ICS87931BYILF [IDT]

PLL Based Clock Driver, 6 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, MS-026, LQFP-32;
ICS87931BYILF
型号: ICS87931BYILF
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

PLL Based Clock Driver, 6 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, MS-026, LQFP-32

驱动 逻辑集成电路
文件: 总16页 (文件大小:165K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Skew, 1-to-6, LVCMOS/LVTTL Clock  
Multiplier/Zero Delay Buffer  
ICS87931I  
GENERAL DESCRIPTION  
FEATURES  
Fully integrated PLL  
The ICS87931I is a low voltage, low skew LVCMOS/LVTTL Clock  
Multiplier/Zero Delay Buffer.With output frequencies up to 150MHz,  
the ICS87931I is targeted for high performance clock applica-  
tions. Along with a fully integrated PLL, the ICS87931I contains  
frequency configurable outputs and an external feedback input  
for regenerating clocks with “zero delay”.  
Six LVCMOS/LVTTL outputs, 7Ω typical output impedance  
Selectable differential CLK0, nCLK0 or LVCMOS/LVTTL  
clock for redundant clock applications  
Maximum output frequency: 150MHz  
VCO range: 220MHz to 480MHz  
Selectable clock inputs, CLK1 and differential CLK0, nCLK0 sup-  
port redundant clock applications.The CLK_SEL input determines  
which reference clock is used. The output divider values of Bank  
A, B and C are controlled by the DIV_SELA, DIV_SELB and  
DIV_SELC, respectively.  
External feedback for “zero delay” clock regeneration  
Output skew, Same Frequency: 300ps (maximum)  
Output skew, Different Frequency: 400ps (maximum)  
Cycle-to-cycle jitter: 100ps (maximum)  
For test and system debug purposes, the PLL_SEL input allows  
the PLL to be bypassed. When LOW, the nMR input resets the 3.3V supply voltage  
internal dividers and forces the outputs to the high impedance  
state.  
-40°C to 85°C ambient operating temperature  
The effective fanout of the ICS87931I can be increased to 12 by  
utilizing the ability of each output to drive two series terminated  
transmission lines.  
PIN ASSIGNMENT  
32 31 30 29 28 27 26 25  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
nc  
VDDA  
GND  
QB0  
ICS87931I  
POWER_DN  
CLK1  
QB1  
32-Lead LQFP  
VDDO  
7mm x 7mm x 1.4mm  
package body  
nMR  
EXTFB_SEL  
CLK_SEL  
PLL_SEL  
nc  
CLK0  
Y package  
TopView  
nCLK0  
GND  
BLOCK DIAGRAM  
9
10 11 12 13 14 15 16  
Pullup  
POWER_DN  
Pullup  
PLL_SEL  
Pulldown  
Pullup  
CLK1  
CLK_SEL  
0
Pullup  
None  
1
0
CLK0  
0
1
QA0  
QA1  
÷2/÷4  
÷2/÷4  
PHASE  
DETECTOR  
1
VCO  
÷2  
nCLK0  
Pulldown  
Pullup  
LPF  
EXTFB_SEL  
EXT_FB  
1
0
QB0  
QB1  
÷8  
Pulldown  
Pulldown  
DIV_SELA  
DIV_SELB  
Pullup  
÷4/÷6  
QC0  
QC1  
CLK_EN0  
CLK_EN1  
DIV_SELC  
DISABLE  
LOGIC  
Pullup  
Pulldown  
POWER-ON RESET  
Pullup  
nMR  
ICS87931BYI REVISION A AUGUST 25, 2010  
1
©2010 Integrated Device Technology, Inc.  
ICS87931I  
LOW SKEW, 1-TO-6, LVCMOS/LVTTL CLOCK MULTIPLIER/ZERO DELAY BUFFER  
TABLE 1. PIN DESCRIPTIONS  
Number  
1, 9, 17, 32  
2
Name  
nc  
Type  
Unused  
Description  
No connect.  
VDDA  
Power  
Input  
Input  
Analog supply pin.  
Controls the frequency being fed to the output dividers.  
LVCMOS / LVTTL interface levels.  
3
4
POWER_DN  
CLK1  
Pullup  
Pullup  
Clock input. LVCMOS / LVTTL interface levels.  
Active LOW Master reset. When logic LOW, the internal dividers are  
reset causing the outputs to go low. When logic HIGH, the internal  
dividers and the outputs are enabled. LVCMOS / LVTTL interface levels.  
5
nMR  
Input  
Pullup  
Pullup  
6
7
CLK0  
nCLK0  
GND  
Input  
Input  
Power  
Input  
Non-inverting differential clock input.  
Pullup/  
Pulldown  
Inverting differential clock input. VCC/2 default when left floating.  
8, 16, 24,25  
10, 11  
Power supply ground.  
CLK_EN0,  
CLK_EN1  
Controls the enabling and disabling of the clock outputs. See Table 3B.  
LVCMOS / LVTTL interface levels.  
External feedback. When LOW, selects internal feedback.  
When HIGH, selects EXT_FB. LVCMOS / LVTTL interface levels.  
Pullup  
Pullup  
12  
EXT_FB  
VDDO  
Input  
Power  
Output  
13, 21, 28  
14, 15  
Output supply pins.  
Bank C clock outputs.7Ω typical output impedance.  
LVCMOS / LVTTL interface levels.  
QC0, QC1  
Selects between the PLL and reference clocks as the input to the  
output dividers. When HIGH, selects PLL. When LOW, bypasses  
the PLL. LVCMOS / LVTTL interface levels.  
18  
19  
PLL_SEL  
CLK_SEL  
Input  
Input  
Pullup  
Clock select input. Selects the Phase Detector Reference.  
Pulldown When LOW, selects CLK0, nCLK0. When HIGH, selects CLK1.  
LVCMOS / LVTTL interface levels.  
20  
EXTFB_SEL  
QB1, QB0  
Input  
Pulldown External feedback select. LVCMOS / LVTTL interface levels.  
Bank B clock outputs.7Ω typical output impedance.  
LVCMOS / LVTTL interface levels.  
22, 23  
Output  
Bank A clock outputs.7Ω typical output impedance.  
LVCMOS / LVTTL interface levels.  
Determines output divider values for Bank A as described in Table 4A.  
LVCMOS / LVTTL interface levels.  
Determines output divider values for Bank B as described in Table 4A.  
LVCMOS / LVTTL interface levels.  
Determines output divider values for Bank C as described in Table 4A.  
LVCMOS / LVTTL interface levels.  
26, 27  
29  
QA1, QA0  
DIV_SELA  
DIV_SELB  
DIV_SELC  
Output  
Input  
Input  
Input  
Pulldown  
30  
Pulldown  
31  
Pulldown  
NOTE: Pullup and Pulldown refer to internal input resistors. See table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum Typical Maximum Units  
Input Capacitance  
Input Pullup Resistor  
Input Pulldown Resistor  
4
pF  
KΩ  
KΩ  
RPULLUP  
RPULLDOWN  
51  
51  
Power Dissipation Capacitance  
(per output)  
Output Impedance  
CPD  
VDDA, VDDO = 3.465V  
12  
7
pF  
ROUT  
Ω
ICS87931BYI REVISION A AUGUST 25, 2010  
2
©2010 Integrated Device Technology, Inc.  
ICS87931I  
LOW SKEW, 1-TO-6, LVCMOS/LVTTL CLOCK MULTIPLIER/ZERO DELAY BUFFER  
TABLE 3A. CONTROL INPUT FUNCTIONT ABLE  
Inputs  
Function  
Control Pin  
CLK_SEL  
Logic 0  
Logic 1  
CLK1  
CLK0, nCLK0  
Bypass PLL  
Internal Feedback  
VCO/1  
PLL_SEL  
PLL Enabled  
EXT_FB  
EXTFB_SEL  
POWER_DN  
nMR  
VCO/2  
Master Reset/Output Hi Z  
QA(÷2); QB(÷2); QC(÷4)  
Enable Outputs  
QA(÷4); QB(÷4); QC(÷6)  
DIV_SELA:DIV_SELC  
TABLE 3B. CLK_ENX FUNCTION TABLE  
Inputs  
DIV_SELA:DIVSELC  
CLK_EN1  
CLK_EN0  
QAx  
Toggle  
LOW  
QBx  
LOW  
LOW  
LOW  
Toggle  
QCx  
LOW  
0
0
1
1
0
1
0
1
Toggle  
Toggle  
Toggle  
Toggle  
Toggle  
TABLE 4A.VCO FREQUENCY FUNCTIONT ABLE  
Inputs  
Outputs  
QBx  
QAx  
QCx  
DIV_  
DIV_  
DIV_  
SELA SELB SELC  
POWER_DN = 0 POWER_DN = 1 POWER_DN = 0 POWER_DN = 1 POWER_DN = 0 POWER_DN = 1  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
VCO/2  
VCO/2  
VCO/2  
VCO/2  
VCO/4  
VCO/4  
VCO/4  
VCO/4  
VCO/4  
VCO/4  
VCO/4  
VCO/4  
VCO/8  
VCO/8  
VCO/8  
VCO/8  
VCO/2  
VCO/2  
VCO/4  
VCO/4  
VCO/2  
VCO/2  
VCO/4  
VCO/4  
VCO/4  
VCO/4  
VCO/8  
VCO/8  
VCO/4  
VCO/4  
VCO/8  
VCO/8  
VCO/4  
VCO/6  
VCO/4  
VCO/6  
VCO/4  
VCO/6  
VCO/4  
VCO/6  
VCO/8  
VCO/12  
VCO/8  
VCO/12  
VCO/8  
VCO/12  
VCO/8  
VCO/12  
TABLE 4B. INPUT REFERENCE FREQUENCY TO OUTPUT FREQUENCY FUNCTIONTABLE (INTERNAL FEEDBACK ONLY, EXTFB_SEL = 0)  
Inputs  
Outputs  
QBx  
QAx  
QCx  
DIV_  
DIV_  
DIV_  
SELA SELB SELC  
POWER_DN = 0 POWER_DN = 1 POWER_DN = 0 POWER_DN = 1 POWER_DN = 0 POWER_DN = 1  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
4x  
4x  
4x  
4x  
2x  
2x  
2x  
2x  
2x  
2x  
2x  
2x  
x
4x  
4x  
2x  
2x  
4x  
4x  
2x  
2x  
2x  
2x  
x
2x  
4/3x  
2x  
x
2/3x  
x
x
4/3x  
2x  
2/3x  
x
2x  
2x  
x
x
4/3x  
2x  
2/3x  
x
x
x
x
4/3x  
2/3x  
ICS87931BYI REVISION A AUGUST 25, 2010  
3
©2010 Integrated DeviceTechnology, Inc.  
ICS87931I  
LOW SKEW, 1-TO-6, LVCMOS/LVTTL CLOCK MULTIPLIER/ZERO DELAY BUFFER  
VCO  
VCO/2  
POWER_DN  
QA(÷2)  
QB(÷4)  
QC(÷6)  
FIGURE 1A. POWER_DN TIMING DIAGRAM  
QA  
QB  
QC  
CLK_EN0  
CLK_EN1  
QA(÷2)  
QB(÷4)  
QC(÷6)  
CLK_EN0  
CLK_EN1  
FIGURE 1B. CLK_ENX TIMING DIAGRAMS  
ICS87931BYI REVISION A AUGUST 25, 2010  
4
©2010 Integrated Device Technology, Inc.  
ICS87931I  
LOW SKEW, 1-TO-6, LVCMOS/LVTTL CLOCK MULTIPLIER/ZERO DELAY BUFFER  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage, V  
4.6V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
device. These ratings are stress specifications only. Functional  
operation of product at these conditions or any conditions be-  
yond those listed in the DC Characteristics or AC Characteristics  
is not implied. Exposure to absolute maximum rating conditions  
for extended periods may affect product reliability.  
DD  
Inputs, V  
-0.5V to VDDA + 0.5 V  
-0.5V to VDDO + 0.5V  
I
Outputs, VO  
Package Thermal Impedance, θ 47.9°C/W (0 lfpm)  
JA  
Storage Temperature, T  
-65°C to 150°C  
STG  
TABLE 5A. POWER SUPPLY DC CHARACTERISTICS, VDDA = VDDO = 3.3V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
VDDA  
VDDO  
IDDA  
Analog Supply Voltage  
3.135  
3.135  
3.3  
3.3  
20  
3.465  
3.465  
V
Output Supply Voltage  
Analog Supply Current  
Output Supply Current  
V
mA  
mA  
IDDO  
100  
TABLE 5B. LVCMOS/LVTTL DC CHARACTERISTICS, VDDA = VDDO = 3.3V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
DIV_SELA:DIV_SELC,  
CLK_EN0, CLK_EN1,  
POWER_DN, nMR, CLK_SEL,  
PLL_SEL, EXTFB_SEL  
CLK1, EXT_FB  
DIV_SELA:DIV_SELC,  
CLK_EN0, CLK_EN1,  
POWER_DN, nMR, CLK_SEL,  
PLL_SEL, EXTFB_SEL  
CLK1, EXT_FB  
2
VDD + 0.3  
V
V
V
Input  
VIH  
High Voltage  
2
VDD + 0.3  
-0.3  
-0.3  
2.4  
0.8  
Input  
VIL  
Low Voltage  
1.3  
V
µA  
V
IIN  
Input Current  
120  
VOH  
VOL  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
IOH = -20mA  
IOL = 20mA  
0.5  
V
NOTE 1: Outputs terminated with 50Ω to VDDO/2. See Parameter Measurement section, 3.3V Output Load Test Circuit.  
TABLE 5C. DIFFERENTIAL DC CHARACTERISTICS, VDDA = VDDO = 3.3V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
IIN  
Input Current  
120  
1.3  
µA  
V
VPP  
Peak-to-Peak Input Voltage  
0.15  
Common Mode Input Voltage;  
NOTE 1  
VCMR  
GND + 0.5  
VDD - 0.85  
V
NOTE 1: Common mode voltage is defined as VIH.  
ICS87931BYI REVISION A AUGUST 25, 2010  
5
©2010 Integrated DeviceTechnology, Inc.  
ICS87931I  
LOW SKEW, 1-TO-6, LVCMOS/LVTTL CLOCK MULTIPLIER/ZERO DELAY BUFFER  
TABLE 6. PLL INPUT REFERENCE CHARACTERISTICS, VDDA = VDDO = 3.3V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
Input Reference Frequency  
fREF  
NOTE: Input reference frequency is limited by  
the divider selection and the VCO lock range.  
150  
MHz  
TABLE 7. AC CHARACTERISTICS, VDDA = VDDO = 3.3V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter Test Conditions  
Minimum Typical Maximum Units  
QAx, QBx  
÷2  
÷4  
÷6  
150  
120  
80  
MHz  
MHz  
MHz  
ps  
fMAX  
Output Frequency QAx, QBx, QCx  
QCx  
CLK1 to EXT_FB  
-375  
-100  
-200  
50  
-50  
200  
300  
400  
100  
480  
1
Propagation Delay;  
NOTE 1  
fref = 50MHz,  
FB = ÷ 8  
tPD  
CLK0, nCLK0 to EXT_FB  
ps  
Same Frequency  
ps  
tsk(o)  
Output Skew; NOTE 2, 4  
Different Frequency  
ps  
tjitter(cc) Cycle-to-Cycle Jitter; NOTE 4  
ps  
fVCO  
PLL VCO Lock Range  
Output Rise Time; NOTE 3  
Output Duty Cycle  
220  
0.1  
45  
MHz  
ns  
tR/tF  
0.8V to 2.0V  
odc  
55  
tLOCK  
PLL Lock Time  
10  
ms  
ns  
tPZL, tPZH  
tPLZ, tPHZ  
Output Enable Time; NOTE 3  
Output Disable Time; NOTE 3  
2
2
10  
8
ns  
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established  
when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet  
specifications after thermal equilibrium has been reached under these conditions.  
NOTE: All parameters measured at fMAX unless noted otherwise.  
NOTE 1: Measured from the differential input crossing point to VDDO/2 of the output  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at VDDO/2.  
NOTE 3: These parameters are guaranteed by characterization. Not tested in production.  
NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.  
ICS87931BYI REVISION A AUGUST 25, 2010  
6
©2010 Integrated Device Technology, Inc.  
ICS87931I  
LOW SKEW, 1-TO-6, LVCMOS/LVTTL CLOCK MULTIPLIER/ZERO DELAY BUFFER  
PARAMETER MEASUREMENT INFORMATION  
1.65V 5ꢀ  
VDDA  
SCOPE  
VDDA,  
VDDO  
nCLK0  
Qx  
LVCMOS  
VPP  
VCMR  
Cross Points  
CLK0  
GND  
GND  
-1.65V 5ꢀ  
3.3V OUTPUT LOAD AC TEST CIRCUIT  
DIFFERENTIAL INPUT LEVEL  
VDDO  
VDDO  
VDDO  
VDDO  
2
Qx  
Qy  
2
2
2
QAx,  
QBx,  
QCx  
tcycle n  
tcycle n+1  
VDDO  
2
tjit(cc) = tcycle n – tcycle n+1  
1000 Cycles  
tsk(o)  
OUTPUT SKEW  
CYCLE-TO-CYCLE JITTER  
2V  
2V  
VDD  
0.8V  
0.8V  
2
CLK1  
QAx, QBx, QCx  
tR  
tF  
nCLK0  
CLK0  
VDDO  
OUTPUT RISE/FALL TIME  
2
EXT_FB  
VDDO  
2
QAx, QBx, QCx  
tPW  
tPERIOD  
tPW  
x 100ꢀ  
odc =  
tPERIOD  
PROPAGATION DELAY  
odc & tPERIOD  
ICS87931BYI REVISION A AUGUST 25, 2010  
7
©2010 Integrated DeviceTechnology, Inc.  
ICS87931I  
LOW SKEW, 1-TO-6, LVCMOS/LVTTL CLOCK MULTIPLIER/ZERO DELAY BUFFER  
APPLICATION INFORMATION  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS  
impedance. For most 50 applications, R3 and R4 can be 100Ω.  
Figure 2 shows how a differential input can be wired to accept  
single ended levels.The reference voltageVREF =VDD/2 is generated  
by the bias resistors R1 and R2. The bypass capacitor (C1) is  
used to help filter noise on the DC bias. This bias circuit should be  
located as close to the input pin as possible. The ratio of R1 and  
R2 might need to be adjusted to position the VREF in the center of  
the input voltage swing. For example, if the input clock swing is  
2.5V and VDD = 3.3V, R1 and R2 value should be adjusted to set  
VREF at 1.25V. The values below are for when both the single-  
ended swing and VDD are at the same voltage. This configuration  
requires that the sum of the output impedance of the driver (Ro)  
and the series resistance (Rs) equals the transmission line  
impedance. In addition, matched termination at the input will  
attenuate the signal in half. This can be done in one of two ways.  
First, R3 and R4 in parallel should equal the transmission line  
The values of the resistors can be increased to reduce the loading  
for slower and weaker LVCMOS driver. When using single ended  
signaling, the noise rejection benefits of differential signaling are  
reduced. Even though the differential input can handle full rail  
LVCMOS signaling, it is recommended that the amplitude be  
reduced. The datasheet specifies a lower differential amplitude,  
however this only applies to differential signals. For single-ended  
applications, the swing can be larger, however VIL cannot be less  
than -0.3V andVIH cannot be more than VDD + 0.3V.Though some of  
the recommended components might not be used, the pads  
should be placed in the layout. They can be utilized for debugging  
purposes. The datasheet specifications are characterized and  
guaranteed by using a differential signal.  
FIGURE 2. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT  
ICS87931BYI REVISION A AUGUST 25, 2010  
8
©2010 Integrated Device Technology, Inc.  
ICS87931I  
LOW SKEW, 1-TO-6, LVCMOS/LVTTL CLOCK MULTIPLIER/ZERO DELAY BUFFER  
DIFFERENTIAL CLOCK INPUT INTERFACE  
The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL  
and other differential signals. Both differential signals must meet  
the VPP and VCMR input requirements. Figures 3A to 3F show inter-  
face examples for the CLK/nCLK input driven by the most com-  
mon driver types. The input interfaces suggested here are ex-  
amples only. Please consult with the vendor of the driver compo-  
nent to confirm the driver termination requirements. For example  
in Figure 3A, the input termination applies for IDT open emitter  
LVHSTL drivers. If you are using an LVHSTL driver from another  
vendor, use their termination recommendation.  
3.3V  
3.3V  
3.3V  
1.8V  
Zo = 50Ω  
Zo = 50Ω  
CLK  
CLK  
Zo = 50Ω  
nCLK  
Zo = 50Ω  
Differential  
Input  
nCLK  
LVPECL  
Differential  
Input  
R1  
50  
R2  
50  
LVHSTL  
R1  
50  
R2  
50  
IDT  
HiPerClockS  
LVHSTL Driver  
R2  
50  
FIGURE 3A. CLK/nCLK INPUT DRIVEN BY AN  
IDT OPEN EMITTER LVHSTL DRIVER  
FIGURE 3B. CLK/nCLK INPUT DRIVEN BY A  
3.3V LVPECL DRIVER  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
R3  
125  
R4  
125  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
CLK  
CLK  
R1  
100  
nCLK  
nCLK  
Zo = 50Ω  
Differential  
Input  
Receiver  
LVPECL  
LVDS  
R1  
84  
R2  
84  
FIGURE 2C. CLK/nCLK INPUT DRIVEN BY A  
3.3V LVPECL DRIVER  
FIGURE 3D. CLK/nCLK INPUT DRIVEN BY A  
3.3V LVDS DRIVER  
2.5V  
2.5V  
3.3V  
3.3V  
2.5V  
R3  
R4  
120  
120  
Zo = 50Ω  
*R3  
*R4  
33  
33  
Zo = 60Ω  
Zo = 60Ω  
CLK  
CLK  
Zo = 50Ω  
nCLK  
nCLK  
Differential  
Input  
Differential  
Input  
SSTL  
HCSL  
R1  
50  
R2  
50  
R1  
120  
R2  
120  
*Optional – R3 and R4 can be 0Ω  
FIGURE 3F. CLK/nCLK INPUT DRIVEN BY A  
2.5V SSTL DRIVER  
FIGURE 3E. CLK/nCLK INPUT DRIVEN BY A  
3.3V HCSL DRIVER  
ICS87931BYI REVISION A AUGUST 25, 2010  
9
©2010 Integrated DeviceTechnology, Inc.  
ICS87931I  
LOW SKEW, 1-TO-6, LVCMOS/LVTTL CLOCK MULTIPLIER/ZERO DELAY BUFFER  
SCHEMATIC EXAMPLE  
Figure 4A shows a schematic example of using an ICS87931I. It is power pin. The low pass filter R7, C11 and C16 for clean analog  
recommended to have one decouple capacitor per power pin. Each supply should also be located as close to the VDDA pin as possible.  
decoupling capacitor should be located as close as possible to the  
R1  
43  
Zo = 50  
VDD  
VDD  
R7  
10 - 15  
Receiv er  
VDD  
U1  
C16  
10u  
C11  
0.01u  
1
24  
23  
22  
21  
20  
19  
18  
17  
nc  
GND  
QB0  
QB1  
VDDO  
3.3V  
2
3
4
5
6
7
8
R3  
1K  
R4  
1K  
VDDA  
POWER_DN  
CLK1  
nMR  
CLK0  
nCLK0  
GND  
POWER_DN  
Zo = 50 Ohm  
Zo = 50 Ohm  
EXTFB_SEL  
CLK_SEL  
PLL_SEL  
nc  
R5  
1K  
3.3V PECL Driver  
R8  
50  
R9  
50  
ICS87931I  
Logic Input Pin Examples  
Set Logic  
R10  
50  
Set Logic  
Input to  
'0'  
VDD  
VDD  
Zo = 50  
Input to  
'1'  
R2  
43  
RU1  
1K  
RU2  
Not Install  
Receiv er  
To Logic  
Input  
pins  
To Logic  
Input  
pins  
(U1-13)  
C1  
(U1-21)  
(U1-28)  
VDD  
RD1  
RD2  
1K  
C2  
0.1uF  
C3  
0.1uF  
VDD=3.3V  
Not Install  
0.1uF  
SP = Space (i.e. not intstalled)  
FIGURE 4A. ICS87931I SCHEMATIC EXAMPLE  
ICS87931BYI REVISION A AUGUST 25, 2010  
10  
©2010 Integrated Device Technology, Inc.  
ICS87931I  
LOW SKEW, 1-TO-6, LVCMOS/LVTTL CLOCK MULTIPLIER/ZERO DELAY BUFFER  
The following component footprints are used in this layout  
example:  
might be restricted by the available space on the board and the  
component location. While routing the traces, the clock signal traces  
should be routed first and should be locked prior to routing other  
signal traces.  
All the resistors and capacitors are size 0603.  
POWER AND GROUNDING  
• The differential 50Ω output traces should have same  
Place the decoupling capacitors as close as possible to the power  
pins. If space allows, placement of the decoupling capacitor on the  
component side is preferred. This can reduce unwanted induc-  
tance between the decoupling capacitor and the power pin caused  
by the via.  
length.  
• Avoid sharp angles on the clock trace. Sharp angle  
turns cause the characteristic impedance to change  
on  
the transmission lines.  
• Keep the clock traces on the same layer. Whenever pos-  
sible, avoid placing vias on the clock traces. Placement  
of vias on the traces can affect the trace characteristic  
impedance and hence degrade signal integrity.  
Maximize the power and ground pad sizes and number of vias  
capacitors. This can reduce the inductance between the power  
and ground planes and the component power and ground pins.  
To prevent cross talk, avoid routing other signal traces in  
parallel with the clock traces. If running parallel traces is  
unavoidable, allow a separation of at least three trace  
widths between the differential clock trace and the other  
signal trace.  
The RC filter consisting of R7, C11, and C16 should be placed as  
close to the VDDA pin as possible.  
CLOCKT RACES ANDT ERMINATION  
Poor signal integrity can degrade the system performance or cause  
system failure. In synchronous high-speed digital systems, the clock  
signal is less tolerant to poor signal integrity than other signals.  
Any ringing on the rising or falling edge or excessive ring back can  
cause system failure. The shape of the trace and the trace delay  
• Make sure no other signal traces are routed between the  
clock trace pair.  
• The series termination resistors should be located as  
close to the driver pins as possible.  
50 Ohm  
Trace  
GND  
VCC  
C3  
R1  
VCCA  
U1  
VIA  
Pin 1  
Other  
signals  
C2  
R2  
C1  
50 Ohm  
Trace  
FIGURE 4B. PCB BOARD LAYOUT FOR ICS87931I  
ICS87931BYI REVISION A AUGUST 25, 2010  
11  
©2010 Integrated DeviceTechnology, Inc.  
ICS87931I  
LOW SKEW, 1-TO-6, LVCMOS/LVTTL CLOCK MULTIPLIER/ZERO DELAY BUFFER  
RELIABILITY INFORMATION  
TABLE 8. θJAVS. AIR FLOW TABLE  
θJA byVelocity (Linear Feet per Minute)  
0
200  
55.9°C/W  
42.1°C/W  
500  
50.1°C/W  
39.4°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
67.8°C/W  
47.9°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS87931I is: 2942  
ICS87931BYI REVISION A AUGUST 25, 2010  
12  
©2010 Integrated Device Technology, Inc.  
ICS87931I  
LOW SKEW, 1-TO-6, LVCMOS/LVTTL CLOCK MULTIPLIER/ZERO DELAY BUFFER  
PACKAGE OUTLINE - Y SUFFIX  
TABLE 9. PACKAGE DIMENSIONS  
JEDEC VARIATION  
ALL DIMENSIONS IN MILLIMETERS  
BBA  
SYMBOL  
MINIMUM  
NOMINAL  
MAXIMUM  
N
A
32  
--  
--  
--  
1.60  
0.15  
1.45  
0.45  
0.20  
A1  
A2  
b
0.05  
1.35  
0.30  
0.09  
1.40  
0.37  
c
--  
D
9.00 BASIC  
7.00 BASIC  
5.60 Ref.  
9.00 BASIC  
7.00 BASIC  
5.60 Ref.  
0.80 BASIC  
0.60  
D1  
D2  
E
E1  
E2  
e
L
0.45  
0.75  
θ
--  
0°  
7°  
ccc  
--  
--  
0.10  
Reference Document: JEDEC Publication 95, MS-026  
ICS87931BYI REVISION A AUGUST 25, 2010  
13  
©2010 Integrated DeviceTechnology, Inc.  
ICS87931I  
LOW SKEW, 1-TO-6, LVCMOS/LVTTL CLOCK MULTIPLIER/ZERO DELAY BUFFER  
TABLE 10. ORDERING INFORMATION  
Part/Order Number  
87931BYI  
Marking  
Package  
Packaging  
Tray  
Temperature  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
ICS87931BI  
ICS87931BI  
32 Lead LQFP  
87931BYIT  
32 Lead LQFP  
1000 Tape & Reel  
Tray  
87931BYILF  
87931BYILFT  
ICS87931BYIL  
ICS87931BYIL  
Lead-Free, 32 Lead LQFP  
Lead-Free, 32 Lead LQFP  
1000 Tape & Reel  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology, Incorporated (IDT) assumes no responsibility for either its use or for infringement of any patents  
or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as  
those requiring extended temperature ranges, high reliability or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry  
or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.  
ICS87931BYI REVISION A AUGUST 25, 2010  
14  
©2010 Integrated Device Technology, Inc.  
ICS87931I  
LOW SKEW, 1-TO-6, LVCMOS/LVTTL CLOCK MULTIPLIER/ZERO DELAY BUFFER  
REVISION HISTORY SHEET  
Description of Change  
Rev  
Table  
Page  
Date  
T7  
6
8
9
AC Characteristics Table - added thermal note.  
Updated Wiring the Differential Input to Accept Single-Ended Levels section.  
Updated Differential Clock Input Interface section.  
Ordering Information Table - added LF part numbers and marking. Deleted  
"ICS" prefix from Part/Order Number column.  
Changed from ICS to IDT format header/foot.  
Input Reference Frequency Table - added to table description  
"EXTFB_SEL = 0".  
A
2/23/10  
T10  
T4B  
14  
3
A
8/25/10  
ICS87931BYI REVISION A AUGUST 25, 2010  
15  
©2010 Integrated DeviceTechnology, Inc.  
ICS87931I  
LOW SKEW, 1-TO-6, LVCMOS/LVTTL CLOCK MULTIPLIER/ZERO DELAY BUFFER  
www.IDT.com  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
Sales  
Techical Support  
netcom@idt.com  
+480-763-2056  
800-345-7015 (inside USA)  
+408-284-8200 (outside USA)  
Fax: 408-284-2775  
www.IDT.com/go/contactIDT  
DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT’s sole discretion.All information  
in this document, including descriptions of product features and performace, is subject to change without notice. Performance specifications and the operating parameters of the described products are  
determined in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any  
kind, whether express or implied, including, but not limited to, the suitablity of IDT’s products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property  
rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.  
IDT’s products are not intended for use in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users.  
Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.  
Integrated Device Techology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or  
their respective third party owners.  
Copyright 2010. All rights reserved.  
ICS87931BYI REVISION A AUGUST 25, 2010  
16  
©2010 Integrated Device Technology, Inc.  

相关型号:

ICS87931BYILFT

PLL Based Clock Driver, 6 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, MS-026, LQFP-32
IDT

ICS87931BYIT

LOW SKEW, 1-TO-6 LVCMOS/LVTTL CLOCK MULTIPLIER/ZERO DELAY BUFFER
ICSI

ICS87931I

LOW SKEW, 1-TO-6 LVCMOS/LVTTL CLOCK MULTIPLIER/ZERO DELAY BUFFER
ICSI

ICS87946-01

LVPECL-TO-LVCMOS/LVTTL CLOCK GENERATOR
ICSI

ICS87946AY-01

LVPECL-TO-LVCMOS/LVTTL CLOCK GENERATOR
ICSI

ICS87946AY-01LF

Low Skew Clock Driver, 10 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, MS-026, LQFP-32
IDT

ICS87946AY-01LFT

Low Skew Clock Driver, 10 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, MS-026, LQFP-32
IDT

ICS87946AY-01T

LVPECL-TO-LVCMOS/LVTTL CLOCK GENERATOR
ICSI

ICS87946AYI-147LF

Low Skew Clock Driver, 10 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, LQFP-32
IDT

ICS87946AYI-147LFT

Low Skew Clock Driver, 10 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, LQFP-32
IDT

ICS87946AYI-147T

Low Skew Clock Driver, 10 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, LQFP-32
IDT

ICS87946AYILF

Low Skew Clock Driver, 10 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, MS-026, LQFP-32
IDT