624BYLF

LOW SKEW, 1-TO-5 DIFFERENTIAL-TO-HSTL ZERO DELAY BUFFER
ICSI

ICS8624BYLFT

LOW SKEW, 1-TO-5 DIFFERENTIAL-TO-HSTL ZERO DELAY BUFFER
ICSI

ICS8624BYT

LOW SKEW, 1-TO-5 DIFFERENTIAL-TO-HSTL ZERO DELAY BUFFER
ICSI

ICS8624I

LOW SKEW, 1-TO-5 DIFFERENTIAL-TO-HSTL ZERO DELAY BUFFER
IDT

ICS8633AF-01

PLL Based Clock Driver, 8633 Series, 3 True Output(s), 0 Inverted Output(s), PDSO28, 5.30 X 10.20 MM, 1.75 MM HEIGHT, MO-150, SSOP-28
IDT

ICS8633AF-01LF

PLL Based Clock Driver, 8633 Series, 3 True Output(s), 0 Inverted Output(s), PDSO28, 5.30 X 10.20 MM, 1.75 MM HEIGHT, ROHS COMPLIANT, MO-150, SSOP-28
IDT

ICS8633AF-01LFT

PLL Based Clock Driver, 8633 Series, 3 True Output(s), 0 Inverted Output(s), PDSO28, 5.30 X 10.20 MM, 1.75 MM HEIGHT, ROHS COMPLIANT, MO-150, SSOP-28
IDT

ICS8634BK-01

PLL Based Clock Driver, 8634 Series, 5 True Output(s), 0 Inverted Output(s), 5 X 5 MM, 0.95 MM HEIGHT, MO-220, VFQFN-32
IDT

ICS8634BK-01LF

PLL Based Clock Driver, 8634 Series, 5 True Output(s), 0 Inverted Output(s), 5 X 5 MM, 0.95 MM HEIGHT, MO-220, VFQFN-32
IDT

ICS8634BK-01LFT

PLL Based Clock Driver, 8634 Series, 5 True Output(s), 0 Inverted Output(s), 5 X 5 MM, 0.95 MM HEIGHT, MO-220, VFQFN-32
IDT