IDT72T51243L5BBI [IDT]

2.5V MULTI-QUEUE FLOW-CONTROL DEVICES (32 QUEUES) 36 BIT WIDE CONFIGURATION 1,179,648 bits and 2,359,296 bits; 2.5V多队列流量控制器件( 32队列) 36位宽配置1,179,648位和2,359,296位
IDT72T51243L5BBI
型号: IDT72T51243L5BBI
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

2.5V MULTI-QUEUE FLOW-CONTROL DEVICES (32 QUEUES) 36 BIT WIDE CONFIGURATION 1,179,648 bits and 2,359,296 bits
2.5V多队列流量控制器件( 32队列) 36位宽配置1,179,648位和2,359,296位

控制器
文件: 总55页 (文件大小:521K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADVANCE INFORMATION  
IDT72T51233  
IDT72T51243  
IDT72T51253  
2.5V MULTI-QUEUE FLOW-CONTROL DEVICES  
(4 QUEUES) 18 BIT WIDE CONFIGURATION  
589,824 bits, 1,179,648 bits and 2,359,296 bits  
Individual, Active queue flags (OV, FF, PAE, PAF)  
4 bit parallel flag status on both read and write ports  
Provides continuous PAE and PAF status of up to 4 Queues  
Global Bus Matching - (All Queues have same Input Bus Width  
and Output Bus Width)  
User Selectable Bus Matching Options:  
- x18in to x18out  
- x9in to x18out  
FEATURES:  
Choose from among the following memory density options:  
IDT72T51233  
IDT72T51243  
IDT72T51253  
Total Available Memory = 589,824 bits  
Total Available Memory = 1,179,648 bits  
Total Available Memory = 2,359,296 bits  
Configurable from 1 to 4 Queues  
Queues may be configured at master reset from the pool of  
Total Available Memory in blocks of 512 x 18 or 1,024 x 9  
Independent Read and Write access per queue  
User programmable via serial port  
User selectable I/O: 2.5V LVTTL, 1.5V HSTL, 1.8V eHSTL  
Default multi-queue device configurations  
-IDT72T51233: 8,192 x 18 x 4Q  
- x18in to x9out  
- x9in to x9out  
FWFT mode of operation on read port  
Partial Reset, clears data in single Queue  
Expansion of up to 8 multi-queue devices in parallel is available  
Power Down Input provides additional power savings in HSTL  
and eHSTL modes.  
JTAG Functionality (Boundary Scan)  
Available in a 256-pin PBGA, 1mm pitch, 17mm x 17mm  
HIGH Performance submicron CMOS technology  
Industrial temperature range (-40°C to +85°C) is available  
-IDT72T51243: 16,384 x 18 x 4Q  
-IDT72T51253: 32,768 x 18 x 4Q  
100% Bus Utilization, Read and Write on every clock cycle  
200 MHz High speed operation (5ns cycle time)  
3.6ns access time  
Echo Read Enable & Echo Read Clock Outputs  
FUNCTIONALBLOCKDIAGRAM  
MULTI-QUEUE FLOW-CONTROL DEVICE  
RADEN  
ESTR  
WADEN  
FSTR  
RDADD  
5
WRADD  
WEN  
Q0  
REN  
5
RCLK  
EREN  
WCLK  
ERCLK  
OE  
Q
out  
x9, x18  
D
in  
x9, x18  
DATA IN  
DATA OUT  
OV  
FF  
Q3  
PAF  
PAFn  
PAE  
PAEn  
4
4
6115 drw01  
IDTandtheIDTlogoareregisteredtrademarksofIntegratedDeviceTechnology,Inc  
NOVEMBER 2003  
COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES  
1
2003 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice.  
DSC-6115/2  
IDT72T51233/72T51243/72T512532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
Iftheuserdoesnotwishtoprogramthemulti-queuedevice,adefaultoptionis  
availablethatconfiguresthedeviceinapredeterminedmanner.  
BothMasterResetandPartialResetpinsareprovidedonthisdevice.AMaster  
Reset latches in all configuration setup pins and must be performed before  
programmingofthedevicecantakeplace.APartialResetwillresetthereadand  
writepointersofanindividualqueue,providedthatthequeueisselectedonboth  
thewriteportandreadportatthetimeofpartialreset.  
Echo Read Enable, EREN and Echo Read Clock, ERCLK outputs are  
provided.Theseareoutputs fromthereadportofthequeuethatarerequired  
forhighspeeddatacommunication,toprovidetightersynchronizationbetween  
thedatabeingtransmittedfromtheQnoutputsandthedatabeingreceivedby  
theinputdevice.Datareadfromthereadportisavailableontheoutputbuswith  
respecttoERENandERCLK,thisisveryusefulwhendataisbeingreadathigh  
speed.  
Themulti-queueflow-controldevicehasthecapabilityofoperatingitsIOin  
either2.5VLVTTL,1.5VHSTLor1.8VeHSTLmode.ThetypeofIOisselected  
viatheIOSELinput.Thecoresupplyvoltage(VCC)tothemulti-queueisalways  
2.5V,howevertheoutputlevelscanbesetindependentlyviaaseparatesupply,  
VDDQ.  
ThedevicesalsoprovideadditionalpowersavingsviaaPowerDownInput.  
This input disables the write port data inputs when no write operations are  
required.  
DESCRIPTION  
The IDT72T51233/72T51243/72T51253 multi-queue flow-control de-  
vicesaresinglechipwithinwhichanywherebetween1and4discreteFIFO  
queuescanbesetup.Allqueueswithinthedevicehaveacommondatainput  
bus,(writeport)andacommondataoutputbus,(readport).Datawritteninto  
the write portis directedtoa respective queue via aninternalde-multiplex  
operation,addressedbytheuser.Datareadfromthereadportisaccessed  
froma respective queue via aninternalmultiplexoperation,addressedby  
the user. Data writes and reads can be performed at high speeds up to  
200MHz,withaccesstimesof3.6ns.Datawriteandreadoperationsaretotally  
independent of each other, a queue maybe selected on the write port and  
adifferentqueueonthereadportorbothportsmayselectthesamequeue  
simultaneously.  
The device provides FullflagandOutputValidflagstatus forthe queue  
selectedforwriteandreadoperations respectively.AlsoaProgrammable  
AlmostFullandProgrammableAlmostEmptyflagforeachqueueisprovided.  
Two 4 bit programmable flag busses are available, providing status of all  
queues,includingqueuesnotselectedforwriteorreadoperations,theseflag  
busses provide an individual flag per queue.  
BusMatchingisavailableonthisdevice,eitherportcanbe9bitsor18bits  
wide.WhenBusMatchingisusedthedeviceensuresthelogicaltransferof  
datathroughputinaLittleEndianmanner.  
Theuserhasfullflexibilityconfiguringqueueswithinthedevice,beingable  
toprogramthetotalnumberofqueuesbetween1and4,theindividualqueue  
depthsbeingindependentofeachother.Theprogrammableflagpositionsare  
alsouserprogrammable.Allprogrammingisdoneviaadedicatedserialport.  
AJTAGtestportisprovided,herethemulti-queueflow-controldevicehasa  
fullyfunctionalBoundaryScanfeature,compliantwithIEEE1149.1Standard  
TestAccessPortandBoundaryScanArchitecture.  
SeeFigure1,Multi-QueueFlow-ControlDeviceBlockDiagramforanoutline  
ofthefunctionalblockswithinthedevice.  
2
IDT72T51233/72T51243/72T512532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
D
in  
x9, x18  
D
- D  
17  
0
WCLK  
WEN  
INPUT  
DEMUX  
TMS  
5
WRADD  
WADEN  
Write Control  
Logic  
TDI  
JTAG  
Logic  
TDO  
TCK  
TRST  
Write Pointers  
PAF  
General Flag  
Monitor  
FSTR  
PAFn  
4
FSYNC  
Upto 4  
FIFO  
Queues  
FXO  
FXI  
OV  
Active Q  
Flags  
PAE  
0.5 Mbit  
1.1 Mbit  
2.3 Mbit  
Dual Port  
Memory  
Active Q  
Flags  
FF  
PAF  
PAE  
General Flag  
Monitor  
4
SI  
SO  
SCLK  
PAEn  
ESTR  
ESYNC  
Serial  
Multi-Queue  
Programming  
SENI  
EXI  
SENO  
EXO  
Read Pointers  
FM  
IW  
5
Reset  
Logic  
RDADD  
RADEN  
NULL-Q  
Read Control  
Logic  
OW  
MAST  
REN  
RCLK  
ID0  
ID1  
ID2  
DF  
Device ID  
3 Bit  
OUTPUT  
MUX  
PAE/ PAF  
Offset  
DFM  
OUTPUT  
REGISTER  
EREN  
PRS  
MRS  
ERCLK  
6115 drw02  
IOSEL  
Vref  
IO Level Control  
&
Power Down  
OE  
Q
- Q  
17  
0
PD  
Q
x9, x18  
out  
Figure 1. Multi-Queue Flow-Control Device Block Diagram  
3
IDT72T51233/72T51243/72T512532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
PINCONFIGURATION  
A1 BALL PAD CORNER  
A
D14  
D15  
D17  
D13  
D16  
GND  
D12  
D11  
GND  
D10  
D9  
Q9  
Q8  
Q7  
Q15  
DNC  
DNC  
DNC  
DNC  
DNC  
DNC  
DNC  
DNC  
FM  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
TCK  
TMS  
TDO  
TDI  
ID2  
ID1  
ID0  
Q3  
Q2  
Q1  
Q6  
Q5  
Q4  
Q12  
Q11  
Q14  
Q13  
B
C
D
E
F
D8  
TRST  
IOSEL  
Q0  
Q10  
Q16  
DNC  
Q17  
DNC  
DNC  
VDDQ  
VCC  
VDDQ  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VDDQ  
VDDQ  
VCC  
VCC  
VDDQ  
VDDQ  
VCC  
V
CC  
GND  
GND  
GND  
GND  
GND  
VCC  
GND  
GND  
GND  
GND  
GND  
GND  
VCC  
VDDQ  
VDDQ  
GND  
GND  
VDDQ  
VCC  
VDDQ  
VCC  
GND  
VCC  
VDDQ  
VDDQ  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
DNC  
DNC  
DNC  
DNC  
DNC  
DNC  
MAST  
G
H
J
VCC  
VCC  
VCC  
VCC  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
PD  
GND  
NULL-Q  
GND  
GND  
GND  
VCC  
DNC  
GND  
GND  
GND  
GND  
GND  
VCC  
GND  
GND  
VCC  
VCC  
K
L
VREF  
VCC  
VCC  
VCC  
VCC  
GND  
ADVANCE  
SI  
VDDQ  
GND  
GND  
GND  
GND  
VCC  
DFM  
DF  
SO  
VCC  
GND  
VDDQ  
IW  
OW  
GND  
GND  
M
N
P
R
T
SENO  
SENI  
OE  
VDDQ  
VDDQ  
VCC  
VCC  
GND  
VCC  
VCC  
VDDQ  
VDDQ  
RDADD0 RDADD1  
VDDQ  
WRADD1 WRADD0 SCLK  
GND  
GND  
GND  
VDDQ  
VDDQ  
VDDQ  
VCC  
VCC  
VCC  
VCC  
VDDQ  
V
DDQ  
GND  
GND  
GND  
WADEN  
FF  
OV  
RDADD2 RDADD3 RDADD4  
PAF3  
DNC  
DNC  
PAE  
DNC  
DNC  
PAE3  
INFORMATION  
WRADD3 WRADD2 FSYNC  
DNC  
DNC  
WCLK  
7
DNC  
DNC  
ESTR ESYNC  
FSTR  
PAF  
EREN  
REN  
PAE2  
PAE1  
RADEN  
PAF2  
ERCLK  
DNC  
EXO  
EXI  
FXI  
FXO  
WEN  
PRS  
MRS  
RCLK  
PAE0  
WRADD4  
PAF0  
PAF1  
1
2
3
4
5
6
8
9
10  
11  
12  
13  
14  
15  
16  
6115 drw03  
NOTE:  
1. DNC - Do Not Connect.  
PBGA (BB256-1, order code: BB)  
TOP VIEW  
4
IDT72T51233/72T51243/72T512532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
provides a user programmable almost full flag for all 4 queues and when a  
respectivequeueisselectedonthewriteport,thealmostfullflagprovidesstatus  
for that queue. Conversely, the read port has an output valid flag, providing  
statusofthedatabeingreadfromthequeueselectedonthereadport.Aswell  
astheoutputvalidflagthedeviceprovidesadedicatedalmostemptyflag.This  
almostemptyflagissimilartothealmostemptyflagofaconventionalIDTFIFO.  
Thedeviceprovidesauserprogrammablealmostemptyflagforall4queues  
andwhenarespectivequeueisselectedonthereadport,thealmostemptyflag  
providesstatusforthatqueue.  
DETAILEDDESCRIPTION  
MULTI-QUEUE STRUCTURE  
The IDT multi-queue flow-control device has a single data input port and  
singledataoutputportwithupto4FIFOqueuesinparallelbufferingbetween  
thetwoports.Theusercansetupbetween1and4Queueswithinthedevice.  
Thesequeuescanbeconfiguredtoutilizethetotalavailablememory,providing  
theuserwithfullflexibilityandabilitytoconfigurethequeuestobevariousdepths,  
independentofoneanother.  
MEMORYORGANIZATION/ALLOCATION  
PROGRAMMABLE FLAG BUSSES  
Thememoryisorganizedintowhatisknownasblocks,eachblockbeing  
512x18or1,024x9bits.Whentheuserisconfiguringthenumberofqueues  
andindividualqueue sizes the usermustallocate the memorytorespective  
queues,inunitsofblocks,thatis,asinglequeuecanbemadeupfrom0tom  
blocks,wheremisthetotalnumberofblocksavailablewithinadevice.Alsothe  
totalsize of anygiven queue mustbe in increments of 512 x 18or1,024 x 9.  
Forthe IDT72T51233, IDT72T51243andIDT72T51253the TotalAvailable  
Memoryis64,128and256blocksrespectively(ablockbeing512x18or1,024  
x9).Ifanyportisconfiguredforx18buswidth,ablocksizeis512x18.Ifboth  
thewriteandreadportsareconfiguredforx9buswidth,ablocksizeis1,024  
x9.Queuescanbebuiltfromtheseblockstomakeanysizequeuedesiredand  
any number of queues desired.  
Inadditiontothesededicatedflags,full&almostfullonthewriteportandoutput  
valid&almostemptyonthereadport,therearetwoflagstatusbusses.Analmost  
fullflagstatusbusisprovided,thisbusis4bitswide.Also,analmostemptyflag  
statusbusisprovided,againthisbusis4bitswide.Thepurposeoftheseflag  
bussesistoprovidetheuserwithameansbywhichtomonitorthedatalevels  
withinqueuesthatmaynotbeselectedonthewriteorreadport.Asmentioned,  
thedeviceprovidesalmostfullandalmostemptyregisters(programmableby  
the user) for each of the 4 queues in the device.  
The4bitPAEnand4bitPAFnbussesprovideadiscretestatusoftheAlmost  
EmptyandAlmostFullconditionsofall4queue's.Ifthedeviceisprogrammed  
for less than 4 queue's, then there will be a corresponding number of active  
outputs onthePAEnandPAFnbusses.  
Theflagbussescanprovideacontinuousstatusofallqueues.Ifdevicesare  
connectedinexpansionmodetheindividualflagbussescanbeleftinadiscrete  
form,providingconstantstatusofallqueues,orthebussesofindividualdevices  
canbe connectedtogethertoproduce a single bus of4bits. The device can  
then operate in a "Polled" or "Direct" mode.  
Whenoperatinginpolledmodetheflagbusprovidesstatusofeachdevice  
sequentially,thatis,oneachrisingedgeofaclocktheflagbusisupdatedtoshow  
thestatusofeachdeviceinorder.Therisingedgeofthewriteclockwillupdate  
theAlmostFullbusandarisingedgeonthereadclockwillupdatetheAlmost  
Emptybus.  
Whenoperatingindirectmodethedevicedrivingtheflagbusisselectedby  
theuser.Theuseraddresses thedevicethatwilltakecontrolofarespective  
flagbus, these PAFnand PAEnflagbusses operatingindependentlyofone  
another.AddressingoftheAlmostFullflagbus is doneviathewriteportand  
addressingoftheAlmostEmptyflagbus is doneviathereadport.  
BUS WIDTHS  
Theinputportiscommontoallqueueswithinthedevice,asistheoutputport.  
ThedeviceprovidestheuserwithBusMatchingoptionssuchthattheinputport  
andoutputportcanbeeitherx9orx18bitswide,thereadandwriteportwidths  
beingsetindependentlyofoneanother.Becausetheportsarecommontoall  
queuesthewidthofthequeuesisnotindividuallyset,sothattheinputwidthof  
all queues are equal and the output width of all queues are equal.  
WRITING TO & READING FROM THE MULTI-QUEUE  
Databeingwrittenintothedeviceviatheinputportisdirectedtoadiscrete  
queueviathewritequeueselectaddressinputs.Conversely,databeingread  
fromthedevicereadportisreadfromaqueueselectedviathereadqueueselect  
addressinputs.Datacanbesimultaneouslywrittenintoandreadfromthesame  
queueordifferentqueues.Onceaqueueisselectedfordatawritesorreads,  
the writing and reading operation is performed in the same manner as  
conventionalIDTsynchronous FIFO,utilizingclocks andenables,thereis a  
singleclockandenableperport.Whenaspecificqueueisaddressedonthe  
writeport,dataplacedonthedatainputsiswrittentothatqueuesequentially  
basedontherisingedgeofawriteclockprovidedsetupandholdtimesaremet.  
Conversely,dataisreadontotheoutputportafteranaccesstimefromarising  
edge on a read clock.  
Theoperationofthewriteportiscomparabletothefunctionofaconventional  
FIFOoperatinginstandardIDTmode.Writeoperationscanbeperformedon  
thewriteportprovidedthatthequeuecurrentlyselectedisnotfull,afullflagoutput  
provides status of the selected queue. The operation of the read port is  
comparabletothefunctionofaconventionalFIFOoperatinginFWFTmode.  
Whenaqueueis selectedontheoutputport,thenextwordinthatqueuewill  
automaticallyfallthroughtotheoutputregister.Allsubsequentwordsfromthat  
queue require an enabled read cycle. Data cannot be read from a selected  
queueifthatqueueisempty,thereadportprovidesanOutputValidflagindicating  
whendata readoutis valid. Ifthe userswitches toa queue thatis empty, the  
lastwordfromtheprevious queuewillremainontheoutputregister.  
Asmentioned,thewriteporthasafullflag,providingfullstatusoftheselected  
queue.Alongwiththefullflagadedicatedalmostfullflagisprovided,thisalmost  
fullflagissimilartothealmostfullflagofaconventionalIDTFIFO.Thedevice  
EXPANSION  
Expansionofmulti-queuedevicesisalsopossible,upto8devicescanbe  
connectedinaparallelfashionprovidingthepossibilityofbothdepthexpansion  
or queue expansion. Depth Expansion means expanding the depths of  
individual queues. Queue expansion means increasing the total number of  
queuesavailable.Depthexpansionispossiblebyvirtueofthefactthatmore  
memoryblocks withinamulti-queuedevicecanbeallocatedtoincreasethe  
depth of a queue. For example, depth expansion of 8 devices provides the  
possibilityof8queuesof32Kx18deepwithintheIDT72T51233,64Kx18deep  
withintheIDT72T51243and128Kx18deepwithintheIDT72T51253,each  
queuebeingsetupwithinasingledeviceutilizingallmemoryblocksavailable  
toproduceasinglequeue. This is thedeepestqueuethatcansetupwithina  
device.  
For queue expansion of the 4 queue device, a maximum number of 32 (8  
x 4) queues may be setup, each queue being 4K x18 or 2K x 9 deep, if less  
queuesaresetup,thenmorememoryblockswillbeavailabletoincreasequeue  
depthsifdesired.Whenconnectingmulti-queuedevicesinexpansionmodeall  
respectiveinputpins(data&control)andoutputpins(data& flags),shouldbe  
connected”togetherbetweenindividualdevices.  
5
IDT72T51233/72T51243/72T512532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
PINDESCRIPTIONS  
Symbol &  
Pin No.  
Name  
I/OTYPE  
Description  
D[17:0]  
DataInputBus HSTL-LVTTL These are the 18data inputpins. Data is writtenintothe device via these inputpins onthe risingedge  
Din (See Pin  
tablefordetails)  
INPUT  
ofWCLKprovidedthatWENisLOW.Duetobusmatchingnotallinputsmaybeused,anyunusedinputs  
shouldbetiedLOW.  
DF(1)  
(L3)  
DefaultFlag  
DefaultMode  
LVTTL  
INPUT  
Iftheuserrequiresdefaultprogrammingofthemulti-queuedevice,thispinmustbesetupbeforeMaster  
Resetandmustnottoggleduringanydeviceoperation.Thestateofthisinputatmasterresetdetermines  
the value of the PAE/PAF flag offsets. If DF is LOW the value is 8, if DF is HIGH the value is 128.  
(1)  
DFM  
(L2)  
LVTTL  
INPUT  
The multi-queue device requires programmingaftermasterreset. The usercandothis seriallyvia the  
serialport,ortheusercanusethedefaultmethod.IfDFMisLOWatmasterresetthenserialmodewillbe  
selected,ifHIGHthendefaultmodeisselected.  
ERCLK  
(R10)  
RCLK Echo  
HSTL-LVTTL ReadClockEchooutput,thisoutputgeneratesaclockbasedonthereadclockinput,thisisusedforSource  
OUTPUT SynchronousclockingwherethereceivingdevicesutilizestheERCLKtoclockdataoutputfromthequeue.  
HSTL-LVTTL ReadEnableEchooutput,canbeusedinconjunctionwiththeERCLKoutputtoloaddataoutputfromthe  
EREN  
(R11)  
REN Echo  
OUTPUT  
queue intothe receivingdevice.  
ESTR  
(R15)  
PAEn Flag Bus  
Strobe  
LVTTL  
INPUT  
IfdirectoperationofthePAEnbushasbeenselected,theESTRinputisusedinconjunctionwithRCLK  
andtheRDADDbustoselectadeviceforitsqueuestobeplacedontothePAEnbusoutputs.Adevice  
addressed via the RDADD bus is selected on the rising edge of RCLK provided that ESTR is HIGH. If  
Polledoperationshasbeenselected,ESTRshouldbetiedinactive,LOW.Note,thataPAEnflagbus  
selectioncannotbemade,(ESTRmustNOTgoactive)untilprogrammingoftheparthasbeencompleted  
andSENO has gone LOW.  
ESYNC  
(R16)  
PAEn Bus Sync HSTL-LVTTL ESYNCisanoutputfromthemulti-queuedevicethatprovidesasynchronizingpulseforthePAEnbus  
OUTPUT  
duringPolledoperationofthePAEnbus.DuringPolledoperationeachdevice'squeuestatusflagsare  
loadedontothe PAEnbus outputs sequentiallybasedonRCLK. The firstRCLKrisingedge loads  
device 1 onto PAEn, the second RCLK rising edge loads device 2 and so on. During the RCLK cycle  
thata selecteddevice is placedontothePAEnbus, the ESYNCoutputwillbe HIGH.  
EXI  
(T16)  
PAEnBus  
ExpansionIn  
LVTTL  
INPUT  
The EXIinputis usedwhenmulti-queue devices are connectedinexpansionmode andPolledPAEn  
bus operationhas beenselected. EXIofdevice ‘Nconnects directlytoEXOofdevice N-1’. The EXI  
receives a tokenfromthe previous device ina chain. Insingle device mode the EXIinputmustbe tied  
LOWifthePAEnbusisoperatedindirectmode.IfthePAEnbusisoperatedinpolledmodetheEXIinput  
mustbeconnectedtotheEXOoutputofthesamedevice.InexpansionmodetheEXIofthefirstdevice  
shouldbetiedLOW,whendirectmodeisselected.  
EXO  
(T15)  
PAEnBus  
ExpansionOut  
LVTTL  
OUTPUT  
EXOis anoutputthatis usedwhenmulti-queuedevices areconnectedinexpansionmodeandPolled  
PAEnbusoperationhasbeenselected.EXOofdeviceNconnectsdirectlytoEXIofdeviceN+1’.This  
pinpulses whendevice Nplaces its PAE status ontothe PAEnbus withrespecttoRCLK. This pulse  
(token) is then passed on to the next device in the chain N+1’ and on the next RCLK rising edge the  
firstquadrantofdevice N+1willbe loadedontothe PAEnbus. This continues throughthe chainand  
EXOofthelastdeviceis thenloopedbacktoEXIofthefirstdevice.TheESYNCoutputofeachdevice  
inthechainprovides synchronizationtotheuserofthis loopingevent.  
FF  
(P8)  
Full Flag  
HSTL-LVTTL This pinprovides the fullflagoutputforthe active queue, thatis, the queue selectedonthe input  
OUTPUT portforwrite operations,(selectedvia WCLK,WRADDbus andWADEN).Onthe WCLKcycle after  
aqueueselection,this flagwillshowthestatus ofthenewlyselectedqueue.Datacanbewrittento  
this queue on the next cycle providedFF is HIGH. This flaghas High-Impedance capability, this is  
importantduringexpansionofdevices, whentheFF flagoutputofupto8devices maybe connected  
togetherona commonline. The device witha queue selectedtakes controlofthe FF bus, allother  
devices place theirFFoutputintoHigh-Impedance.Whena queue selectionis made onthe write  
portthisoutputwillswitchfromHigh-ImpedancecontrolonthenextWCLKcycle.Thisflagissynchronized  
toWCLK.  
(1)  
FM  
Flag Mode  
HSTL-LVTTL Thispinissetupbeforeamasterresetandmustnottoggleduringanydeviceoperation.Thestateofthe  
(K16)  
INPUT  
FMpinduringMasterResetwilldetermine whetherthe PAFnandPAEnflagbusses operate ineither  
PolledorDirectmode.Ifthis pinis HIGHthemodeis Polled,ifLOWthenitwillbeDirect.  
6
IDT72T51233/72T51243/72T512532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
PINDESCRIPTIONS(CONTINUED)  
Symbol &  
Pin No.  
Name  
I/OTYPE  
Description  
FSTR  
(R4)  
PAFn Flag Bus  
Strobe  
LVTTL  
INPUT  
IfdirectoperationofthePAFnbushasbeenselected,theFSTRinputisusedinconjunctionwithWCLK  
andtheWRADDbustoselectadeviceforitsqueuestobeplacedontothePAFnbusoutputs.Adevice  
addressedviatheWRADDbus is selectedontherisingedgeofWCLKprovidedthatFSTRis HIGH.If  
Polledoperations has beenselected,FSTRshouldbetiedinactive,LOW.Note,thataPAFnflagbus  
selectioncannotbemade,(FSTRmustNOTgoactive)untilprogrammingoftheparthasbeencompleted  
andSENO has gone LOW.  
FSYNC  
(R3)  
PAFn Bus Sync  
LVTTL  
OUTPUT  
FSYNCisanoutputfromthemulti-queuedevicethatprovidesasynchronizingpulseforthePAFnbus  
duringPolledoperationofthePAFnbus.DuringPolledoperationeachdevice's queuestatus flags  
areloadedontothePAFnbusoutputssequentiallybasedonWCLK.ThefirstWCLKrisingedgeloads  
device 1 onto PAFn, the second WCLK rising edge loads device 2 and so on. During the WCLK cycle  
thata selecteddevice is placedontothe PAFnbus, the FSYNCoutputwillbe HIGH.  
FXI  
(T2)  
PAFnBus  
ExpansionIn  
LVTTL  
INPUT  
The FXI input is used when multi-queue devices are connected in expansion mode and Polled PAFn  
bus operation has been selected . FXI of device N’ connects directly to FXO of device N-1’. The FXI  
receives a tokenfromthe previous device ina chain. Insingle device mode the FXIinputmustbe tied  
LOWifthePAFnbusisoperatedindirectmode.IfthePAFnbusisoperatedinpolledmodetheFXIinput  
mustbeconnectedtotheFXOoutputofthesamedevice.InexpansionmodetheFXIofthefirstdevice  
shouldbetiedLOW,whendirectmodeisselected.  
FXO  
(T3)  
PAFnBus  
ExpansionOut  
LVTTL  
OUTPUT  
FXOisanoutputthatisusedwhenmulti-queuedevicesareconnectedinexpansionmodeandPolled  
PAFnbusoperationhasbeenselected.FXOofdeviceNconnectsdirectlytoFXIofdeviceN+1’.This  
pinpulses whendevice Nplaces its PAE status ontothe PAFnbus withrespecttoWCLK. This pulse  
(token) is then passed on to the next device in the chain N+1’ and on the next WCLK rising edgethe  
firstquadrantofdeviceN+1willbeloadedontothePAFnbus.ThiscontinuesthroughthechainandFXO  
ofthelastdeviceisthenloopedbacktoFXIofthefirstdevice.TheFSYNCoutputofeachdeviceinthe  
chainprovidessynchronizationtotheuserofthisloopingevent.  
(1)  
ID[2:0]  
Device ID Pins HSTL-LVTTL Forthe4Qmulti-queuedevicetheWRADDandRDADDaddressbussesare5bitswide.Whenaqueue  
ID2-C9  
ID1-A10  
ID0-B10  
INPUT  
selectiontakes placethe3MSbs ofthis 5bitaddress bus areusedtoaddress thespecificdevice(the  
2 LSbs are used to address the queue within that device). During write/read operations the 3 MSbs  
oftheaddressarecomparedtothedeviceIDpins.Thefirstdeviceinachainofmulti-queues(connected  
in expansion mode), may be setup as 000, the second as 001’ and so on through to device 8 which  
is111,howevertheIDdoesnothavetomatchthedeviceorder.Insingledevicemodethesepinsshould  
besetupas000’andthe3MSbsoftheWRADDandRDADDaddressbussesshouldbetiedLOW.The  
ID[2:0]inputssetuparespectivedevicesIDduringmasterreset.TheseIDpinsmustnottoggleduring  
any device operation. Note, the device selected as the Master’ does not have to have the ID of 000.  
IOSEL  
(C8)  
IOSelect  
LVTTL  
INPUT  
This pin is used to select either HSTL or 2.5V LVTTL operation for the I/O. If HSTL or eHSTL I/O are  
required then IOSEL should be tied HIGH. If LVTTL I/O are required then it should be tied LOW.  
(1)  
IW  
InputWidth  
LVTTL  
INPUT  
IWselectsthebuswidthforthedatainputbus.IfIWisLOWduringaMasterResetthenthebuswidth  
is x18, if HIGH then it is x9.  
(L15)  
(1)  
MAST  
MasterDevice HSTL-LVTTL ThestateofthisinputatMasterResetdetermineswhetheragivendevice(withinachainofdevices),isthe  
(K15)  
INPUT  
Masterdevice ora Slave. Ifthis pinis HIGH, the device is the masterifitis LOWthenitis a Slave. The  
masterdeviceisthefirsttotakecontrolofalloutputsafteramasterreset,allslavedevicesgotoHigh-  
Impedance,preventingbuscontention.Ifamulti-queuedeviceisbeingusedinsingledevicemode,this  
pinmustbesetHIGH.  
MRS  
MasterReset  
HSTL-LVTTL AmasterresetisperformedbytakingMRSfromHIGHtoLOW,toHIGH.Deviceprogrammingisrequired  
INPUT aftermasterreset.  
HSTL-LVTTL This pin is used on the read port when a Null-Q is required, it is used in conjunction with the RDADD  
INPUT and RADEN address bus to address the Null-Q.  
(T9)  
NULL-Q  
(J2)  
NullQueue  
Select  
OE  
(M14)  
OutputEnable HSTL-LVTTL TheOutputenablesignalisanAsynchronoussignalusedtoprovidethree-statecontrolofthemulti-queue  
INPUT  
dataoutputbus,Qout.IfadevicehasbeenconfiguredasaMaster”device,theQoutdataoutputswill  
beinaLowImpedanceconditioniftheOEinputisLOW.IfOEisHIGHthentheQoutdataoutputswillbe  
7
IDT72T51233/72T51243/72T512532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
PINDESCRIPTIONS(CONTINUED)  
Symbol &  
Pin No.  
Name  
I/OTYPE  
Description  
OE  
(Continued)  
(M14)  
OutputEnable HSTL-LVTTL inHighImpedance.IfadeviceisconfiguredaSlave”device,thentheQoutdataoutputswillalwaysbe  
INPUT  
inHighImpedanceuntilthatdevicehasbeenselectedontheReadPort,atwhichpointOEprovidesthree-  
stateofthatrespectivedevice.  
OV  
(P9)  
OutputValid  
Flag  
HSTL-LVTTL Thisoutputflagprovidesoutputvalidstatusforthedatawordpresentonthemulti-queueflow-controldevice  
OUTPUT  
dataoutputport,Qout.Thisflagistherefore,2-stagedelayedtomatchthedataoutputpathdelay.That  
is,thereisa2RCLKcycledelayfromthetimeagivenqueueisselectedforreads,tothetimetheOVflag  
representsthedatainthatrespectivequeue.Whenaselectedqueueonthereadportisreadtoempty,  
theOV flagwillgoHIGH, indicatingthatdata onthe outputbus is notvalid. TheOVflagalsohas High-  
Impedancecapability,requiredwhenmultipledevicesareusedandtheOVflagsaretiedtogether.  
(1)  
OW  
OutputWidth  
LVTTL  
INPUT  
OWselectsthebuswidthforthedataoutputbus.IfOWisLOWduringaMasterResetthenthebuswidth  
is x18, if HIGH then it is x9.  
(L16)  
PAE  
(P10)  
Programmable HSTL-LVTTL ThispinprovidestheAlmost-Emptyflagstatusforthequeuethathasbeenselectedontheoutputport  
Almost-Empty  
Flag  
OUTPUT  
for read operations, (selected via RCLK, RDADD and RADEN). This pin is LOW when the selected  
queueisalmost-empty.ThisflagoutputmaybeduplicatedononeofthePAEnbuslines.Thisflagis  
synchronizedtoRCLK.  
PAEn  
Programmable HSTL-LVTTL Onthe4QdevicethePAEnbusis8bitswide.DuringaMasterResetthisbusissetupforAlmostEmpty  
(PAE3-P13  
PAE2-R13  
PAE1-T13  
PAE0-T14)  
Almost-Empty  
FlagBus  
OUTPUT  
mode.ThisoutputbusprovidesPAEstatusof4queueswithinaselecteddevice.Duringqueueread/write  
operationstheseoutputsprovideprogrammableemptyflagstatus,ineitherdirectorpolledmode.The  
modeofflagoperationisdeterminedduringmasterresetviathestateoftheFMinput.Thisflagbusiscapable  
ofHigh-Impedancestate,thisisimportantduringexpansionofmulti-queuedevices.Duringdirect  
operationthePAEnbusisupdatedtoshowthePAEstatusofqueueswithinaselecteddevice.Selection  
ismadeusingRCLK,ESTRandRDADD.DuringPolledoperationthePAEnbusisloadedwiththePAE  
statusofmulti-queueflow-controldevicessequentiallybasedontherisingedgeofRCLK.  
PAF  
(R8)  
Programmable HSTL-LVTTL ThispinprovidestheAlmost-Fullflagstatusforthequeuethathasbeenselectedontheinputportforwrite  
Almost-FullFlag OUTPUT  
operations,(selectedviaWCLK,WRADDandWADEN).ThispinisLOWwhentheselectedqueueisalmost-  
full.ThisflagoutputmaybeduplicatedononeofthePAFnbuslines.ThisflagissynchronizedtoWCLK.  
PAFn  
Programmable HSTL-LVTTL Onthe 4Qdevice the PAFnbus is 8bits wide. This outputbus provides PAF status of4queues within  
(PAF3-P5  
PAF2-R5  
PAF1-T5  
PAF0-T4)  
Almost-FullFlag OUTPUT  
Bus  
aselecteddevice.Duringqueueread/writeoperationstheseoutputsprovideprogrammablefullflag  
status,ineitherdirectorpolledmode.Themodeofflagoperationisdeterminedduringmasterresetvia  
thestateoftheFMinput.ThisflagbusiscapableofHigh-Impedancestate,thisisimportantduringexpansion  
ofmulti-queuedevices.DuringdirectoperationthePAFnbusisupdatedtoshowthePAFstatusofqueues  
withinaselecteddevice.SelectionismadeusingWCLK,FSTR,WRADDandWADEN.DuringPolled  
operationthePAFnbusisloadedwiththePAFstatusofmulti-queueflow-controldevicessequentially  
basedonthe risingedge ofWCLK.  
PD  
(K1)  
Power Down  
PartialReset  
HSTL  
INPUT  
This inputis usedtoprovide additionalpowersavings. Whenthe device I/Ois setupforHSTL/eHSTL  
modeaHIGHonthePDinputdisablesthedatainputsonthewriteportonly,providingsignificantpower  
savings. In LVTTL mode this pin has no operation  
PRS  
(T8)  
HSTL-LVTTL APartialResetcanbeperformedonasinglequeueselectedwithinthemulti-queuedevice.BeforeaPartial  
INPUT  
Resetcanbe performedona queue, thatqueue mustbe selectedonboththe write portandreadport  
2clockcycles beforetheresetis performed.APartialResetis thenperformedbytakingPRSLOWfor  
one WCLK cycle and one RCLK cycle. The Partial Reset will only reset the read and write pointers to  
thefirstmemorylocation,noneofthedevicesconfigurationwillbechanged.  
Q[17:0]  
DataOutputBus HSTL-LVTTL Thesearethe18dataoutputpins.Dataisreadoutofthedeviceviatheseoutputpinsontherisingedge  
Qout(SeePin  
tablefordetails)  
OUTPUT  
ofRCLKprovidedthatREN is LOW, OE is LOWandthe queue is selected. Due tobus matchingnot  
alloutputs maybeused,anyunusedoutputs shouldnotbeconnected.  
RADEN  
(R14)  
ReadAddress HSTL-LVTTL The RADENinputis usedinconjunctionwithRCLKandthe RDADDaddress bus toselecta queue to  
Enable  
INPUT  
bereadfrom.AqueueaddressedviatheRDADDbusisselectedontherisingedgeofRCLKprovided  
thatRADENisHIGH.RADENshouldbeasserted(HIGH)onlyduringaqueuechangecycle(s).RADEN  
shouldnotbepermanentlytiedHIGH.RADENcannotbeHIGHforthesameRCLKcycleasESTR.Note,  
thatareadqueueselectioncannotbemade,(RADENmustNOTgoactive)untilprogrammingofthepart  
has beencompletedandSENO has goneLOW.  
8
IDT72T51233/72T51243/72T512532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
PINDESCRIPTIONS(CONTINUED)  
Symbol &  
Pin No.  
RCLK  
Name  
I/OTYPE  
Description  
ReadClock  
HSTL-LVTTL When enabledbyREN, the risingedge ofRCLKreads data fromthe selectedqueue via the output  
(T10)  
INPUT  
bus Qout. The queue to be read is selected via the RDADD address bus and a rising edge of RCLK  
whileRADENisHIGH.ArisingedgeofRCLKinconjunctionwithESTRandRDADDwillalsoselectthe  
devicetobeplacedonthePAEnbusduringdirectflagoperation.DuringpolledflagoperationthePAEn  
bus is cycledwithrespecttoRCLKandtheESYNCsignalis synchronizedtoRCLK.ThePAEandOV  
outputsareallsynchronizedtoRCLK.DuringdeviceexpansiontheEXOandEXIsignalsarebasedon  
RCLK.RCLKmustbecontinuous andfree-running.  
RDADD  
ReadAddress HSTL-LVTTL For the 4Q device the RDADD bus is 5 bits. The RDADD bus is a dual purpose address bus. The first  
[4:0]  
Bus  
INPUT  
functionofRDADDistoselectaqueuetobereadfrom.Theleastsignificant2bitsofthebus,RDADD[1:0]  
areusedtoaddress1of4possiblequeueswithinamulti-queuedevice.Themostsignificant 3bits,  
RDADD[4:2]areusedtoselect1of8possiblemulti-queuedevicesthatmaybeconnectedinexpansion  
mode. These 3 MSB’s will address a device with the matching ID code. The address present on the  
RDADDbus willbe selectedona risingedge ofRCLKprovidedthatRADENis HIGH, (note, thatdata  
canbeplacedontotheQoutbus,readfromthepreviouslyselectedqueueonthisRCLKedge).Onthe  
next rising RCLK edge after a read queue select, a data word from the previous queue will be placed  
ontotheoutputs,Qout,regardlessoftheRENinput.TwoRCLKrisingedgesafterreadqueueselect,data  
willbeplacedontotheQoutoutputsfromthenewlyselectedqueue,regardlessofRENdue tothefirst  
wordfallthrougheffect.  
(RDADD4-P16  
RDADD3-P15  
RDADD2-P14  
RDADD1-M16  
RDADD0-M15)  
ThesecondfunctionoftheRDADDbusistoselectthedeviceofqueuestobeloadedontothePAEnbus  
duringstrobedflagmode.Themostsignificant3bits,RDADD[4:2]areagainusedtoselect1of8  
possiblemulti-queuedevicesthatmaybeconnectedinexpansionmode.AddressbitsRDADD[1:0]  
aredontcareduringdeviceselection.ThedeviceaddresspresentontheRDADDbuswillbeselected  
onthe risingedge ofRCLKprovidedthatESTRis HIGH, (note, thatdata canbe placedontothe Qout  
bus, read from the previously selected queue on this RCLK edge). Please refer toTable 2 for details  
on RDADD bus.  
REN  
ReadEnable  
SerialClock  
HSTL-LVTTL The REN input enables read operations from a selected queue based on a rising edge of RCLK. A  
(T11)  
INPUT  
queue to be read from can be selected via RCLK, RADEN and the RDADD address bus regardless  
ofthestateofREN.DatafromanewlyselectedqueuewillbeavailableontheQoutoutputbusonthesecond  
RCLKcycle afterqueue selectionregardless ofRENdue tothe FWFToperation. Areadenable is not  
required to cycle the PAEn bus (in polled mode) or to select the device, (in direct mode).  
SCLK  
(N3)  
HSTL-LVTTL Ifserialprogrammingofthemulti-queuedevicehasbeenselectedduringmasterreset,theSCLKinput  
INPUT  
clockstheserialdatathroughthemulti-queuedevice.DatasetupontheSIinputisloadedintothedevice  
ontherisingedgeofSCLKprovidedthatSENIisenabled,LOW.Whenexpansionofdevicesisperformed  
theSCLKofalldevices shouldbeconnectedtothesamesource.  
SENI  
(M2)  
SerialInput  
Enable  
HSTL-LVTTL Duringserialprogrammingofamulti-queuedevice,dataloadedontotheSIinputwillbeclockedintothe  
INPUT  
part(via a risingedge ofSCLK), providedtheSENI inputofthatdevice is LOW. Ifmultiple devices are  
cascaded,theSENIinputshouldbeconnectedtotheSENOoutputofthepreviousdevice.Sowhenserial  
loadingofagivendeviceiscomplete,itsSENOoutputgoesLOW,allowingthenextdeviceinthechain  
tobeprogrammed(SENOwillfollowSENIofagivendeviceoncethatdeviceisprogrammed).TheSENI  
inputofthe masterdevice (orsingle device), shouldbe controlledbythe user.  
SENO  
(M1)  
SerialOutput  
Enable  
HSTL-LVTTL Thisoutputisusedtoindicatethatserialprogrammingordefaultprogrammingofthemulti-queuedevice  
OUTPUT  
hasbeencompleted.SENOfollowsSENIonceprogrammingofadeviceiscomplete.Therefore,SENO  
willgoLOWafterprogrammingprovidedSENIisLOW,onceSENIistakenHIGHagain,SENOwillalso  
goHIGH.WhentheSENOoutputgoesLOW,thedeviceisreadytobeginnormalread/writeoperations.  
Ifmultipledevicesarecascadedandserialprogrammingofthedeviceswillbeused,theSENOoutput  
shouldbeconnectedtotheSENIinputofthenextdeviceinthechain.Whenserialprogrammingofthe  
firstdeviceiscomplete,SENO willgoLOW,therebytakingtheSENIinputofthenextdeviceLOWand  
soonthroughoutthe chain. Whena givendevice inthe chainis fullyprogrammedtheSENO output  
essentiallyfollowstheSENIinput.TheusershouldmonitortheSENOoutputofthefinaldeviceinthechain.  
WhenthisoutputgoesLOW,serialloadingofalldeviceshasbeencompleted.  
SI  
SerialIn  
HSTL-LVTTL Duringserialprogrammingthispinisloadedwiththeserialdatathatwillconfigurethemulti-queuedevices.  
(L1)  
INPUT  
Data present on SI will be loaded on a rising edge of SCLK provided that SENI is LOW. In expansion  
9
IDT72T51233/72T51243/72T512532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
PINDESCRIPTIONS(CONTINUED)  
Symbol &  
Pin No.  
SI  
(Continued)  
(L1)  
Name  
SerialIn  
I/OTYPE  
Description  
HSTL-LVTTL modetheserialdatainputisloadedintothefirstdeviceinachain.WhenthatdeviceisloadedanditsSENO  
INPUT  
hasgoneLOW,thedatapresentonSIwillbedirectlyoutputtotheSOoutput.TheSOpinofthefirstdevice  
connectstotheSIpinofthesecondandsoon.Themulti-queuedevicesetupregistersareshiftregisters.  
SO  
SerialOut  
HSTL-LVTTL Thisoutputisusedinexpansionmodeandallowsserialdatatobepassedthroughdevicesinthechain  
(M3)  
OUTPUT  
tocompleteprogrammingofalldevices.TheSIofadeviceconnectstoSOofthepreviousdeviceinthe  
chain. The SOofthe finaldevice ina chainshouldnotbe connected.  
(2)  
TCK  
(A8)  
JTAGClock  
LVTTL  
INPUT  
ClockinputforJTAGfunction.Oneoffourterminals requiredbyIEEEStandard1149.1-1990.Test  
operations of the device are synchronous to TCK. Data from TMS and TDI are sampled on the rising  
edgeofTCKandoutputschangeonthefallingedgeofTCK.IftheJTAGfunctionisnotusedthissignal  
needs tobe tiedtoGND.  
(2)  
TDI  
JTAGTestData  
Input  
LVTTL  
INPUT  
One of four terminals required by IEEE Standard 1149.1-1990. During the JTAG boundary scan  
operation,testdataseriallyloadedviatheTDIontherisingedgeofTCKtoeithertheInstructionRegister,  
IDRegisterandBypass Register.Aninternalpull-upresistorforces TDIHIGHifleftunconnected.  
(B9)  
(2)  
TDO  
(A9)  
JTAGTestData  
Output  
LVTTL  
One of four terminals required by IEEE Standard 1149.1-1990. During the JTAG boundary scan  
OUTPUT operation,testdataseriallyloadedoutputviatheTDOonthefallingedgeofTCKfromeithertheInstruction  
Register,IDRegisterandBypassRegister.Thisoutputishighimpedanceexceptwhenshifting,while  
in SHIFT-DR and SHIFT-IR controller states.  
TMS(2)  
(B8)  
JTAGMode  
Select  
LVTTL  
INPUT  
TMSisaserialinputpin.OneoffourterminalsrequiredbyIEEEStandard1149.1-1990.TMSdirectsthe  
devicethroughitsTAPcontrollerstates.Aninternalpull-upresistorforcesTMSHIGHifleftunconnected.  
(2)  
TRST  
(C7)  
JTAGReset  
LVTTL  
INPUT  
TRSTisanasynchronousresetpinfortheJTAGcontroller.TheJTAGTAPcontrollerdoesnotautomatically  
resetuponpower-up, thus itmustbe resetbyeitherthis signalorbysettingTMS=HIGHforfive TCK  
cycles.IftheTAPcontrollerisnotproperlyresetthentheoutputswillalwaysbeinhigh-impedance.Ifthe  
JTAGfunctionisusedbuttheuserdoesnotwanttouseTRST,thenTRSTcanbetiedwithMRStoensure  
properqueue operation. Ifthe JTAGfunctionis notusedthenthis signalneeds tobe tiedtoGND. An  
internalpull-upresistorforcesTRSTHIGHifleftunconnected.  
WADEN  
(P4)  
WriteAddress  
Enable  
LVTTL  
INPUT  
TheWADENinputisusedinconjunctionwithWCLKandtheWRADDaddressbustoselectaqueueto  
bewritteninto.AqueueaddressedviatheWRADDbusisselectedontherisingedgeofWCLKprovided  
thatWADENisHIGH.WADENshouldbeasserted(HIGH)onlyduringaqueuecycle(s).WADENshould  
notbepermanentlytiedHIGH.WADENcannotbeHIGHforthesameWCLKcycleasFSTR.Note,that  
awritequeueselectioncannotbemade,(WADENmustNOTgoactive)untilprogrammingoftheparthas  
beencompletedandSENO hasgoneLOW.  
WCLK  
(T7)  
WriteClock  
HSTL-LVTTL WhenenabledbyWEN,therisingedgeofWCLKwritesdataintotheselectedqueueviatheinputbus,  
INPUT  
Din.ThequeuetobewrittentoisselectedviatheWRADDaddressbusandarisingedgeofWCLKwhile  
WADENisHIGH.ArisingedgeofWCLKinconjunctionwithFSTRandWRADDwillalsoselecttheflag  
quadranttobeplacedonthePAFnbusduringdirectflagoperation.DuringpolledflagoperationthePAFn  
busiscycledwithrespecttoWCLKandtheFSYNCsignalissynchronizedtoWCLK.ThePAFn,PAFand  
FFoutputsareallsynchronizedtoWCLK.DuringdeviceexpansiontheFXOandFXIsignalsarebased  
onWCLK.TheWCLKmustbecontinuous andfree-running.  
WEN  
(T6)  
WriteEnable  
HSTL-LVTTL TheWENinputenableswriteoperationstoaselectedqueuebasedonarisingedgeofWCLK.Aqueue  
INPUT  
tobewrittentocanbeselectedviaWCLK,WADENandtheWRADDaddressbusregardlessofthestate  
ofWEN.DatapresentonDincanbewrittentoanewlyselectedqueueonthesecondWCLKcycleafter  
queueselectionprovidedthatWENisLOW.AwriteenableisnotrequiredtocyclethePAFnbus(inpolled  
mode)ortoselectthePAFnquadrant, (indirectmode).  
WRADD  
WriteAddress HSTL-LVTTL Forthe 4Qdevice the WRADDbus is 5bits. The WRADDbus is a dualpurpose address bus. The first  
[4:0]  
Bus  
INPUT  
functionofWRADDistoselectaqueuetobewrittento.Theleastsignificant2bitsofthebus,WRADD[1:0]  
areusedtoaddress1of4possiblequeueswithinamulti-queuedevice.Themostsignificant 3bits,  
WRADD[4:2]areusedtoselect1of8possiblemulti-queuedevicesthatmaybeconnectedinexpansion  
mode. These 3 MSB’s will address a device with the matching ID code. The address present on the  
WRADDbuswillbeselectedonarisingedgeofWCLKprovidedthatWADENisHIGH,(note,thatdata  
presentontheDinbuscanbewrittenintothepreviouslyselectedqueueonthisWCLKedgeandonthe  
(WRADD4-T1  
WRADD3-R1  
WRADD2-R2  
WRADD1-N1  
WRADD0-N2)  
10  
IDT72T51233/72T51243/72T512532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
PINDESCRIPTIONS(CONTINUED)  
Symbol &  
Pin No.  
Name  
I/OTYPE  
Description  
WRADD  
[4:0]  
WriteAddress HSTL-LVTTL nextrisingWCLKalso,providingthatWENis LOW).TwoWCLKrisingedges afterwritequeueselect,  
Bus  
INPUT  
datacanbewrittenintothenewlyselectedqueue.  
(Continued)  
ThesecondfunctionoftheWRADDbusistoselectthedeviceofqueuestobeloadedontothePAFnbus  
duringstrobedflagmode.Themostsignificant3bits,WRADD[4:2]areagainusedtoselect1of8possible  
multi-queuedevicesthatmaybeconnectedinexpansionmode.AddressbitsWRADD[1:0]aredontcare  
duringdevice selection. The device address presentonthe WRADDbus willbe selectedonthe rising  
edgeofWCLKprovidedthatFSTRisHIGH,(note,thatdatacanbewrittenintothepreviouslyselected  
queue on this WCLK edge). Please refer to Table 1 for details on the WRADD bus.  
VCC  
(See below)  
+2.5VSupply  
Power  
Power  
These are VCC power supply pins and must all be connected to a +2.5V supply rail.  
VDDQ  
(See Pin No.  
tablebelow)  
O/PRailVoltage  
Thesepinsmustbetiedtothedesiredoutputrailvoltage.ForLVTTLI/Othesepinsmustbeconnected  
to+2.5V,forHSTLthesepinsmustbeconnectedto+1.5VandforeHSTLthesepinsmustbeconnected  
to+1.8V.  
GND  
GroundPin  
Ground  
These are Ground pins and must all be connected to the GND supply rail.  
(See below)  
Vref  
(K3)  
Reference  
Voltage  
HSTL  
INPUT  
ThisisaVoltageReferenceinputandmustbeconnectedtoavoltageleveldeterminedfromthetable  
"RecommendedDCOperatingConditions". The inputprovides the reference levelforHSTL/eHSTL  
inputs. ForLVTTLI/Omode this inputshouldbe tiedtoGND.  
NOTES:  
1. Inputs should not change after Master Reset.  
2. These pins are for the JTAG port. Please refer to pages 50-54 and Figures 30-32.  
PIN NUMBER TABLE  
Symbol  
Name  
I/OTYPE  
HSTL-LVTTL D17-C1, D(16,15)-B(2,1), D(14-12)-A(1-3), D11-B3, D10-A4, D9-B4, D8-C4, D7-A5, D6-B5, D5-C5,  
INPUT D4-A6, D3-B6, D2-C6, D1-A7, D0-B7  
Pin Number  
D[17:0]  
Din  
DataInputBus  
Q[17:0]  
Qout  
DataOutputBus HSTL-LVTTL Q17-C15, Q16-D14, Q(15,14)-A(16,15), Q13-B15, Q12-A14, Q11-B14, Q10-C14, Q9-A13, Q8-B13,  
OUTPUT Q7-C13, Q6-A12, Q5-B12, Q4-C12, Q3-A11, Q2-B11, Q(1,0)-C(11,10)  
VCC  
+2.5VSupply  
O/PRailVoltage  
GroundPin  
Power  
Power  
Ground  
D(7-10),E(6,7,10,11),F(5,12),G(4,5,12,13),H(4,13),J(4,13),K(4,5,12,13),L(5,12),M(6,7,10,11),N(7-10)  
D(4-6,11-13), E(4,5,12,13), F(4,13), L(4,13), M(4,5,12,13), N(4-6,11-13)  
VDDQ  
GND  
C(2,3), D(1-3), E(1-3,8-9), F(1-3,6-11), G(1-3,6-11), H(1-3,5-12), J(1,3,5-12), K(2,6-11,14), L(6-11,14),  
M(8-9), N(14-16), P(1-3)  
DNC  
DoNotConnect  
None  
B16, C16, D(15,16), E(14-16), F(14-16), G(14-16), H(14-16), J(15,16), P(6,7,11,12), R(6,7,9,12), T12  
11  
IDT72T51233/72T51243/72T512532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
ABSOLUTEMAXIMUMRATINGS  
CAPACITANCE(TA = +25°C, f = 1.0MHz)  
Symbol  
Rating  
Commercial  
–0.5to+3.6(2)  
Unit  
Symbol  
Parameter(1)  
Conditions  
Max.  
Unit  
VTERM  
TerminalVoltage  
with respect to GND  
V
(2,3)  
CIN  
Input  
Capacitance  
VIN = 0V  
10(3)  
pF  
TSTG  
IOUT  
StorageTemperature  
DCOutputCurrent  
–55 to +125  
–50 to +50  
°C  
mA  
(1,2)  
COUT  
Output  
Capacitance  
VOUT = 0V  
15  
pF  
NOTES:  
NOTES:  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause  
permanent damage to the device. This is a stress rating only and functional operation  
of the device at these or any other conditions above those indicated in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect reliability.  
1. With output deselected, (OE VIH).  
2. Characterized values, not currently tested.  
3. CIN for Vref is 20pF.  
2. Compliant with JEDEC JESD8-5. VCC terminal only.  
RECOMMENDEDDCOPERATINGCONDITIONS  
Symbol  
VCC  
Parameter  
Min.  
2.375  
0
Typ.  
2.5  
0
Max.  
2.625  
0
Unit  
V
SupplyVoltage  
SupplyVoltage  
GND  
V
VIH  
InputHighVoltage  
LVTTL  
eHSTL  
HSTL  
1.7  
VREF+0.2  
VREF+0.2  
3.45  
V
V
V
VIL  
InputLowVoltage  
LVTTL  
eHSTL  
HSTL  
-0.3  
0.7  
VREF-0.2  
VREF-0.2  
V
V
V
VREF  
(HSTL only)  
VoltageReferenceInput eHSTL  
HSTL  
0.8  
0.68  
0.9  
0.75  
1.0  
0.9  
V
V
TA  
OperatingTemperatureCommercial  
OperatingTemperatureIndustrial  
0
70  
85  
°C  
°C  
TA  
-40  
NOTE:  
1. VREF is only required for HSTL or eHSTL inputs. VREF should be tied LOW for LVTTL operation.  
12  
IDT72T51233/72T51243/72T512532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
DCELECTRICALCHARACTERISTICS  
(Commercial: VCC = 2.5V ± 0.125V, TA = 0°C to +70°C;Industrial: VCC = 2.5V ± 0.125V, TA = -40°C to +85°C)  
Symbol  
ILI  
Parameter  
Min.  
–10  
–10  
Max.  
10  
Unit  
µA  
µA  
V
V
V
InputLeakageCurrent  
OutputLeakageCurrent  
ILO  
10  
(3)  
VOH  
OutputLogic1Voltage, IOH = –8 mA @VDDQ = 2.5V ± 0.125V (LVTTL)  
IOH = –8 mA @VDDQ = 1.8V ± 0.1V (eHSTL)  
VDDQ-0.4  
VDDQ-0.4  
VDDQ-0.4  
IOH = –8 mA @VDDQ = 1.5V ± 0.1V (HSTL)  
VOL  
OutputLogic0Voltage, IOL = 8 mA @VDDQ = 2.5V ± 0.125V (LVTTL)  
IOL = 8 mA @VDDQ = 1.8V ± 0.1V (eHSTL)  
0.4V  
0.4V  
0.4V  
V
V
V
IOL = 8 mA @VDDQ = 1.5V ± 0.1V (HSTL)  
ICC1(1,2)  
ICC2(1)  
ICC3(1)  
Active VCC Current (VCC = 2.5V)  
I/O = LVTTL  
I/O = HSTL  
I/O = eHSTL  
80  
150  
150  
mA  
mA  
mA  
Standby VCC Current (VCC = 2.5V)  
I/O = LVTTL  
I/O = HSTL  
I/O = eHSTL  
25  
100  
100  
mA  
mA  
mA  
Standby VCC Current in Power Down mode(VCC = 2.5V) I/O = LVTTL  
50  
50  
mA  
mA  
mA  
I/O = HSTL  
I/O = eHSTL  
(1,2)  
IDDQ  
ActiveVDDQ Current (VDDQ =2.5VLVTTL)  
(VDDQ = 1.5V HSTL)  
I/O = LVTTL  
I/O = HSTL  
I/O = eHSTL  
10  
10  
10  
mA  
mA  
mA  
(VDDQ = 1.8V eHSTL)  
NOTES:  
1. Both WCLK and RCLK toggling at 20MHz.  
2. Data inputs toggling at 10MHz.  
3. Total Power consumed: PT = [(VCC x ICC) + (VDDQ x IDDQ)].  
4. Outputs are not 3.3V tolerant.  
5. The following inputs should be pulled to GND: WRADD, RDADD, WADEN, FSTR, ESTR, SCLK, SI, EXI, FXI and all Data Inputs.  
The following inputs should be pulled to VCC: WEN, REN, SENI, PRS, MRS, TDI, TMS and TRST.  
All other inputs are don't care and should be at a known state.  
13  
IDT72T51233/72T51243/72T512532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
HSTL  
AC TEST LOADS  
1.5V AC TEST CONDITIONS  
VDDQ/2  
InputPulseLevels  
0.25to1.25V  
0.4ns  
InputRise/FallTimes  
50Ω  
InputTimingReferenceLevels  
OutputReferenceLevels  
0.75  
Z0 = 50Ω  
I/O  
VDDQ/2  
6115 drw04  
NOTE:  
1. VDDQ = 1.5V±.  
Figure 2a. AC Test Load  
EXTENDEDHSTL  
1.8V AC TEST CONDITIONS  
6
5
4
3
2
1
InputPulseLevels  
0.4 to 1.4V  
0.4ns  
InputRise/FallTimes  
InputTimingReferenceLevels  
OutputReferenceLevels  
0.9  
VDDQ/2  
NOTE:  
1. VDDQ = 1.8V±.  
20 30 50 80 100  
Capacitance (pF)  
200  
6115 drw04a  
2.5VLVTTL  
2.5V AC TEST CONDITIONS  
Figure 2b. Lumped Capacitive Load, Typical Derating  
InputPulseLevels  
GND to 2.5V  
1ns  
InputRise/FallTimes  
InputTimingReferenceLevels  
OutputReferenceLevels  
VCC/2  
VDDQ/2  
NOTE:  
1. For LVTTL VCC = VDDQ.  
OUTPUT ENABLE & DISABLE TIMING  
Output  
Enable  
Output  
Disable  
VIH  
OE  
VIL  
tOE &  
tOLZ  
tOHZ  
Output  
Normally  
LOW  
V
CC/2  
OL  
V
CC/2  
100mV  
100mV  
100mV  
V
V
OH  
Output  
Normally  
HIGH  
100mV  
VCC/2  
VCC/2  
6115 drw04b  
NOTE:  
1. REN is HIGH.  
14  
IDT72T51233/72T51243/72T512532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
ACELECTRICALCHARACTERISTICS  
(Commercial: VCC = 2.5V ± 0.15V, TA = 0°C to +70°C;Industrial: VCC = 2.5V ± 0.15V, TA = -40°C to +85°C; JEDEC JESD8-A compliant)  
Commercial  
Com'l & Ind'l(1)  
IDT72T51233L5  
IDT72T51243L5  
IDT72T51253L5  
IDT72T51233L6  
IDT72T51243L6  
IDT72T51253L6  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
fS  
Clock Cycle Frequency (WCLK & RCLK)  
DataAccessTime  
0.6  
5
200  
3.6  
3.6  
3.6  
3.6  
10  
0.6  
6
166  
3.7  
3.7  
3.7  
3.7  
10  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tA  
tCLK  
tCLKH  
tCLKL  
tDS  
Clock Cycle Time  
Clock High Time  
2.3  
2.3  
1.5  
0.5  
1.5  
0.5  
30  
2.7  
2.7  
2.0  
0.5  
2.0  
0.5  
30  
Clock Low Time  
DataSetupTime  
tDH  
DataHoldTime  
tENS  
tENH  
tRS  
EnableSetupTime  
EnableHoldTime  
ResetPulseWidth  
tRSS  
tRSR  
tPRSS  
tPRSH  
ResetSetupTime  
15  
15  
ResetRecoveryTime  
10  
10  
PartialResetSetup  
1.5  
0.5  
0.6  
0.6  
0.6  
100  
45  
2.0  
0.5  
0.6  
0.6  
0.6  
100  
45  
PartialResetHold  
(2)  
tOLZ(OE-Qn)  
OutputEnabletoOutputinLow-Impedance  
OutputEnabletoOutputinHigh-Impedance  
OutputEnabletoDataOutputValid  
Clock Cycle Frequency (SCLK)  
Serial Clock Cycle  
(2)  
tOHZ  
tOE  
fC  
tSCLK  
tSCKH  
tSCKL  
tSDS  
20  
20  
Serial Clock High  
Serial Clock Low  
45  
45  
SerialDataInSetup  
20  
20  
tSDH  
tSENS  
tSENH  
tSDO  
tSENO  
tSDOP  
tSENOP  
tPCWQ  
tPCRQ  
tAS  
Serial Data In Hold  
1.2  
20  
1.2  
20  
SerialEnableSetup  
SerialEnableHold  
1.2  
1.5  
1.5  
20  
1.2  
1.5  
1.5  
20  
SCLK to Serial Data Out  
SCLK to Serial Enable Out  
SerialDataOutPropagationDelay  
SerialEnablePropagationDelay  
ProgrammingCompletetoWriteQueueSelection  
ProgrammingCompletetoReadQueueSelection  
AddressSetup  
20  
20  
3.7  
3.7  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
20  
20  
1.5  
1.0  
1.5  
0.5  
1.5  
1.0  
0.6  
0.6  
0.6  
0.6  
2.5  
1.5  
2.0  
0.5  
2.0  
0.5  
0.6  
0.6  
0.6  
0.6  
tAH  
Address Hold  
tWFF  
tROV  
tSTS  
Write Clock to Full Flag  
ReadClocktoOutputValid  
PAE/PAF Strobe Setup  
PAE/PAF Strobe Hold  
QueueSetup  
tSTH  
tQS  
tQH  
QueueHold  
tWAF  
tRAE  
WCLK to PAF flag  
RCLK to PAE flag  
Write ClocktoSynchronous Almost-FullFlagBus  
Read Clock to Synchronous Almost-Empty Flag Bus  
tPAF  
tPAE  
NOTES:  
1. Industrial temperature range product for the 6ns is available as a standard device. All other speed grades available by special order.  
2. Values guaranteed by design, not currently tested.  
15  
IDT72T51233/72T51243/72T512532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
ACELECTRICALCHARACTERISTICS(CONTINUED)  
(Commercial: VCC = 2.5V ± 0.15V, TA = 0°C to +70°C;Industrial: VCC = 2.5V ± 0.15V, TA = -40°C to +85°C; JEDEC JESD8-A compliant)  
Commercial  
Com'l & Ind'l(1)  
IDT72T51233L5  
IDT72T51243L5  
IDT72T51253L5  
IDT72T51233L6  
IDT72T51243L6  
IDT72T51253L6  
Symbol  
tERCLK  
Parameter  
RCLK to Echo RCLK Output  
Min.  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
4
Max.  
Min.  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
4.5  
6
Max.  
4.2  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
4.0  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
tCLKEN  
RCLK to Echo REN Output  
(2)  
tPAELZ  
RCLK to PAE Flag Bus to Low-Impedance  
RCLK to PAE Flag Bus to High-Impedance  
WCLK to PAF Flag Bus to Low-Impedance  
WCLK to PAF Flag Bus to High-Impedance  
WCLKtoFullFlagtoHigh-Impedance  
WCLKtoFullFlagtoLow-Impedance  
(2)  
tPAEHZ  
(2)  
tPAFLZ  
(2)  
tPAFHZ  
(2)  
tFFHZ  
(2)  
tFFLZ  
(2)  
tOVLZ  
RCLKtoOutputValidFlagtoLow-Impedance  
RCLKtoOutputValidFlagtoHigh-Impedance  
WCLK to PAF Bus Sync to Output  
WCLK to PAF Bus Expansion to Output  
RCLK to PAE Bus Sync to Output  
RCLK to PAE Bus Expansion to Output  
SKEW time between RCLK and WCLK for FF and OV  
SKEW time between RCLK and WCLK for PAF and PAE  
SKEW time between RCLK and WCLK for PAF[0:3] and PAE[0:3]  
SKEW time between RCLK and WCLK for OV  
ExpansionInputSetup  
(2)  
tOVHZ  
tFSYNC  
tFXO  
tESYNC  
tEXO  
tSKEW1  
tSKEW2  
tSKEW3  
tSKEW4  
tXIS  
5
5
6
5
6
1.0  
0.5  
1.0  
0.5  
tXIH  
ExpansionInputHold  
NOTES:  
1. Industrial temperature range product for the 6ns is available as a standard device. All other speed grades available by special order.  
2. Values guaranteed by design, not currently tested.  
16  
IDT72T51233/72T51243/72T512532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
active,LOW.Upondetectionofcompletionofprogramming,theusershould  
ceaseallprogrammingandtakeSENIinactive,HIGH.Note,SENOfollowsSENI  
onceprogrammingofadeviceiscomplete.Therefore,SENOwillgoLOWafter  
programmingprovidedSENIisLOW,onceSENIistakenHIGHagain,SENO  
willalsogoHIGH.TheoperationoftheSOoutputissimilar,whenprogramming  
ofagivendeviceiscomplete,theSOoutputwillfollowtheSIinput.  
FUNCTIONALDESCRIPTION  
MASTERRESET  
AMasterResetisperformedbytogglingtheMRSinputfromHIGHtoLOW  
toHIGH.Duringamasterresetallinternalmulti-queuedevicesetupandcontrol  
registersareinitializedandrequireprogrammingeitherseriallybytheuservia  
theserialport,orusingthedefaultsettings.Duringamasterresetthestateof  
thefollowinginputsdeterminethefunctionalityofthepart,thesepinsshouldbe  
held HIGH or LOW.  
FM – Flag bus Mode  
IW,OWBusMatchingoptions  
MAST – Master Device  
ID0, 1, 2 – Device ID  
DFMProgrammingmode,serialordefault  
DF – Offset value for PAE and PAF  
Onceamasterresethastakenplace,thedevicemustbeprogrammedeither  
seriallyorviathedefaultmethodbeforeanyread/writeoperationscanbegin.  
See Figure 5, Master Reset for relevant timing.  
Ifdevicesarebeingusedinexpansionmodetheserialportsofdevicesshould  
becascaded.Theusercanloadalldevicesviatheserialinputportcontrolpins,  
SI & SENI, of the first device in the chain. Again, the user may utilize the C’  
programtogeneratetheserialbitstream,theprogrampromptingtheuserfor  
the numberofdevices tobe programmed. The SENO andSO(serialout)of  
thefirstdeviceshouldbeconnectedtotheSENI andSIinputs ofthesecond  
devicerespectivelyandsoon,withtheSENO&SOoutputsconnectingtothe  
SENI&SIinputsofalldevicesthroughthechain.Alldevicesinthechainshould  
beconnectedtoacommonSCLK.Theserialoutputportofthefinaldeviceshould  
be monitored by the user. When SENO of the final device goes LOW, this  
indicates thatserialprogrammingofalldevices has beensuccessfullycom-  
pleted.Upondetectionofcompletionofprogramming,theusershouldceaseall  
programmingandtakeSENIofthefirstdeviceinthechaininactive,HIGH.  
Asmentioned,thefirstdeviceinthechainhasitsserialinputportcontrolled  
bytheuser,thisisthefirstdevicetohaveitsinternalregistersseriallyloaded  
bytheserialbitstream.Whenprogrammingofthisdeviceiscompleteitwilltake  
its SENOoutputLOWandbypasstheserialdataloadedontheSIinputtoits  
SOoutput.Theserialinputoftheseconddeviceinthechainisnowloadedwith  
thedatafromtheSOofthefirstdevice,whiletheseconddevicehasitsSENI  
input LOW. This process continues through the chain until all devices are  
programmedandtheSENO ofthefinaldevicegoesLOW.  
PARTIALRESET  
APartialResetisameansbywhichtheusercanresetboththereadandwrite  
pointers of a single queue that has been setup within a multi-queue device.  
Beforeapartialresetcantakeplaceonaqueue,therespectivequeuemustbe  
selectedonboththereadportandwriteportaminimumof2RCLKand2WCLK  
cyclesbeforethePRSgoesLOW.Thepartialresetisthenperformedbytoggling  
thePRSinputfromHIGHtoLOWtoHIGH,maintainingtheLOWstateforatleast  
oneWCLKandoneRCLKcycle.Onceapartialresethastakenplaceaminimum  
of3WCLKand3RCLKcyclesmustoccurbeforeenabledwritesorreadscan  
occur.  
Once all serial programming has been successfully completed, normal  
operations,(queueselectionsonthereadandwriteports)maybegin.When  
connectedinexpansionmode,theIDT72T51233/72T51243/72T51253de-  
vicesrequireatotalnumberofseriallyloadedbitsperdevicetocompleteserial  
programming,(SCLKcycleswithSENIenabled),calculatedby:n[19+(Qx72)]  
whereQis thenumberofqueues theuserwishes tosetupwithinthedevice,  
where n is the number of devices in the chain.  
APartialResetonlyresets thereadandwritepointers ofagivenqueue,a  
partialresetwillnoteffecttheoverallconfigurationandsetupofthemulti-queue  
deviceandits queues.  
See Figure 6, PartialReset for relevant timing.  
SERIAL PROGRAMMING  
SeeFigure7,SerialPortConnectionandFigure8,SerialProgrammingfor  
connectionandtiminginformation.  
The multi-queue flow-control devices is a fully programmable device,  
providingtheuserwithflexibilityinhowqueuesareconfiguredintermsofthe  
numberofqueues,depthofeachqueueandpositionofthePAF/PAEflagswithin  
respectivequeues.Alluserprogrammingisdoneviatheserialportafteramaster  
resethas takenplace. Internallythe multi-queue device has setupregisters  
whichmustbeseriallyloaded,theseregisterscontainvaluesforeveryqueue  
within the device, such as the depth and PAE/PAF offset values. The  
IDT72T51233/72T51243/72T51253 devices are capable of up to 4 queues  
andthereforecontain4setsofregistersforthesetupofeachqueue.  
DuringaMasterResetiftheDFM(DefaultMode)inputisLOW,thenthedevice  
willrequire serialprogrammingbythe user. Itis recommendedthatthe user  
utilizeaC’programprovidedbyIDT,thisprogramwillprompttheuserforall  
informationregardingthemulti-queuesetup.Theprogramwillthengenerate  
aserialbitstreamwhichshouldbeseriallyloadedintothedeviceviatheserial  
port.FortheIDT72T51233/72T51243/72T51253devicestheserialprogram-  
mingrequiresatotalnumberofseriallyloadedbitsperdevice,(SCLKcycleswith  
SENIenabled),calculatedby:19+(Qx72)whereQisthenumberofqueuesthe  
userwishestosetupwithinthedevice.  
DEFAULTPROGRAMMING  
Duringa MasterResetifthe DFM(DefaultMode)inputis HIGHthe multi-  
queuedevicewillbeconfiguredfordefaultprogramming,(serialprogramming  
is not permitted). Default programming provides the user with a simpler,  
howeverlimitedmeansbywhichtosetupthemulti-queueflow-controldevices,  
rather than using the serial programming method. The default mode will  
configure a multi-queue device such that the maximum number of queues  
possiblearesetup,withallofthepartsavailablememoryblocksbeingallocated  
equallybetweenthequeues.ThevaluesofthePAE/PAFoffsetsisdetermined  
bythe state ofthe DF(default)pinduringa masterreset.  
FortheIDT72T51233/72T51243/72T51253devicesthedefaultmodewill  
setup4queues,eachqueueconfiguredasfollows:FortheIDT72T51233with  
x9 input and x9 output ports, 16,384 x 9. If one or both ports is x18, 8,192 x  
18. FortheIDT72T51243withx9inputandx9outputports,32,768x9.Ifone  
or both ports is x18, 16,384 x 18. For the IDT72T51253 with x9 input and x9  
outputports,65,536x9.Ifoneorbothportsisx18,32,768x18.Forbothdevices  
thevalueofthePAE/PAFoffsetsisdeterminedatmasterresetbythestateof  
theDFinput.IfDFisLOWthenboththePAE&PAFoffsetwillbe8,ifHIGHthen  
the value is 128.  
Once the master reset is complete and MRS is HIGH, the device can be  
seriallyloaded.DatapresentontheSI(serialin),inputisloadedintotheserial  
port on a rising edge of SCLK (serial clock), provided that SENI (serial in  
enable),isLOW.Onceserialprogrammingofthedevicehasbeensuccessfully  
completedthedevicewillindicatethisviatheSENO(serialoutputenable)going  
WhenconfiguringtheIDT72T51233/72T51243/72T51253devicesinde-  
faultmodetheusersimplyhastoapplyWCLKcyclesafteramasterreset,until  
17  
IDT72T51233/72T51243/72T512532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
SENOgoesLOW,thissignalsthatdefaultprogrammingiscomplete.Theseclock AqueuetobewrittentoneedonlybeselectedonasinglerisingedgeofWCLK.  
cyclesarerequiredforthedevicetoloaditsinternalsetupregisters.Whena Allsubsequentwriteswillbewrittentothatqueueuntilanewqueueisselected.  
singlemulti-queuedeviceis used,thecompletionofdeviceprogrammingis Aminimumof3WCLKcyclesmustoccurbetweenqueueselectionsonthewrite  
signaledbytheSENOoutputofadevicegoingfromHIGHtoLOW.Note,that port.OnthenextWCLKrisingedgethewriteportdiscretefullflagwillupdate  
SENImustbeheldLOWwhenadeviceissetupfordefaultprogrammingmode. toshowthefullstatusofthenewlyselectedqueue.Onthesecondrisingedge  
Whenmulti-queuedevicesareconnectedinexpansionmode,theSENIof ofWCLK,datapresentonthedatainputbus,Dincanbewrittenintothenewly  
the first device in a chain can be held LOW. The SENO of a device should selectedqueueprovidedthatWENisLOWandthenewqueueisnotfull.The  
connecttotheSENIofthenextdeviceinthechain.TheSENOofthefinaldevice cycleofthequeueselectionandthenextcyclewillcontinuetowritedatapresent  
isusedtoindicatethatdefaultprogrammingofalldevicesiscomplete.Whenthe onthedatainputbus,DinintothepreviousqueueprovidedthatWENisactive  
finalSENOgoesLOWnormaloperationsmaybegin.Again,alldeviceswillbe LOW.  
programmedwiththeirmaximumnumberofqueuesandthememorydivided  
equally between them. Please refer to Figure 9, DefaultProgramming.  
IfWENisHIGH,inactiveforthese3clockcycles,thendatawillnotbewritten  
in to the previous queue.  
Ifthenewlyselectedqueueisfullatthepointofitsselection,thenwritestothat  
queue willbe prevented, a fullqueue cannotbe writteninto.  
Inthe4queuemulti-queuedevicetheWRADDaddressbusis5bitswide.  
WRITE QUEUE SELECTION & WRITE OPERATION  
TheIDT72T51233/72T51243/72T51253multi-queueflow-controldevices  
haveupto4queuesthatdatacanbewrittenintoviaacommonwriteportusing Theleastsignificant2bitsareusedtoaddressoneofthe4availablequeues  
the data inputs, Din, write clock, WCLK and write enable, WEN. The queue withinasinglemulti-queuedevice.Themostsignificant3bitsareusedwhen  
address present on the write address bus, WRADD during a rising edge on adeviceis connectedinexpansionmode,upto8devices canbeconnected  
WCLKwhilewriteaddressenable,WADENisHIGH,isthequeueselectedfor inexpansion,eachdevicehavingits own3bitaddress.Theselecteddevice  
writeoperations.ThestateofWENisdontcareduringthewritequeueselection istheoneforwhichtheaddressmatchesa3bitIDcode,whichisstaticallysetup  
cycle.ThequeueselectiononlyhastobemadeonasingleWCLKcycle,this on the ID pins, ID0, ID1, and ID2 of each individual device.  
willremainthe selectedqueue untilanotherqueue is selected, the selected  
queueisalwaysthelastqueueselected.  
Note,theWRADDbusisalsousedinconjunctionwithFSTR(almostfullflag  
busstrobe),toaddressthealmostfullflagbusquadrantduringdirectmodeof  
Thewriteportisdesignedsuchthat100%busutilizationcanbeobtained. operation.  
ThismeansthatdatacanbewrittenintothedeviceoneveryWCLKrisingedge  
RefertoTable1,forWriteAddressbusarrangement.Also,refertoFigure  
includingthecyclethatanewqueueisbeingaddressed.Whenanewqueue 10, Write Queue Select, Write Operation and Full flag Operation in Single  
isselectedforwriteoperationstheaddressforthatqueuemustbepresenton Device Mode and Figure 12, Full Flag Timing Expansion Mode for timing  
theWRADDbusduringarisingedgeofWCLKprovidedthatWADENisHIGH. diagrams.  
TABLE 1 — WRITE ADDRESS BUS, WRADD[4:0]  
Operation WCLK WADEN FSTR  
WRADD[4:0]  
4 3 2  
Device Select  
(Compared to  
ID0,1,2)  
1 0  
Write Queue Address  
(2 bits = 4 Queues)  
Write Queue  
1
0
Select  
4 3 2  
1
0
PAFn Flag  
Bus Device  
Select  
0
1
Device Select  
(Compared to  
ID0,1,2)  
X
X
6115 drw05  
18  
IDT72T51233/72T51243/72T512532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
READ QUEUE SELECTION & READ OPERATION  
registerafter3RCLKcycles.Asmentioned,intheprevious3RCLKcyclesto  
Themulti-queueflow-controldevices has upto4queues thatdatais read thenewdatabeingavailable,datacanstillbereadfromthepreviousqueue,  
fromviaacommonreadportusingthedataoutputs,Qout,readclock,RCLK providedthatthequeueisnotempty.Atthepointofqueueselection,the internal  
andreadenable,REN.Anoutputenable,OEcontrolpinisalsoprovidedtoallow datapipelineisloadedwiththelastwordfromthepreviousqueueandthenext  
High-ImpedanceselectionoftheQoutdataoutputs.Themulti-queuedevice wordfromthenewqueue,boththesewordswillfallthroughtotheoutputregister  
readportoperatesinamodesimilartoFirstWordFallThrough”onatraditional consecutivelyuponselectionofthenewqueue.Thispipeliningeffectprovides  
IDT FIFO, but with the added feature of data output pipelining. This data theuserwith100%busutilization,andbringsaboutthepossibilitythataNULL”  
pipeliningontheoutputportallows theusertoachieve100%bus utilization, queue maybe requiredwithina multi-queue device. Nullqueue operationis  
which is the ability to read out a data word on every rising edge of RCLK discussedinthenextsectionon.  
regardless of whether a new queue is being selected for read operations.  
IfanemptyqueueisselectedforreadoperationsontherisingedgeofRCLK,  
Thequeueaddresspresentonthereadaddressbus,RDADDduringarising onthesameRCLKedgeandthefollowingRCLKedge,2finalreadswillbemade  
edge on RCLK while read address enable, RADEN is HIGH, is the queue fromthepreviousqueue,providedthatRENisactive,LOW.OnthenextRCLK  
selectedforreadoperations.Aqueuetobereadfromneedonlybeselected rising edge a read from the new queue will not occur, because the queue is  
on a single rising edge of RCLK. All subsequent reads will be read from that empty.Thelastwordinthedataoutputregister(fromthepreviousqueue),will  
queueuntilanewqueueisselected.Aminimumof3RCLKcyclesmustoccur remainthere,buttheoutputvalidflag,OVwillgoHIGH,toindicatethatthedata  
betweenqueueselectionsonthereadport.Datafromthenewlyselectedqueue present is no longer valid.  
willbepresentontheQoutoutputsafter3RCLKcyclesplusanaccesstime,  
TheRDADDbusisalsousedinconjunctionwithESTR(almostemptyflag  
providedthatOEisactive,LOW.OnthesameRCLKrisingedgethatthenew busstrobe),toaddressthealmostemptyflagbusquadrantduringdirectmode  
queueis selected,datacanstillbereadfromthepreviouslyselectedqueue, ofoperation.Inthe4queuemulti-queuedevicetheRDADDaddressbusis5  
providedthatRENisLOW,activeandthepreviousqueueisnotemptyonthe bitswide.Theleastsignificant2bitsareusedtoaddressoneofthe4available  
followingrisingedgeofRCLKawordwillbereadfromthepreviouslyselected queueswithinasinglemulti-queuedevice.Themostsignificant3bitsareused  
queueregardlessofRENduetothefallthroughoperation,(providedthequeue when a device is connected in expansion mode, up to 8 devices can be  
isnotempty). RememberthatOEallowstheusertoplacetheQout,dataoutput connectedinexpansion,eachdevicehavingitsown3bitaddress.Theselected  
bus into High-Impedance and the data can be read onto the output register deviceistheoneforwhichtheaddressmatchesa3bitIDcode,whichisstatically  
regardlessofOE.  
setup on the ID pins, ID0, ID1, and ID2 of each individual device.  
RefertoTable2,forReadAddressbusarrangement.Also,refertoFigures  
Whenaqueueis selectedonthereadport, thenextwordavailableinthat  
queue (provided that the queue is not empty), will fall through to the output 13,15&16forreadqueueselectionandreadportoperationtimingdiagrams.  
TABLE 2 — READ ADDRESS BUS, RDADD[4:0]  
Operation  
RCLK RADEN ESTR  
Null-Q  
0
RDADD[4:0]  
4 3 2  
1 0  
Read Queue  
Select  
1
0
1
0
1
0
Device Select  
(Compared to  
ID0,1,2)  
Read Queue Address  
(2 bits = 4 Queues)  
4 3 2  
Device Select  
(Compared to  
ID0,1,2)  
1
X
0
PAEn Flag  
Bus Device  
Select  
0
1
X
4 3 2  
1
X
0
Null Queue  
Select  
X
X
X
X
6115 drw06  
19  
IDT72T51233/72T51243/72T512532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
NULL QUEUE OPERATION (OF THE READ PORT)  
FULL FLAG OPERATION  
Pipeliningofdatatotheoutputportenablesthedevicetoprovide100%bus  
Themulti-queueflow-controldevicesprovidesasingleFullFlagoutput,FF.  
utilizationinstandardmode.Datacanbereadoutofthemulti-queueflow-control TheFFflagoutputprovidesafullstatusofthequeuecurrentlyselectedonthe  
deviceoneveryRCLKcycleregardlessofqueueswitchesorotheroperations. writeportforwriteoperations.Internallythemulti-queueflow-controldevice  
Thedevicearchitectureissuchthatthepipelineisconstantlyfilledwiththenext monitorsandmaintainsastatusofthefullconditionofallqueueswithinit,however  
wordsinaselectedqueuetobereadout,againproviding100%busutilization. onlythequeuethatisselectedforwriteoperationshasitsfullstatusoutputtothe  
This type of architecture does assume that the user is constantly switching FF flag.This dedicatedflagis oftenreferredtoas theactivequeuefullflag.  
queuessuchthatduringaqueueswitch,thelastdatawordrequiredfromthe  
previousqueuewillfallthroughthepipelinetotheoutput.  
Whenqueueswitchesarebeingmadeonthewriteport,theFFflagoutput  
willswitchtothenewqueueandprovidetheuserwiththenewqueuestatus,  
Note,thatifreadsceaseattheemptyboundaryofaqueue,thenthelastword onthecycleafteranewqueueselectionismade.Theuserthenhasafullstatus  
willautomaticallyflowthroughthepipelinetotheoutput. forthenewqueueonecycleaheadoftheWCLKrisingedgethatdatacanbe  
The NullQoperationis achievedbysettingthe NullQsignalHIGHduring writtenintothenewqueue.Thatis,anewqueuecanbeselectedonthewrite  
aqueueselect.NotethatthereadaddressbusRDADD[4:0]isadon'tcare.The portviatheWRADDbus,WADENenableandarisingedgeofWCLK.Onthe  
NullQueueisaseparatequeuewithinthedeviceandthusthemaximumnumber secondrisingedgeofWCLK,theFFflagoutputwillshowthefullstatusofthe  
ofqueuesandmemoryisalwaysavailableregardlessofwhetherornottheNull newlyselectedqueue.OnthethirdrisingedgeofWCLKfollowingthequeue  
queue is used. Also note that in expansion mode a user may want to use a selection,datacanbewrittenintothenewlyselectedqueueprovidedthatdata  
dedicatednullqueueforeachdevice.Anullqueuecanbeselectedwhenno andenablesetup&holdtimesaremet.  
furtherreadsarerequiredfromapreviouslyselectedqueue.Changingtoanull  
Note,theFFflagwillprovidestatusofanewlyselectedqueuetwoWCLKcycle  
queuewillcontinuetopropagatedatainthepipelinetothepreviousqueue's afterqueueselection,whichisonecyclebeforedatacanbewrittentothatqueue.  
output.TheNullQcanremainselecteduntiladatabecomesavailableinanother Thispreventstheuserfromwritingdatatoaqueuethatisfull,(assumingthat  
queueforreading.TheNull-Qcanbeutilizedineitherstandardorpacketmode. a queue switchhas beenmade toa queue thatis actuallyfull).  
Note:Iftheuserswitchesthereadporttothenullqueue,thisqueueisseen  
TheFFflagissynchronoustotheWCLKandalltransitionsoftheFFflagoccur  
asandtreatedasanemptyqueue,thereforeafterswitchingtothenullqueue basedonarisingedgeofWCLK.Internallythemulti-queuedevicemonitorsand  
thelastwordfromthepreviousqueuewillremainintheoutputregisterandthe keepsarecordofthefullstatusforallqueues.Itispossiblethatthestatusofa  
OVflagwillgoHIGH,indicatingdatais notvalid.  
FFflagmaybechanginginternallyeventhoughthatflagisnottheactivequeue  
TheNullqueueoperationonlyhassignificancetothereadportofthemulti- flag (selected on the write port). A queue selected on the read port may  
queue, it is a means to force data through the pipeline to the output. Null Q experienceachangeofitsinternalfullflagstatusbasedonreadoperations.  
selectionandoperationhasnomeaningonthewriteportofthedevice.Also,  
refer to Figure 17, Read Operation and Null Queue Select for diagram.  
See Figure 10, Write Queue Select, Write Operation and Full Flag  
OperationinSingleDeviceModeandFigure12,FullFlagTiminginExpansion  
Modefortiminginformation.  
BUS MATCHING OPERATION  
BusMatchingoperationbetweentheinputportandoutputportisavailable. EXPANSION MODE - FULL FLAG OPERATION  
Duringamasterresetofthemulti-queuethestateofthetwosetuppins,IW(Input  
Whenmulti-queuedevicesareconnectedinExpansionmodetheFFflags  
Width)andOW(OutputWidth)determinetheinputandoutputportbuswidths of all devices should be connected together, such that a system controller  
as pertheselections showninTable3,Bus MatchingSet-up.9bitbytes or monitoring and managing the multi-queue devices write port only looks at a  
18bitwordscanbewrittenintoandreadformthequeues.Whenwritingtoor singleFFflag(asopposedtoadiscreteFFflagforeachdevice).ThisFFflag  
readingfromthemulti-queueinabusmatchingmode,thedeviceordersdatain isonlypertinenttothequeuebeingselectedforwriteoperationsatthattime.  
aLittleEndian”format.SeeFigure3,BusMatchingByteArrangementfordetails. Remember,thatwheninexpansionmodeonlyonemulti-queuedevicecanbe  
TheFullflagandAlmostFullflagoperationis always basedonwrites and writtentoatanymomentintime,thustheFFflagprovidesstatusoftheactive  
readsofdatawidthsdeterminedbythewriteportwidth.Forexample,iftheinput queue on the write port.  
portisx18andtheoutputportisx9,thentwodatareadsfromafullqueuewill  
ThisconnectionofflagoutputstocreateasingleflagrequiresthattheFFflag  
berequiredtocausethefullflagtogoHIGH(queuenotfull).Conversely,the outputhaveaHigh-Impedancecapability,suchthatwhenaqueueselectionis  
OutputValidflagandAlmostEmptyflagoperationsarealwaysbasedonwrites madeonlyasingledevicedrivestheFFflagbusandallotherFF flagoutputs  
andreadsofdatawidthsdeterminedbythereadport.Forexample,iftheinputport connectedtotheFFflagbusareplacedintoHigh-Impedance.Theuserdoes  
isx9andtheoutputportisx18,twowriteoperationswillberequiredtocausethe nothavetoselectthisHigh-Impedancestate,agivenmulti-queueflow-control  
outputvalidflagofanemptyqueuetogoLOW,outputvalid(queueisnotempty). deviceswillautomaticallyplaceitsFFflagoutputintoHigh-Impedancewhen  
Note,thattheinputportservesallqueueswithinadevice,asdoestheoutput noneofitsqueuesareselectedforwriteoperations.  
port,thereforetheinputbuswidthtoallqueuesisequal(determinedbytheinput  
portsize)andtheoutputbuswidthfromallqueuesisequal(determinedbythe flagoutputofthatdevicewillmaintaincontroloftheFFflagbus.ItsFFflagwill  
outputportsize).  
Whenqueueswithinasingledeviceareselectedforwriteoperations,theFF  
simplyupdatebetweenqueueswitchestoshowtherespectivequeuefullstatus.  
Themulti-queuedeviceplacesitsFFflagoutputintoHigh-Impedancebased  
onthe3bitIDcodefoundinthe3mostsignificantbitsofthewritequeueaddress  
bus,WRADD.Ifthe3mostsignificantbitsofWRADDmatchthe3bitIDcodesetup  
onthestaticinputs,ID0,ID1andID2thentheFFflagoutputoftherespective  
devicewillbeinaLow-Impedancestate.Iftheydonotmatch,thentheFFflag  
outputoftherespectivedevicewillbeinaHigh-Impedancestate.SeeFigure  
12,FullFlagTiminginExpansionModefordetailsofflagoperation,including  
when more than one device is connected in expansion.  
TABLE 3 BUS-MATCHING SET-UP  
IW  
OW  
Write Port  
Read Port  
0
0
1
1
0
1
0
1
x18  
x18  
x9  
x18  
x9  
x18  
x9  
x9  
20  
IDT72T51233/72T51243/72T512532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
OUTPUTVALIDFLAGOPERATION  
14,OutputValidFlagTimingfordetailsofflagoperation,includingwhenmore  
The multi-queue flow-control devices provides a single Output Valid flag thanone device is connectedinexpansion.  
output,OV.TheOVprovidesanemptystatusordataoutputvalidstatusforthe  
datawordcurrentlyavailableontheoutputregisterofthereadport.Therising ALMOST FULL FLAG  
edgeofanRCLKcyclethatplacesnewdataontotheoutputregisteroftheread  
As previouslymentionedthemulti-queueflow-controldevices provides a  
port, also updates the OV flag to show whether or not that new data word is singleProgrammableAlmostFullflagoutput,PAF.ThePAFflagoutputprovides  
actually valid. Internally the multi-queue flow-control device monitors and astatusofthealmostfullconditionfortheactivequeuecurrentlyselectedonthe  
maintainsastatusoftheemptyconditionofallqueueswithinit,howeveronly writeportforwriteoperations.Internallythemulti-queueflow-controldevice  
thequeuethatisselectedforreadoperationshasitsoutputvalid(empty)status monitorsandmaintainsastatusofthealmostfullconditionofallqueueswithin  
outputtotheOVflag,givingavalidstatusforthewordbeingreadatthattime. it,howeveronlythequeuethatisselectedforwriteoperationshasitsfullstatus  
Thenatureofthefirstwordfallthroughoperationmeansthatwhenthelast outputtothePAFflag.Thisdedicatedflagisoftenreferredtoastheactivequeue  
datawordisreadfromaselectedqueue,theOVflagwillgoHIGHonthenext almostfullflag.ThepositionofthePAFflagboundarywithinaqueuecanbe  
enabled read, that is, on the next rising edge of RCLK while REN is LOW.  
atanypointwithinthatqueuesdepth.Thislocationcanbeuserprogrammed  
Whenqueueswitchesarebeingmadeonthereadport,theOVflagwillswitch viatheserialportoroneofthedefaultvalues(8or128)canbeselectedifthe  
toshowstatusofthenewqueueinlinewiththedataoutputfromthenewqueue. userhasperformeddefaultprogramming.  
Whenaqueueselectionismadethefirstdatafromthatqueuewillappearon  
Asmentioned,everyqueuewithinamulti-queuedevicehasitsownalmost  
theQoutdataoutputs3RCLKcycleslater,theOVwillchangestatetoindicate fullstatus,whenaqueueisselectedonthewriteport,thisstatusisoutputviathe  
validityofthedatafromthenewlyselectedqueueonthis3rd RCLKcyclealso. PAFflag.ThePAFflagvalueforeachqueueisprogrammedduringmulti-queue  
Thepreviouscycleswillcontinuetooutputdatafromthepreviousqueueand device programming (along with the number of queues, queue depths and  
theOVflagwillindicatethestatusofthoseoutputs.Again,theOVflagalways almostemptyvalues).ThePAFoffsetvalue,m,forarespectivequeuecanbe  
indicatesstatusforthedatacurrentlypresentontheoutputregister.  
programmedtobeanywherebetween0’andD’,whereDisthetotalmemory  
TheOVflagissynchronoustotheRCLKandalltransitionsoftheOVflagoccur depthforthatqueue.ThePAFvalueofdifferentqueueswithinthesamedevice  
basedonarisingedgeofRCLK.Internallythemulti-queuedevicemonitorsand canbedifferentvalues.  
keepsarecordoftheoutputvalid(empty)statusforallqueues.Itispossiblethat  
Whenqueueswitchesarebeingmadeonthewriteport,thePAFflagoutput  
thestatusofanOVflagmaybechanginginternallyeventhoughthatrespective willswitchtothenewqueueandprovidetheuserwiththenewqueuestatus,  
flagisnottheactivequeueflag(selectedonthereadport).Aqueueselected onthethirdcycleafteranewqueueselectionismade,onthesameWCLKcycle  
onthewriteportmayexperienceachangeofitsinternalOVflagstatusbased thatdata canactuallybe writtentothe newqueue. Thatis, a newqueue can  
on write operations, that is, data may be written into that queue causing it to beselectedonthewriteportviatheWRADDbus,WADENenableandarising  
becomenotempty.  
edgeofWCLK.OnthethirdrisingedgeofWCLKfollowingaqueueselection,  
SeeFigure13,ReadQueueSelect,ReadOperationinSingleDeviceMode thePAFflagoutputwillshowthefullstatusofthenewlyselectedqueue.ThePAF  
andFigure 14, OutputValidFlagTimingfordetails ofthe timing.  
isflagoutputistripleregisterbuffered,sowhenawriteoperationoccursatthe  
almostfullboundarycausingtheselectedqueuestatustogoalmostfullthePAF  
willgoLOW3WCLKcyclesafterthewrite.Thesameistruewhenareadoccurs,  
EXPANSION MODE – OUTPUT VALID FLAG OPERATION  
Whenmulti-queuedevicesareconnectedinExpansionmode,theOVflags there will be a 3 WCLK cycle delay after the read operation.  
of all devices should be connected together, such that a system controller  
monitoring and managing the multi-queue devices read port only looks at a  
singleOVflag(asopposedtoadiscreteOVflagforeachdevice).ThisOVflag  
is onlypertinenttothequeuebeingselectedforreadoperations atthattime.  
Remember,thatwheninexpansionmodeonlyonemulti-queuedevicecanbe  
So the PAF flag delays are:  
froma write operationtoPAF flagLOWis 2WCLK+tWAF  
ThedelayfromareadoperationtoPAFflagHIGHistSKEW2+WCLK+tWAF  
Note, if tSKEW is violated there will be one added WCLK cycle delay.  
ThePAFflagissynchronoustotheWCLKandalltransitionsofthePAFflag  
readfromatanymomentintime,thustheOVflagprovidesstatusoftheactive occur based on a rising edge of WCLK. Internally the multi-queue device  
queue on the read port. monitorsandkeepsarecordofthealmostfullstatusforallqueues.Itispossible  
ThisconnectionofflagoutputstocreateasingleflagrequiresthattheOVflag thatthestatusofaPAFflagmaybechanginginternallyeventhoughthatflagis  
outputhaveaHigh-Impedancecapability,suchthatwhenaqueueselectionis nottheactivequeueflag(selectedonthewriteport).Aqueueselectedonthe  
madeonlyasingledevicedrivestheOVflagbusandallotherOVflagoutputs readportmayexperienceachangeofitsinternalalmostfullflagstatusbased  
connectedtotheOVflagbusareplacedintoHigh-Impedance.Theuserdoes on read operations. The multi-queue flow-control devices also provides a  
nothavetoselectthisHigh-Impedancestate,agivenmulti-queueflow-control duplicateofthePAFflagonthePAF[3:0]flagbus,thiswillbediscussedindetail  
deviceswillautomaticallyplaceitsOVflagoutputintoHigh-Impedancewhen inalatersectionofthedatasheet.  
noneofits queues areselectedforreadoperations.  
SeeFigures 19and20forAlmostFullflagtimingandqueueswitching.  
Whenqueueswithinasingledeviceareselectedforreadoperations,theOV  
flagoutputofthatdevicewillmaintaincontroloftheOVflagbus.ItsOVflagwill ALMOSTEMPTYFLAG  
simplyupdatebetweenqueueswitchestoshowtherespectivequeueoutput  
validstatus.  
As previouslymentionedthemulti-queueflow-controldevices provides a  
single Programmable Almost Empty flag output, PAE. The PAE flag output  
Themulti-queuedeviceplacesitsOVflagoutputintoHigh-Impedancebased providesastatusofthealmostemptyconditionfortheactivequeuecurrently  
onthe3bitIDcodefoundinthe3mostsignificantbitsofthereadqueueaddress selectedonthereadportforreadoperations.Internallythemulti-queueflow-  
bus,RDADD.Ifthe3mostsignificantbitsofRDADDmatchthe3bitIDcodesetup controldevicemonitorsandmaintainsastatusofthealmostemptyconditionof  
onthestaticinputs,ID0,ID1andID2thentheOVflagoutputoftherespective allqueueswithinit,howeveronlythequeuethatisselectedforreadoperations  
devicewillbeinaLow-Impedancestate.Iftheydonotmatch,thentheOVflag hasitsemptystatusoutputtothePAEflag.Thisdedicatedflagisoftenreferred  
outputoftherespectivedevicewillbeinaHigh-Impedancestate.SeeFigure toastheactivequeuealmostemptyflag.ThepositionofthePAEflagboundary  
21  
IDT72T51233/72T51243/72T512532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
withinaqueuecanbeatanypointwithinthatqueuesdepth.Thislocationcan POWER DOWN (PD)  
beuserprogrammedviatheserialportoroneofthedefaultvalues(8or128)  
canbeselectediftheuserhasperformeddefaultprogramming.  
This device has a power down feature intended for reducing power  
consumptionforHSTL/eHSTLconfiguredinputswhenthedeviceisidlefora  
Asmentioned,everyqueuewithinamulti-queuedevicehasitsownalmost long period of time. By entering the power down state certain inputs can be  
emptystatus,whenaqueueisselectedonthereadport,thisstatusisoutputvia disabled,therebysignificantlyreducingthepowerconsumptionofthepart.All  
thePAEflag.ThePAEflagvalueforeachqueueisprogrammedduringmulti- WENandRENsignalsmustbedisabledforaminimumoffourWCLKandRCLK  
queuedeviceprogramming(alongwiththenumberofqueues,queuedepths cycles before activating the power down signal. The power down signal is  
andalmostfullvalues).ThePAEoffsetvalue,n,forarespectivequeuecanbe asynchronousandneedstobeheldLOWthroughoutthedesiredpowerdowntime.  
programmedtobeanywherebetween0’andD’,whereDisthetotalmemory Duringpowerdown,thefollowingconditionsfortheinputs/outputssignalsare:  
depthforthatqueue.ThePAEvalueofdifferentqueueswithinthesamedevice  
canbedifferentvalues.  
Alldata inQueue(s)memoryare retained.  
Alldatainputsbecomeinactive.  
Whenqueueswitchesarebeingmadeonthereadport,thePAEflagoutput  
willswitchtothenewqueueandprovidetheuserwiththenewqueuestatus,  
onthethirdcycleafteranewqueueselectionismade,onthesameRCLKcycle  
thatdataactuallyfallsthroughtotheoutputregisterfromthenewqueue.That  
is,anewqueuecanbeselectedonthereadportviatheRDADDbus,RADEN  
enableandarisingedgeofRCLK.OnthethirdrisingedgeofRCLKfollowing  
a queue selection, the data wordfromthe newqueue willbe available atthe  
outputregisterandthePAEflagoutputwillshowtheemptystatusofthenewly  
selectedqueue.ThePAEisflagoutputistripleregisterbuffered,sowhenaread  
operationoccurs atthealmostemptyboundarycausingtheselectedqueue  
statustogoalmostemptythePAEwillgoLOW3RCLKcyclesaftertheread.  
Thesameistruewhenawriteoccurs,therewillbea3RCLKcycledelayafter  
thewriteoperation.  
Allwrite andreadpointers maintaintheirlastvalue before powerdown.  
Allenables,chipselects,andclockinputpinsbecomeinactive.  
Alldataoutputsbecomeinactiveandenterhigh-impedancestate.  
Allflagoutputswillmaintaintheircurrentstatesbeforepowerdown.  
Allprogrammableflagoffsetsmaintaintheirvalues.  
Allechoclocks andenables willbecomeinactiveandenterhigh-  
impedancestate.  
TheserialprogrammingandJTAGportwillbecomeinactiveandenter  
high-impedancestate.  
AllsetupandconfigurationCMOSstaticinputsarenotaffected,asthese  
pins are tied to a known value and do not toggle during operation.  
Allinternalcounters,registers,andflagswillremainunchangedandmaintain  
theircurrentstatepriortopowerdown.Clockinputscanbecontinuousandfree-  
runningduringpowerdown,butwillhavenoaffectonthepart.However,itis  
recommendedthattheclockinputsbelowwhenthepowerdownisactive.To  
So the PAE flag delays are:  
from a read operation toPAE flag LOW is 2 RCLK + tRAE  
ThedelayfromawriteoperationtoPAEflagHIGHistSKEW2+RCLK+tRAE exitpowerdownstateandresumenormaloperations,disablethepowerdown  
Note, if tSKEW is violated there will be one added RCLK cycle delay.  
signalbybringingitHIGH.Theremustbeaminimumof1µswaitingperiodbefore  
ThePAEflagissynchronoustotheRCLKandalltransitionsofthePAEflag readandwriteoperationscanresume.Thedevicewillcontinuefromwhereit  
occur based on a rising edge of RCLK. Internally the multi-queue device hadstoppedandnoformofresetisrequiredafterexitingpowerdownstate.The  
monitorsandkeepsarecordofthealmostemptystatusforallqueues.Itispossible powerdownfeaturedoesnotprovideanypowersavingswhentheinputsare  
thatthestatusofaPAEflagmaybechanginginternallyeventhoughthatflagis configuredforLVTTLoperation.However,itwillreducethecurrentforI/Osthat  
nottheactivequeueflag(selectedonthereadport).Aqueueselectedonthe are not tied directly to VCC or GND. See Figure 28, Power Down Operation,  
writeportmayexperienceachangeofitsinternalalmostemptyflagstatusbased fortheassociatedtimingdiagram.  
on write operations. The multi-queue flow-control devices also provides a  
duplicateofthePAEflagonthePAE[3:0]flagbus,thiswillbediscussedindetail  
inalatersectionofthedatasheet.  
SeeFigures21and22forAlmostEmptyflagtimingandqueueswitching.  
22  
IDT72T51233/72T51243/72T512532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
TABLE 4 — FLAG OPERATION BOUNDARIES & TIMING  
Output Valid, OV Flag Boundary  
Full Flag, FF Boundary  
I/O Set-Up  
OV Boundary Condition  
I/O Set-Up  
FF Boundary Condition  
In18 to out18 or In9 to out9  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
OV Goes LOW after 1st Write  
(seenotebelowfortiming)  
In18 to out18 or In9 to out9  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
FF Goes LOW after D+1 Writes  
(seenotebelowfortiming)  
In18 to out9)  
OV Goes LOW after 1st Write  
(seenotebelowfortiming)  
In18 to out18 or In9 to out9  
(Writeportonlyselectedforqueue  
when the 1st Word is written in)  
FF Goes LOW after D Writes  
(seenotebelowfortiming)  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
In9 to out18  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
OV Goes LOW after 2nd Write  
(seenotebelowfortiming)  
In18 to out9  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
FF Goes LOW after D Writes  
(seenotebelowfortiming)  
In18 to out9  
(Writeportonlyselectedforqueue  
when the 1st Word is written in)  
FF Goes LOW after D Writes  
NOTE:  
1. OV Timing  
Assertion:  
(seenotebelowfortiming)  
Write to OV LOW: tSKEW1 + RCLK + tROV  
If tSKEW1 is violated there may be 1 added clock: tSKEW1 + 2 RCLK + tROV  
De-assertion:  
In9 to out18  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
FF Goes LOW after ([D+1] x 2) Writes  
(seenotebelowfortiming)  
Read Operation to OV HIGH: tROV  
In9 to out18  
FF Goes LOW after (D x 2) Writes  
(seenotebelowfortiming)  
(Writeportonlyselectedforqueue  
when the 1st Word is written in)  
NOTE:  
D = Queue Depth  
FF Timing  
Assertion:  
Write Operation to FF LOW: tWFF  
De-assertion:  
Read to FF HIGH: tSKEW1 + tWFF  
If tSKEW1 is violated there may be 1 added clock: tSKEW1+WCLK +tWFF  
Programmable Almost Full Flag, PAF & PAFn Bus Boundary  
I/O Set-Up  
PAF & PAFn Boundary  
In18 to out18 or In9 to out9  
PAF/PAFn Goes LOW after  
(Bothportsselectedforsamequeuewhenthe1st D+1-mWrites  
Wordiswritteninuntiltheboundaryisreached) (seenotebelowfortiming)  
In18 to out18 or In9 to out9  
PAF/PAFn Goes LOW after  
(Writeportonlyselectedforsamequeuewhenthe D-mWrites  
1st Wordis writteninuntiltheboundaryis reached) (seenotebelowfortiming)  
In18 to out9  
In9 to out18  
PAF/PAFn Goes LOW after  
D-mWrites(seebelowfortiming)  
PAF/PAFn Goes LOW after  
([D+1-m] x 2) Writes  
(seenotebelowfortiming)  
NOTE:  
D = Queue Depth  
m = Almost Full Offset value.  
Default values: if DF is LOW at Master Reset then m = 8  
if DF is HIGH at Master Reset then m= 128  
PAF Timing  
Assertion:  
Write Operation to PAF LOW: 2 WCLK + tWAF  
De-assertion: Read to PAF HIGH: tSKEW2 + WCLK + tWAF  
If tSKEW2 is violated there may be 1 added clock: tSKEW2 + 2 WCLK + tWAF  
PAFn Timing  
Assertion:  
Write Operation to PAFn LOW: 2 WCLK* + tPAF  
De-assertion: Read to PAFn HIGH: tSKEW3 + WCLK* + tPAF  
If tSKEW3 is violated there may be 1 added clock: tSKEW3 + 2 WCLK* + tPAF  
* If a queue switch is occurring on the write port at the point of flag assertion or de-assertion  
there may be one additional WCLK clock cycle delay.  
23  
IDT72T51233/72T51243/72T512532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
TABLE 4 — FLAG OPERATION BOUNDARIES & TIMING (CONTINUED)  
Programmable Almost Empty Flag Bus, PAEn Boundary  
Programmable Almost Empty Flag, PAE Boundary  
I/O Set-Up  
PAEn Boundary Condition  
PAEn Goes HIGH after  
I/O Set-Up  
PAE Assertion  
PAE Goes HIGH after n+2  
In18 to out18 or In9 to out9  
In18 to out18 or In9 to out9  
(Bothportsselectedforsamequeuewhenthe1st Writes  
Wordiswritteninuntiltheboundaryisreached)  
(Bothportsselectedforsamequeuewhenthe1st n+2Writes  
Wordiswritteninuntiltheboundaryisreached)  
(seenotebelowfortiming)  
(seenotebelowfortiming)  
In18 to out18 or In9 to out9  
PAEn Goes HIGH after  
In18 to out9  
PAE Goes HIGH after n+1  
(Writeportonlyselectedforsamequeuewhenthe n+1Writes  
(Bothportsselectedforsamequeuewhenthe1st Writes  
Wordiswritteninuntiltheboundaryisreached)  
1st Wordis writteninuntiltheboundaryis reached) (seenotebelowfortiming)  
(seenotebelowfortiming)  
In18 to out9  
In9 to out18  
PAEn Goes HIGH after n+1  
Writes (seebelowfortiming)  
In9 to out18  
PAE Goes HIGH after  
(Bothportsselectedforsamequeuewhenthe1st ([n+2] x 2) Writes  
Wordiswritteninuntiltheboundaryisreached)  
PAEn Goes HIGH after  
(seenotebelowfortiming)  
(Bothportsselectedforsamequeuewhenthe1st ([n+2] x 2) Writes  
Wordiswritteninuntiltheboundaryisreached)  
(seenotebelowfortiming)  
NOTE:  
n = Almost Empty Offset value.  
Default values: if DF is LOW at Master Reset then n = 8  
if DF is HIGH at Master Reset then n = 128  
In9 to out18  
PAEn Goes HIGH after  
(Writeportonlyselectedforsamequeuewhenthe ([n+1] x 2) Writes  
1st Wordis writteninuntiltheboundaryis reached) (seenotebelowfortiming)  
PAE Timing  
Assertion:  
Read Operation to PAE LOW: 2 RCLK + tRAE  
NOTE:  
De-assertion: Write to PAE HIGH: tSKEW2 + RCLK + tRAE  
If tSKEW2 is violated there may be 1 added clock: tSKEW2 + 2 RCLK + tRAE  
n = Almost Empty Offset value.  
Default values: if DF is LOW at Master Reset then n = 8  
if DF is HIGH at Master Reset then n = 128  
PAEn Timing  
Assertion:  
Read Operation to PAEn LOW: 2 RCLK* + tPAE  
De-assertion: Write to PAEn HIGH: tSKEW3 + RCLK* + tPAE  
If tSKEW3 is violated there may be 1 added clock: tSKEW3 + 2 RCLK* + tPAE  
* If a queue switch is occurring on the read port at the point of flag assertion or de-assertion  
there may be one additional RCLK clock cycle delay.  
24  
IDT72T51233/72T51243/72T512532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
PAFn FLAG BUS OPERATION  
passing is done via the FXO outputs and FXI inputs of the devices (PAFn  
TheIDT72T51233/72T51243/72T51253multi-queueflow-controldevices ExpansionOut”andPAFnExpansionIn).TheFXOoutputofthefirstdevice  
can be configured for up to 4 queues, each queue having its own almost full connectingtothe FXIinputofthe seconddevice inthe chain, the FXOofthe  
status.Anactivequeuehasitsflagstatusoutputtothediscreteflags,FFandPAF, seconddeviceconnects totheFXIofthethirddeviceandsoon.TheFXOof  
onthewriteport.Queuesthatarenotselectedforawriteoperationcanhave thefinaldeviceinachainconnectstotheFXIofthefirstdevice,sothatoncethe  
theirPAFstatusmonitoredviathePAFnbus.ThePAFnflagbusis4bitswide, PAFn bus has cycled through all devices control is again passed to the first  
sothatall4queuescanhavetheirstatusoutputtothebus.Whenasinglemulti- device.TheFXOoutputofadevicewillbeHIGHfortheWCLKcycleithascontrol  
queuedeviceis usedanywherefrom1to4queues maybeset-upwithinthe ofthebus.  
part,eachqueuehavingitsowndedicatedPAFflagoutputonthePAFnbus.  
Queues 1 through 4 have their PAF status to PAF[0] through PAF[3]  
PleaserefertoFigure26,PAFnBusPolledModefortiminginformation.  
respectively. If less than 4 queues are used then only the associated PAFn PAEn FLAG BUS OPERATION  
outputswillberequired,unusedPAFnoutputswillbedontcareoutputs.When  
The IDT72T51233/72T51243/72T51253 multi-queue flow-control de-  
devicesareconnectedinexpansionmodethePAFnflagbuscanalsobeexpanded vicescanbeconfiguredforupto4queues,eachqueuehavingitsownalmost  
beyond 4 bits toproduce a widerPAFnbus thatencompassesallqueues.  
emptystatus.Anactivequeuehasitsflagstatusoutputtothediscreteflags,OV  
Alternatively,the4bitPAFnflagbusofeachdevicecanbeconnectedtogether andPAE,onthereadport.Queuesthatarenotselectedforareadoperation  
toformasingle4bitbus,i.e.PAF[0]ofdevice1willconnecttoPAF[0]ofdevice canhavetheirPAEstatusmonitoredviathePAEnbus.ThePAEnflagbusis  
2etc. Whenconnectingdevices inthis mannerthe PAFncanonlybe driven 4bits wide, sothatall4queues canhave theirstatus outputtothe bus. The  
byasingledeviceatanytime,(thePAFnoutputsofallotherdevicesmustbe multi-queue device can provide Almost Empty” status via the PAEnbus  
inhighimpedancestate).Therearetwomethodsbywhichtheusercanselect ofits queues. Ifitis LOWthenthe PAEnbus willprovide AlmostEmpty”  
whichdevicehas controlofthebus,theseareDirect”(Addressed)modeor status.  
Polled”(Looped)mode,determinedbythestateoftheFM(flagMode)input  
duringaMasterReset.  
Whenasinglemulti-queuedeviceisusedanywherefrom1to4queuesmay  
beset-upwithinthepart,eachqueuehavingitsowndedicatedPAEnflagoutput  
onthePAEnbus.Queues1through4havetheirPAEstatustoPAE[0]through  
PAE[3]respectively.Iflessthan4queuesareusedthenonlytheassociated  
PAFn BUS EXPANSION - DIRECT MODE  
If FM is LOW at Master Reset then the PAFn bus operates in Direct PAEnoutputswillberequired,unusedPAEn outputswillbedontcareoutputs.  
(addressed)mode.Indirectmodetheusercanaddressthedevicetheyrequire WhendevicesareconnectedinexpansionmodethePAEn flagbuscanalso  
tocontrolthePAFnbus.Theaddresspresentonthe3mostsignificantbitsof beexpandedbeyond4bits toproduceawiderPAEnbus thatencompasses  
the WRADD[4:0] address bus with FSTR (PAF flag strobe), HIGH will be allqueues.  
selectedasthedeviceonarisingedgeofWCLK.Sotoaddressthefirstdevice  
Alternatively, the 4 bit PAEn flag bus of each device can be connected  
inabankofdevicestheWRADD[4:0]addressshouldbe000xx”thesecond togethertoformasingle4bitbus,i.e.PAE[0]ofdevice1willconnecttoPAE[0]  
device001xx”andsoon.The3mostsignificantbitsoftheWRADD[4:0]address ofdevice2etc.WhenconnectingdevicesinthismannerthePAEnbuscanonly  
buscorrespondtothedeviceIDinputsID[2:0].ThePAFnbuswillchangestatus bedrivenbyasingledeviceatanytime,(thePAEn outputsofallotherdevices  
toshowthenewdeviceselected1WCLKcycleafterdeviceselection.Note,that mustbeinhighimpedancestate).Therearetwomethods bywhichtheuser  
if a read or write operation is occurring to a specific queue, say queue x’ on canselectwhichdevicehascontrolofthebus,theseareDirect”(Addressed)  
thesamecycleasaPAFnbusswitchtothedevicecontainingqueuex’,then modeorPolled”(Looped)mode,determinedbythestateoftheFM(flagMode)  
theremaybeanextraWCLKcycledelaybeforethatqueuesstatusiscorrectly inputduringaMasterReset.  
shownontherespectiveoutputofthe PAFnbus.However,theactive”PAF  
flagwillshowcorrectstatusatalltimes.  
PAEn - DIRECT BUS  
Devices can be selected on consecutive WCLK cycles, that is the device  
If FM is LOW at Master Reset then the PAEn bus operates in Direct  
controllingthePAFnbuscanchangeeveryWCLKcycle.Also,datapresenton (addressed)mode.Indirectmodetheusercanaddressthedevicetheyrequire  
theinputbus,Din,canbewrittenintoaqueueonthesameWLCKrisingedge tocontrolthePAEnbus.Theaddresspresentonthe3mostsignificantbitsof  
thatadeviceisbeingselectedonthePAFnbus,theonlyrestrictionbeingthat the RDADD[4:0] address bus with ESTR (PAE flag strobe), HIGH will be  
awritequeueselectionandPAFnbusselectioncannotbemadeonthesame selectedasthedeviceonarisingedgeofRCLK.Sotoaddressthefirstdevice  
cycle.  
inabankofdevices theRDADD[4:0]address shouldbe000xx”thesecond  
device001xx”andsoon.The3mostsignificantbitsoftheRDADD[5:0]address  
buscorrespondtothedeviceIDinputsID[2:0].ThePAEnbuswillchangestatus  
PAFn – POLLED BUS  
IfFMisHIGHatMasterResetthenthePAFnbusoperatesinPolled(Looped) toshowthenewdeviceselected1RCLKcycleafterdeviceselection.Note,that  
mode.InpolledmodethePAFnbusautomaticallycyclesthroughthedevices if a read or write operation is occurring to a specific queue, say queue x’ on  
connected in expansion. In expansion mode one device will be set as the thesamecycleasaPAEnbusswitchtothedevicecontainingqueuex’,then  
Master,MASTinputtiedHIGH,allotherdeviceswillhaveMASTtiedLOW.The theremaybeanextraRCLKcycledelaybeforethatqueuesstatusiscorrectly  
masterdeviceisthefirstdevicetotakecontrolofthePAFnbusandplacethe shownontherespectiveoutputofthePAEnbus.However,theactive”PAE  
PAFstatusofitsqueuesontothebusonthefirstrisingedgeofWCLKafterthe flagwillshowcorrectstatusatalltimes.  
MRSinputgoesHIGHonceaMasterResetiscomplete.TheFSYNC(PAFsync  
pulse)outputofthefirstdevice(masterdevice),willbeHIGHforonecycleof controllingthePAEnbuscanchangeeveryRCLKcycle.Also,datacanberead  
WCLKindicatingthatitishascontrolofthePAFnbusforthatcycle. outofaqueueonthesameRCLKrisingedgethatadeviceis beingselected  
Devices can be selected on consecutive RCLK cycles, that is the device  
Thedevicealsopassesatoken”ontothenextdeviceinthechain,thenext onthePAEnbus,theonlyrestrictionbeingthatareadqueueselectionandPAEn  
deviceassumingcontrolofthePAFnbusonthenextWCLKcycle.Thistoken busselectioncannotbemadeonthesamecycle.  
25  
IDT72T51233/72T51243/72T512532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
PAEn- POLLED BUS  
Thedevicealsopassesatoken”ontothenextdeviceinthechain,thenext  
If FM is HIGH at Master Reset then the PAEn bus operates in Polled deviceassumingcontrolofthePAEnbusonthenextRCLKcycle.Thistoken  
(Looped)mode.InpolledmodethePAEnbusautomaticallycyclesthroughthe passing is done via the EXO outputs and EXI inputs of the devices (PAEn  
devices connectedinexpansion. Inexpansionmode one device willbe set ExpansionOut”andPAEnExpansionIn).TheEXOoutputofthefirstdevice  
as theMaster,MASTinputtiedHIGH,allotherdevices willhaveMASTtied connectingtotheEXIinputoftheseconddeviceinthechain,theEXOofthe  
LOW.ThemasterdeviceisthefirstdevicetotakecontrolofthePAEnbusand seconddeviceconnects totheEXIofthethirddeviceandsoon.TheEXOof  
placethePAEstatusofitsqueuesontothebusonthefirstrisingedgeofRCLK thefinaldeviceinachainconnectstotheEXIofthefirstdevice,sothatoncethe  
aftertheMRSinputgoesHIGHonceaMasterResetiscomplete.TheESYNC PAEn bus has cycled through all devices control is again passed to the first  
(PAE syncpulse) output of the first device (master device), will be HIGH device.TheEXOoutputofadevicewillbeHIGHfortheRCLKcycleithascontrol  
forone cycle ofRCLKindicatingthatitis has controlofthe PAEnbus for ofthebus.  
thatcycle.  
PleaserefertoFigure27,PAEnBusPolledModefortiminginformation.  
26  
IDT72T51233/72T51243/72T512532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
ECHO READ CLOCK (ERCLK)  
the slowest Qn, data output. Refer to Figure 3, Echo Read Clock and Data  
TheEchoReadClockoutputisprovidedinbothHSTLandLVTTLmode, Output Relationship and Figure 23, Echo RCLK & Echo REN Operation for  
selectableviaIOSEL.TheERCLKisafree-runningclockoutput,itwillalways timinginformation.  
follow the RCLK input regardless of REN and RADEN.  
TheERCLKoutputfollowstheRCLKinputwithanassociateddelay. This ECHO READ ENABLE (EREN)  
delayprovidestheuserwithamoreeffectivereadclocksourcewhenreading  
TheEchoReadEnableoutputisprovidedinbothHSTLandLVTTLmode,  
datafromtheQnoutputs.Thisisespeciallyhelpfulathighspeedswhenvariables selectableviaIOSEL.  
withinthedevicemaycausechangesinthedataaccesstimes. Thesevariations  
The EREN output is provided to be used in conjunction with the ERCLK  
inaccesstimemaybecausedbyambienttemperature,supplyvoltage,device outputandprovidesthereadingdevicewithamoreeffectiveschemeforreading  
characteristics. The ERCLK output also compensates for any trace length datafromtheQnoutputportathighspeeds.TheERENoutputiscontrolledby  
delaysbetweentheQndataoutputsandreceivingdevicesinputs.  
internallogicthatbehavesasfollows:TheERENoutputisactiveLOWforthe  
Anyvariationseffectingthedataaccesstimewillalsohaveacorresponding RCLKcyclethatanewwordisreadoutofthequeue.Thatis,arisingedgeof  
effectontheERCLKoutputproducedbythequeuedevice,thereforetheERCLK RCLKwillcause EREN togoactive (LOW)ifREN is active andthe queue is  
outputleveltransitionsshouldalwaysbeatthesamepositionintimerelativeto NOTempty.  
thedataoutputs.Note,thatERCLKisguaranteedbydesigntobeslowerthan  
RCLK  
tERCLK  
tERCLK  
ERCLK  
tD  
tA  
Q
SLOWEST(3)  
6115 drw08  
NOTES:  
1. REN is LOW. OE is LOW.  
2. tERCLK > tA, guaranteed by design.  
3. Qslowest is the data output with the slowest access time, tA.  
4. Time, tD is greater than zero, guaranteed by design.  
Figure 3. Echo Read Clock and Data Output Relationship  
27  
IDT72T51233/72T51243/72T512532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
D17-D9  
D8-D0  
BYTE ORDER ON INPUT PORT:  
B
Write to Queue  
A
Q17-Q9  
Q8-Q0  
BYTE ORDER ON OUTPUT PORT:  
BE  
IW  
L
OW  
L
A
B
Read from Queue  
L
(a) x18 INPUT to x18 OUTPUT - BIG ENDIAN  
Q17-Q9  
Q8-Q0  
BE  
IW  
L
OW  
L
B
A
Read from Queue  
H
(b) x18 INPUT to x18 OUTPUT - LITTLE ENDIAN  
Q8-Q0  
Q17-Q9  
Q17-Q9  
BE  
IW  
L
OW  
H
A
1st: Read from Queue  
2nd: Read from Queue  
L
Q8-Q0  
B
(c) x18 INPUT to x9 OUTPUT - BIG ENDIAN  
Q17-Q9  
Q8-Q0  
BE  
IW  
L
OW  
H
B
1st: Read from Queue  
H
Q17-Q9  
Q8-Q0  
A
2nd: Read from Queue  
(d) x18 INPUT to x9 OUTPUT - LITTLE ENDIAN  
D17-D9  
D8-D0  
BYTE ORDER ON INPUT PORT:  
A
1st: Write to Queue  
2nd: Write to Queue  
D17-Q9  
D8-Q0  
B
BYTE ORDER ON OUTPUT PORT:  
Q17-Q9  
Q8-Q0  
BE  
IW OW  
A
B
Read from Queue  
L
H
L
(a) x9 INPUT to x18 OUTPUT - BIG ENDIAN  
Q17-Q9  
Q8-Q0  
BE  
IW  
H
OW  
L
A
B
Read from Queue  
H
(a) x9 INPUT to x18 OUTPUT - LITTLE ENDIAN  
6115 drw08  
Figure 4. Bus-Matching Byte Arrangement  
28  
IDT72T51233/72T51243/72T512532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
tRS  
MRS  
t
RSS  
RSS  
WEN  
REN  
t
tRSR  
SENI  
tRSS  
FSTR,  
ESTR  
tRSS  
WADEN,  
RADEN  
t
RSS  
RSS  
RSS  
ID0, ID1,  
ID2  
t
OW, IW  
FM  
t
HIGH = Looped  
LOW = Strobed (Direct)  
tRSS  
HIGH = Master Device  
LOW = Slave Device  
MAST  
DFM  
t
RSS  
RSS  
HIGH = Default Programming  
LOW = Serial Programming  
t
HIGH = Offset Value is 128  
LOW = Offset value is 8  
DF  
t
t
t
t
RSF  
HIGH-Z if Slave Device  
FF  
LOGIC “0" if Master Device  
RSF  
RSF  
RSF  
LOGIC "1" if Master Device  
OV  
PAF  
PAE  
HIGH-Z if Slave Device  
LOGIC "1" if Master Device  
HIGH-Z if Slave Device  
HIGH-Z if Slave Device  
LOGIC "0" if Master Device  
t
RSF  
RSF  
LOGIC "1" if Master Device  
HIGH-Z if Slave Device  
PAFn  
PAEn  
t
HIGH-Z if Slave Device  
LOGIC "0" if Master Device  
tRSF  
LOGIC "1" if OE is LOW and device is Master  
Qn  
HIGH-Z if OE is HIGH or Device is Slave  
6115 drw09  
NOTES:  
1. OE can toggle during this period.  
2. PRS should be HIGH during a MRS.  
Figure 5. Master Reset  
29  
IDT72T51233/72T51243/72T512532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
w-3  
w-2  
w-1  
w
w+1  
w+2  
w+3  
WCLK  
tQH  
tQS  
WADEN  
WEN  
tENS  
tENS  
tAS  
tAH  
WRADD  
Qx  
tWFF  
FF  
tWAF  
PAF  
tPAF  
Active Bus  
PAF-Qx(5)  
tPRSS  
tPRSH  
PRS  
tPRSH  
tPRSS  
RCLK  
tENS  
tENS  
REN  
tQS  
tQH  
RADEN  
tAS  
tAH  
RDADD  
Qx  
tROV  
OV  
tRAE  
PAE  
tPAE  
Active Bus  
PAE-Qx(6)  
r-2  
r-1  
r
r+1  
r+2  
r+3  
r+4  
6115 drw10  
NOTES:  
1. For a Partial Reset to be performed on a Queue, that Queue must be selected on both the write and read ports.  
2. The queue must be selected a minimum of 3 clock cycles before the Partial Reset takes place, on both the write and read ports.  
3. The Partial Reset must be LOW for a minimum of 1 WCLK and 1 RCLK cycle.  
4. Writing or Reading to the queue (or a queue change) cannot occur until a minimum of 3 clock cycles after the Partial Reset has gone HIGH, on both the write and read ports.  
5. The PAF flag output for Qx on the PAFn flag bus may update one cycle later than the active PAF flag.  
6. The PAE flag output for Qx on the PAEn flag bus may update one cycle later than the active PAE flag.  
Figure 6. Partial Reset  
Master Reset  
Default Mode  
DFM = 0  
MRS  
MRS  
MRS  
DFM  
DFM  
DFM  
MQ2  
MQn  
MQ1  
Serial Loading  
Complete  
SENI  
SENO  
SO  
SENI  
SENI  
SENO  
SO  
SENO  
SO  
Serial Enable  
Serial Input  
SI  
SI  
SI  
SCLK  
SCLK  
SCLK  
6115 drw11  
Serial Clock  
Figure 7. Serial Port Connection for Serial Programming  
30  
IDT72T51233/72T51243/72T512532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
31  
IDT72T51233/72T51243/72T512532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
32  
IDT72T51233/72T51243/72T512532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
33  
IDT72T51233/72T51243/72T512532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
WCLK  
tENH  
tENS  
WEN  
tDS  
tDH  
tDS  
tDH  
tDS  
tDH  
W3  
W1  
W2  
Dn  
tSKEW1  
1
2
RCLK  
REN  
Qout  
tENS  
tA  
tA  
tA  
Last Word Read Out of Queue  
W1 Q3  
FWFT  
W2 Q3  
FWFT  
W3 Q3  
tROV  
tROV  
OV  
6115 drw15  
NOTES:  
1. Q3 has previously been selected on both the write and read ports.  
2. OE is LOW.  
3. The First Word Latency = tSKEW1 + RCLK + tA. If tSKEW1 is violated an additional RCLK cycle must be added.  
Figure 11. Write Operations & First Word Fall Through  
34  
IDT72T51233/72T51243/72T512532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
35  
IDT72T51233/72T51243/72T512532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
36  
IDT72T51233/72T51243/72T512532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
*A*  
*B*  
*C*  
*D*  
*E*  
*F*  
*G*  
*H*  
*I*  
*J*  
RCLK  
REN  
tENS  
tAS  
tAH  
tAS  
tAH  
RDADD  
RADEN  
D1  
Q3  
D1 Q2  
Addr=00111  
QH  
Addr=00110  
QH  
tQS  
t
t
tQS  
t
A
tA  
tA  
tA  
tOLZ  
Qout  
D
1
Q
3
WD  
Last Word  
D1 Q2  
PFT We-1  
D1  
Q
2 We Last Word  
W
0
D
Q
2
(Device 1)  
1
t
ROV  
tROV  
tROV  
tROV  
tOVLZ  
HIGH-Z  
OV  
(Device 1)  
tOVHZ  
OV  
(Device 2)  
tSKEW1  
WCLK  
WEN  
tENH  
tENS  
tAS  
tAH  
WRADD  
D1 Q2  
Addr=00110  
tQH  
tQS  
WADEN  
Din  
tDS  
tDH  
D
1
W
Q
2
0
6115 drw18  
Cycle:  
*A* Queue 3 of Device 1 is selected for read operations. The OV is currently being driven by Device 2, a queue within device 2 is selected for reads. Device 2 also has control  
of Qout bus, its Qout outputs are in Low-Impedance. This diagram only shows the Qout outputs of device 1. (Reads are disabled).  
*B* Reads are now enabled. A word from the previously selected queue of Device 2 will be read out.  
*C* After a queue switch, there is a 3 RCLK latency for output data.  
*D* The Qout of Device 1 goes to Low-Impedance and word Wd is read from Q3 of D1. This happens to be the last word of Q3. Device 2 places its Qout outputs into  
High-Impedance, device 1 has control of the Qout bus. The OV flag of Device 2 goes to High-Impedance and Device 1 takes control of OV. The OV flag of Device 1 goes LOW  
to show that Wd of Q3 is valid.  
*E* Queue 2 of device 1 is selected for read operations. The last word of Q3 was read on the previous cycle, therefore OV goes HIGH to indicate that the data on the Qout is  
not valid (Q3 was read to empty). Word, Wd remains on the output bus.  
*F* The last word of Q3 remains on the Qout bus, OV is HIGH, indicating that this word has been previously read.  
*G* The next word (We-1), available from the newly selected queue, Q2 of device 1 is now read out. This will occur regardless of REN, 2 RCLK cycles after queue selection  
due to the FWFT operation. The OV flag updates 3 RCLK cycles after a queue selection.  
*H* The last word, We is read from Q2, this queue is now empty.  
*I* The OV flag goes HIGH to indicate that Q2 was read to empty on the previous cycle.  
*J* Due to a write operation the OV flag goes LOW and data word W0 is read from Q2. The latency is: tSKEW1 + 1*RCLK + tROV.  
Figure 14. Output Valid Flag Timing (In Expansion Mode)  
37  
IDT72T51233/72T51243/72T512532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
38  
IDT72T51233/72T51243/72T512532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
EO  
39  
IDT72T51233/72T51243/72T512532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
SELECT  
NEW QUEUE  
*D*  
NULL QUEUE  
SELECT  
*A*  
*B*  
*C*  
*E*  
*F*  
*G*  
RCLK  
tAS  
tAH  
tAS  
tAH  
Don’t care  
00100  
RDADD  
RADEN  
tQS  
tQH  
tQS  
tQH  
tAS  
tAH  
Null-Q  
tENS  
tENH  
REN  
tA  
tA  
t
A
tA  
tA  
Q3 W0  
FWFT  
Qout  
OV  
Q1 Wn-4  
Q1 Wn-3  
Q1 Wn-2  
Q1 Wn-1  
Q1 Wn  
tROV  
tROV  
6115 drw21  
NOTES:  
1. The purpose of the Null queue operation is so that the user can stop reading a block (packet) of data from a queue without filling the 2 stage output pipeline with the next words  
from that queue.  
2. Please see Figure 18, Null Queue Flow Diagram.  
Cycle:  
*A* Null Q of device 0 is selected, when word Wn-1 from previously selected Q1 is read.  
*C* REN is HIGH and Wn (Last Word of the Packet) of Q1 is pipelined onto the O/P register.  
Note: *B* and *C* are a minimum 3 RCLK cycles between queue selects.  
*D* The Null Q is seen as an empty queue on the read side, therefore Wn of Q1 remains in the O/P register and OV goes HIGH. A new queue, Q3 is selected.  
*G* 1st word, W0 of Q3 falls through present on the O/P register after 3 RCLK cycles after the queue select.  
Figure 17. Read Operation and Null Queue Select  
*A*  
*B*  
*C*  
*D*  
*E*  
*F*  
*G*  
Null  
Queue  
Null  
Queue  
Queue 3  
Memory  
Queue 3  
Memory  
Queue 1  
Memory  
Queue 1  
Memory  
Null  
Queue  
Q1  
Q1  
Q1  
Q1  
Q1  
Q4  
Q4  
Wn  
Wn  
Wn  
Wn  
Wn  
W0  
W1  
O/P Reg.  
O/P Reg.  
O/P Reg.  
O/P Reg.  
O/P Reg.  
O/P Reg.  
O/P Reg.  
Qn  
Q1  
Q1  
Q1  
Q1  
Q1  
Q3  
Wn-2  
Wn-1  
Wn  
Wn  
Wn  
Wn  
W0  
6115 drw22  
Figure 18. Null Queue Flow Diagram  
40  
IDT72T51233/72T51243/72T512532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
*A*  
*B*  
*C*  
*D*  
*E*  
*F*  
*G*  
*H*  
WCLK  
WEN  
2
1
tENH  
tENS  
tAS  
tAH  
tAS  
tAH  
WRADD  
D1  
Q2  
D1 Q0  
Addr=00110  
QH  
Addr=00100  
QH  
tQS  
t
t
tQS  
WADEN  
Din  
tDS  
tDH  
WD-m  
D1 Q2  
tWAF  
tWAF  
tAFLZ  
HIGH-Z  
PAF  
(Device 1)  
tFFHZ  
PAF  
(Device 2)  
6115 drw23  
Cycle:  
*A* Queue 2 of Device 1 is selected on the write port. A queue within Device 2 had previously been selected. The PAF output of device 1 is High-Impedance.  
*B* No write occurs.  
*C* No write occurs.  
*D* Word, Wd-m is written into Q2 causing the PAF flag to go from LOW to HIGH. The flag latency is 3 WCLK cycles + tWAF.  
*E* Queue 0 in device 1 is now selected for write operations. This queue is not almost full, therefore the PAF flag will update after a 3 WCLK + tWAF latency.  
*F* The PAF flag goes LOW based on the write 2 cycles earlier.  
*G* No write occurs.  
*H* The PAF flag goes HIGH due to the queue switch to Q0.  
Figure 19. Almost Full Flag Timing and Queue Switch  
tCLKL  
tCLKL  
WCLK  
WEN  
PAF  
1
2
1
tENS  
tENH  
tWAF  
tWAF  
D-(m+1) words  
in Queue  
D - (m+1) words in Queue  
D - m words in Queue  
tSKEW2  
RCLK  
tENS  
tENH  
6115 drw24  
REN  
NOTE:  
1. The waveform here shows the PAF flag operation when no queue switches are occurring and a queue selected on both the write and read ports is being written to then read  
from at the almost full boundary.  
Flag Latencies:  
Assertion: 2*WCLK + tWAF  
De-assertion: tSKEW2 + WCLK + tWAF  
If tSKEW2 is violated there will be one extra WCLK cycle.  
Figure 20. Almost Full Flag Timing  
41  
IDT72T51233/72T51243/72T512532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
*A*  
*B*  
*C*  
*D*  
*E*  
*F*  
*G*  
*H*  
RCLK  
REN  
HIGH  
AS  
t
tAH  
tAS  
tAH  
RDADD  
D1  
Q3  
D1  
Q1  
Addr=00101  
QH  
Addr=00111  
QH  
tQS  
t
t
tQS  
RADEN  
Qout  
t
A
tA  
t
A
tA  
tOLZ  
HIGH-Z  
HIGH-Z  
D1  
Q3  
Wn  
D
1
Q3  
Wn+1  
D1  
Q1  
W0  
D1 Q1 W1  
tRAE  
t
RAE  
tAELZ  
PAE  
(Device 1)  
tAEHZ  
PAE  
(Device 2)  
HIGH-Z  
6115 drw25  
Cycle:  
*A* Queue 3 of Device 1 is selected on the read port. A queue within Device 2 had previously been selected. The PAE flag output and the data outputs of device 1 are High-Impedance.  
*B* No read occurs.  
*C* No read occurs.  
*D* The PAE flag output now switches to device 1. Word, Wn is read from Q3 due to the FWFT operation. This read operation from Q3 is at the almost empty boundary, therefore  
PAE will go LOW 2 RCLK cycles later.  
*E* Q1 of device 1 is selected.  
*F* The PAE flag goes LOW due to the read from Q3 2 RCLK cycles earlier. Word Wn+1 is read out due to the FWFT operation.  
*G* Word, W0 is read from Q1 due to the FWFT operation.  
*H* The PAE flag goes HIGH to show that Q1 is not almost empty.  
Figure 21. Almost Empty Flag Timing and Queue Switch  
tCLKL  
tCLKH  
WCLK  
tENH  
tENS  
WEN  
PAE  
n+1 words in Queue  
SKEW2  
n+2 words in Queue  
n+1 words in Queue  
tRAE  
t
tRAE  
RCLK  
1
2
tENS  
tENH  
6115 drw26  
REN  
NOTE:  
1. The waveform here shows the PAE flag operation when no queue switches are occurring and a queue selected on both the write and read ports is being written to then read  
from at the almost empty boundary.  
Flag Latencies:  
Assertion: 2*RCLK + tRAE  
De-assertion: tSKEW2 + RCLK + tRAE  
If tSKEW2 is violated there will be one extra RCLK cycle.  
Figure 22. Almost Empty Flag Timing  
42  
IDT72T51233/72T51243/72T512532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
ERN  
43  
IDT72T51233/72T51243/72T512532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
*A*  
*B*  
1
*C*  
2
*D*  
3
*E*  
*F*  
*G*  
*H*  
WCLK  
WADEN  
FSTR  
tQS  
tQH  
tQS  
tQH  
t
QS  
tQH  
t
STS  
tSTH  
tENS  
tENS  
tENH  
tENH  
WEN  
tAS  
tAH  
tAH  
tAS  
tAS  
tAH  
Device 4  
D3Q2  
011 10  
WRADD  
Dn  
D5Q3  
100 11  
tDS  
tDH  
tDS  
t
DS  
100 xx  
t
DH  
tDH  
Wp  
Wp+1  
Wp+2  
Wn+1  
D5Q3  
Wn  
D5 Q3  
Wx  
D3 Q2  
Writes to Previous Q  
t
SKEW3  
RCLK  
RADEN  
ESTR  
1
2
3
1
2
3
tQS  
tQH  
tSTS  
t
STH  
t
ENS  
tENH  
REN  
tAH  
tAS  
tAS  
tAH  
RDADD  
Device 5  
D5Q3  
100 11  
101 xx  
tA  
t
A
tA  
tA  
t
A
Wy+1  
D5 Q3  
Wy  
D5 Q3  
Wy+2  
D5 Q3  
Wy+3  
D5 Q3  
Device 5 -Qn  
Wa  
D5 QP  
Wa+1  
D5 QP  
Previous value loaded on to PAE bus  
Prev PAEn  
tPAEHZ  
tPAE  
tPAEZL  
xxxx1xxx  
Device 5  
xxxx1xxx  
Device 5  
Device 5 PAEn  
xxxx1xxx  
Device 5  
xxxx1xxx  
Device 5  
Previous value loaded on to PAE bus  
D5 QP Status  
Bus PAEn  
t
RAE  
tRAE  
tRAE  
D5 Q3  
status  
Device 5 PAE  
6115 drw28  
*FF*  
*AA*  
*BB*  
*CC*  
*DD*  
*GG*  
*EE*  
Cycle:  
*A* Q3 of Device 5 is selected for write operations.  
Word, Wp is written into the previously selected queue.  
*AA* Q3 of Device 5 is selected for read operations.  
A quadrant from another device has control of the PAEn bus.  
The discrete PAE output of device 5 is currently in High-Impedance and the PAE active flag is controlled by the previously selected device.  
*B* Word Wp+1 is written into the previously selected queue.  
*BB* Current Word is kept on the output bus since REN is HIGH.  
*C* Word Wp+2 is written into the previously selected queue.  
*CC* Word Wa+1 of Device 5 Qp is read due to FWFT.  
*D* Word, Wn is written into the newly selected queue, Q3 of Device 5. This write will cause the PAE flag on the read port to go from LOW to HIGH (not almost empty) after time,  
tSKEW3 + RCLK + tRAE (if tSKEW3 is violated one extra RCLK cycle will be added).  
*DD* Word, Wy from the newly selected queue, Q3 will be read out due to FWFT operation.  
Device 5 is selected on the PAEn bus. Q3 of Device 5 will therefore have is PAE status output on PAE[0]. There is a single RCLK cycle latency before the PAEn bus changes  
to the new selection.  
*E* Q2 of Device 3 is selected for write operations.  
Word Wn+1 is written into Q3 of Device 5.  
*EE* Word, Wy+1 is read from Q3 of Device 5.  
*F* No writes occur.  
*FF* Word, Wy+2 is read from Q3 of Device 5.  
The PAEn bus changes control to Device 5, the PAEn outputs of Device 5 go to Low-Impedance and quadrant 4 is placed onto the outputs. The device of the previously  
selected quadrant now places its PAEn outputs into High-Impedance to prevent bus contention.  
The discrete PAE flag will go HIGH to show that Q3 of Device 5 is not almost empty. Q3 of Device 5 will have its PAE status output on PAE[0].  
*G* Device 4 is selected on the write port for the PAFn bus.  
*GG* The PAEn bus updates to show that Q3 of Device 5 is almost empty based on the reading out of word, Wy+1.  
The discrete PAE flag goes LOW to show that Q3 of Device 5 is almost empty based on the reading of Wy+1.  
*H* Word, Wx is written into Q2 of Device 3.  
Figure 24. PAEn - Direct Mode, Flag Operation  
44  
IDT72T51233/72T51243/72T512532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
*A*  
*B*  
*C*  
*D*  
*E*  
*F*  
*G*  
*H*  
*I*  
RCLK  
tQH  
tQS  
tQS  
tQH  
RADEN  
tSTH  
tSTS  
ESTR  
REN  
tAS  
tAH  
tAH  
tAH  
tAS  
tAS  
Device 7  
111 xx  
RDADD  
D6Q2  
110 10  
D0Q1  
000 01  
OE  
tA  
t
A
tA  
tA  
tOLZ  
Qout  
W
X
W
X +1  
Prev. Q  
W
D0 Q1  
D - M + 2  
W0  
D6 Q2  
W
D0 Q1  
D-M+1  
Prev. Q  
t
SKEW3  
WCLK  
FSTR  
1
2
3
tSTS  
tSTH  
tAS  
tAH  
tAS  
tAH  
WRADD  
Device 0  
000 xx  
D0 Q1  
tENS  
tENH  
WEN  
tQS  
tQH  
WADEN  
Din  
t
DS  
t
DH  
tDS  
t
DH  
tDS  
tDH  
W
y+1  
Wy+2  
Word W  
y
D0 Q1  
Device 0  
Device 0  
HIGH-Z  
D0 Q1  
D0 Q1  
t
PAFLZ  
t
PAF  
t
PAF  
Device 0 PAFn  
xxxxxx0x  
xxxxxx0x  
Device 0  
Device 0  
Device 0  
HIGH-Z  
D
X
Quad y  
Device 0  
Bus PAFn  
t
PAFHZ  
DX  
Quad y  
Prev.  
PAFn  
t
PAFLZ  
tWAF  
Device 0  
HIGH - Z  
6115 drw29  
PAF  
*AA*  
*BB*  
*CC*  
*DD*  
*EE*  
*FF*  
*GG*  
Cycle:  
*A* Q1 of device 0 is selected for read operations.  
The last word in the output register is available on Qout. OE was previously taken LOW so the output bus is in Low-Impedance.  
*AA* Device 0 is selected for the PAFn bus. The bus is currently providing status of a previously selected quadrant, Quad Y of device X.  
*B* No read operation.  
*BB* Queue 1 of device 0 is selected on the write port.  
*C* Word, Wx+1 is read out from the previous queue due to the FWFT effect.  
*CC* The PAFn bus is updated with the quadrant selected on the previous cycle, Device 0 PAF[1] is LOW showing the status of queue 1.  
The PAFn outputs of the device previously selected on the PAFn bus go to High-Impedance.  
*D* Device 7 is selected for the PAFn bus.  
Word, Wd-m+1 is read from Q1 D0 due to the FWFT operation. This read is at the PAFn boundary of queue D0 Q1. This read will cause the PAF[1] output to go from  
LOW to HIGH (almost full to not almost full), after a delay tSKEW3 + WCLK + tPAF. If tSKEW3 is violated add an extra WCLK cycle.  
*DD* No write operation.  
*E* No read operations occur, REN is HIGH.  
*EE* PAF[1] goes HIGH to show that D0 Q1 is not almost empty due to the read on cycle *C*.  
The active queue PAF flag of device 0 goes from High-Impedance to Low-Impedance.  
Word, Wy is written into D0 Q1.  
*F* Queue 2 of Device 6 is selected for read operations.  
*FF* Word, Wy+1 is written into D0 Q1.  
*G* Word, Wd-m+2 is read out due to FWFT operation.  
*GG* PAF[1] and the discrete PAF flag go LOW to show the write on cycle *DD* causes Q1 of D0 to again go almost full.  
Word, Wy+2 is written into D0 Q1.  
*H* No read operation.  
*I* Word, W0 is read from Q6 of D2, selected on cycle *F*, due to FWFT.  
Figure 25. PAFn - Direct Mode, Flag Operation  
45  
IDT72T51233/72T51243/72T512532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
WCLK  
tFSYNC  
tFSYNC  
tFSYNC  
tFSYNC  
FSYNC  
0
(MASTER)  
tFXO  
tFXO  
tFXO  
tFXO  
FXO /  
0
FXI  
1
tFSYNC  
tFSYNC  
FSYNC  
1
(SLAVE)  
tFXO  
tFXO  
FXO /  
1
FXI  
2
tFSYNC  
tFSYNC  
FSYNC  
2
(SLAVE)  
tFXO  
tFXO  
FXO /  
2
FXI  
0
tPAF  
tPAF  
tPAF  
tPAF  
tPAF  
Device 0  
Device 1  
Device 2  
Device 0  
PAF[7:0]  
6115 drw30  
NOTE:  
1. This diagram is based on 3 devices connected to expansion mode.  
Figure 26. PAFn Bus - Polled Mode  
46  
IDT72T51233/72T51243/72T512532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
RCLK  
tESYNC  
tESYNC  
tESYNC  
tESYNC  
ESYNC  
0
tEXO  
tEXO  
tEXO  
tEXO  
EXO /  
0
EXI  
1
tESYNC  
tESYNC  
ESYNC  
1
tEXO  
tEXO  
EXO /  
1
FXI  
2
tESYNC  
tESYNC  
ESYNC  
2
tEXO  
tEXO  
EXO /  
2
EXI  
0
tPAE  
tPAE  
tPAE  
tPAE  
tPAE  
Device 0  
Device 1  
Device 2  
Device 0  
PAE  
n
6115 drw31  
Figure 27. PAEn Bus - Polled Mode  
47  
IDT72T51233/72T51243/72T512532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
WCLK  
WEN  
tDH  
tDS  
tDH  
tDS  
tDS  
tDH  
tDS  
WD10  
WD11  
WD12  
WD13  
D[39:0]  
1ns  
(1)  
3
1
2
4
RCLK  
REN  
(7)  
PDHZ  
(2)  
t
tPDLZ  
tA  
tA  
t
A
tA  
Hi-Z  
WD1  
WD2  
WD3  
WD4  
WDH  
WDS  
Q[39:0]  
(2)  
PDH  
t
(2)  
PDH  
t
tPDL  
PD  
tERCLK  
Hi-Z  
Hi-Z  
ERCLK  
tEREN  
tEREN  
EREN  
6115 drw32  
NOTES:  
1. All read and write operations must have ceased a minimum of 4 WCLK and 4 RCLK cycles before power down is asserted.  
2. When the PD input becomes deasserted, there will be a 1µs waiting period before read and write operations can resume.  
All input and output signals will also resume after this time period.  
3. Set-up and configuration static inputs are not affected during power down.  
4. Serial programming and JTAG programming port are inactive during power down.  
5. RCS = 0, WCS = 0 and OE = 0. These signals can toggle during and after power down.  
6. All flags remain active and maintain their current states.  
7. During power down, all outputs will be in high-impedance.  
Figure 28. Power Down Operation  
48  
IDT72T51233/72T51243/72T512532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
Serial Programming Data Input  
Serial Enable  
SENI  
SI FXI EXI  
Output Data Bus  
Data Bus  
Q
-Q  
17  
D
-D  
17  
0
0
Read Clock  
Write Clock  
RCLK  
WCLK  
Write Enable  
Read Enable  
WEN  
REN  
Read Queue Select  
Read Address  
Write Queue Select  
Write Address  
RDADD  
RADEN  
WRADD  
WADEN  
DEVICE  
1
Empty Strobe  
Full Strobe  
ESTR  
FSTR  
PAFn  
Programmable Almost Full  
Programmable Almost Empty  
PAEn  
Empty Sync 1  
Output Valid Flag  
Almost Empty Flag  
Full Sync1  
ESYNC  
OV  
FSYNC  
Full Flag  
FF  
Almost Full Flag  
Serial Clock  
PAF  
PAE  
SCLK  
SENO SO FXO EXO  
SENI SI FXI EXI  
Q
-Q  
17  
D
-D  
17  
0
0
WCLK  
RCLK  
WEN  
REN  
WRADD  
WADEN  
RDADD  
RADEN  
DEVICE  
2
FSTR  
PAFn  
ESTR  
PAEn  
Empty Sync 2  
Full Sync2  
FSYNC  
ESYNC  
FF  
OV  
PAF  
PAE  
SCLK  
SO FXO EXO  
SENO  
SENI SI FXI EXI  
Q
-Q  
17  
D
-D  
17  
0
0
WCLK  
RCLK  
REN  
WEN  
WRADD  
WADEN  
RDADD  
RADEN  
DEVICE  
n
FSTR  
PAFn  
FSYNC  
ESTR  
PAEn  
Full Sync n  
Empty Sync n  
ESYNC  
FF  
OV  
PAF  
PAE  
SCLK  
SENO  
FXO EXO  
DONE  
6115 drw33  
NOTES:  
1. If devices are configured for Direct operation of the PAFn/PAEn flag busses the FXI/EXI of the MASTER device should be tied LOW. All other devices tied HIGH. The FXO/EXO  
outputs are DNC (Do Not Connect).  
2. Q outputs must not be mixed between devices, i.e. Q0 of device 1 must connect to Q0 of device 2, etc.  
Figure 29. Multi-Queue Expansion Diagram  
49  
IDT72T51233/72T51243/72T512532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
TheStandardJTAGinterfaceconsistsoffourbasicelements:  
JTAGINTERFACE  
Test Access Port (TAP)  
TAPcontroller  
Instruction Register (IR)  
Data Register Port (DR)  
Five additional pins (TDI, TDO, TMS, TCK and TRST) are provided to  
support the JTAG boundary scan interface. The IDT72T51233/72T51243/  
72T51253incorporates thenecessarytapcontrollerandmodifiedpadcellsto  
implementtheJTAG facility.  
Thefollowingsectionsprovideabriefdescriptionofeachelement. Fora  
completedescriptionrefertotheIEEEStandardTestAccessPortSpecification  
(IEEEStd. 1149.1-1990).  
NotethatIDTprovidesappropriateBoundaryScanDescriptionLanguage  
programfilesforthesedevices.  
The Figure belowshows the standardBoundary-ScanArchitecture  
Mux  
DeviceID Reg.  
Boundary Scan Reg.  
Bypass Reg.  
TDO  
TDI  
T
A
clkDR, ShiftDR  
UpdateDR  
P
TMS  
TAP  
TCLK  
Cont-  
roller  
TRST  
Instruction Decode  
clklR, ShiftlR  
UpdatelR  
Instruction Register  
Control Signals  
6115 drw34  
Figure 30. Boundary Scan Architecture  
THETAPCONTROLLER  
TEST ACCESS PORT (TAP)  
TheTapcontrollerisasynchronousfinitestatemachinethatrespondsto  
TMSandTCLKsignalstogenerateclockandcontrolsignalstotheInstruction  
andDataRegisters forcaptureandupdateofdata.  
The Tap interface is a general-purpose port that provides access to the  
internaloftheprocessor. Itconsistsoffourinputports(TCLK,TMS,TDI,TRST)  
and one output port (TDO).  
50  
IDT72T51233/72T51243/72T512532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
1
Test-Logic  
Reset  
0
1
0
1
1
Run-Test/  
Idle  
Select-  
DR-Scan  
Select-  
IR-Scan  
0
0
1
1
Capture-DR  
Capture-IR  
0
0
0
0
Shift-IR  
Shift-DR  
1
1
1
1
Input = TMS  
Exit1-IR  
Exit1-DR  
0
0
0
0
Pause-IR  
Pause-DR  
1
1
Exit2-IR  
Exit2-DR  
0
0
1
1
Update-IR  
Update-DR  
1
0
1
0
6115 drw35  
NOTES:  
1. Five consecutive TCK cycles with TMS = 1 will reset the TAP.  
2. TAP controller does not automatically reset upon power-up. The user must provide a reset to the TAP controller (either by TRST or TMS).  
3. TAP controller must be reset before normal Queue operations can begin.  
Figure 31. TAP Controller State Diagram  
Capture-IRInthiscontrollerstate,theshiftregisterbankintheInstruction  
RegisterparallelloadsapatternoffixedvaluesontherisingedgeofTCK.The  
lasttwosignificantbits arealways requiredtobe01.  
Shift-IR In this controller state, the instruction register gets connected  
betweenTDIandTDO,andthecapturedpatterngetsshiftedoneachrisingedge  
ofTCK.TheinstructionavailableontheTDIpinisalsoshiftedintotheinstruction  
register.  
Refer to the IEEE Standard Test Access Port Specification (IEEE Std.  
1149.1)forthefullstatediagram.  
AllstatetransitionswithintheTAPcontrolleroccurattherisingedgeofthe  
TCLKpulse. TheTMSsignallevel(0or1)determinesthestateprogression  
thatoccursoneachTCLKrisingedge. TheTAPcontrollertakesprecedence  
overthe Queue andmustbe resetafterpowerupofthe device. See TRST  
descriptionformoredetailsonTAPcontrollerreset.  
Exit1-IRThisisacontrollerstatewhereadecisiontoentereitherthePause-  
IRstateorUpdate-IRstateismade.  
Pause-IRThis state is providedinordertoallowthe shiftingofinstruction  
registertobetemporarilyhalted.  
Exit2-DRThisisacontrollerstatewhereadecisiontoentereithertheShift-  
IRstateorUpdate-IRstateismade.  
Update-IRInthiscontrollerstate,theinstructionintheinstructionregisteris  
latchedintothelatchbankoftheInstructionRegisteroneveryfallingedgeof  
TCK.Thisinstructionalsobecomesthecurrentinstructiononceitislatched.  
Capture-DRInthiscontrollerstate,thedataisparallelloadedintothedata  
registersselectedbythecurrentinstructionontherisingedgeofTCK.  
Shift-DR, Exit1-DR, Pause-DR, Exit2-DR and Update-DR These  
controllerstates are similartothe Shift-IR, Exit1-IR, Pause-IR, Exit2-IRand  
Update-IRstatesintheInstructionpath.  
Test-Logic-ResetAlltestlogicisdisabledinthiscontrollerstateenabling  
thenormaloperationoftheIC.TheTAPcontrollerstatemachineisdesigned  
insuchawaythat,nomatterwhattheinitialstateofthecontrolleris,theTest-  
Logic-ResetstatecanbeenteredbyholdingTMSathighandpulsingTCKfive  
times. This is the reasonwhythe TestReset(TRST)pinis optional.  
Run-Test-IdleInthiscontrollerstate,thetestlogicintheICisactiveonlyif  
certaininstructionsarepresent.Forexample,ifaninstructionactivatestheself  
test,thenitwillbeexecutedwhenthecontrollerentersthisstate.Thetestlogic  
intheICis idles otherwise.  
Select-DR-ScanThis is a controllerstate where the decisiontoenterthe  
DataPathortheSelect-IR-Scanstateismade.  
Select-IR-Scan This is a controller state where the decision to enter the  
InstructionPathismade.TheControllercanreturntotheTest-Logic-Resetstate  
otherwise.  
51  
IDT72T51233/72T51243/72T512532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
JTAG INSTRUCTION REGISTER  
THE INSTRUCTION REGISTER  
TheInstructionregisterallowsinstructiontobeseriallyinputintothedevice  
whentheTAPcontrollerisintheShift-IRstate. Theinstructionisdecodedto  
performthefollowing:  
TheInstructionregisterallowsaninstructiontobeshiftedinseriallyintothe  
processor at the rising edge of TCLK.  
TheInstructionis usedtoselectthetesttobeperformed,orthetestdata  
registertobeaccessed,orboth. Theinstructionshiftedintotheregisterislatched  
atthecompletionoftheshiftingprocesswhentheTAPcontrollerisatUpdate-  
IRstate.  
Selecttestdataregistersthatmayoperatewhiletheinstructionis  
current. Theothertestdataregistersshouldnotinterferewithchip  
operationandtheselecteddataregister.  
Definetheserialtestdataregisterpaththatisusedtoshiftdatabetween  
Theinstructionregistermustcontain4bitinstructionregister-basedcells  
whichcanholdinstructiondata. Thesemandatorycellsarelocatednearestthe  
serialoutputstheyaretheleastsignificantbits.  
TDI and TDO during data register scanning.  
The Instruction Register is a 4 bit field (i.e. IR3, IR2, IR1, IR0) to decode  
16differentpossibleinstructions. Instructionsaredecodedasfollows.  
TESTDATAREGISTER  
Hex  
Value  
00  
01  
02  
04  
0F  
Instruction  
Function  
TheTestDataregistercontainsthreetestdataregisters:theBypass,the  
Boundary Scan register and Device ID register.  
Theseregistersareconnectedinparallelbetweenacommonserialinput  
andacommonserialdataoutput.  
Thefollowingsectionsprovideabriefdescriptionofeachelement. Fora  
completedescription,refertotheIEEEStandardTestAccessPortSpecification  
(IEEEStd. 1149.1-1990).  
EXTEST  
SAMPLE/PRELOAD  
IDCODE  
HIGH-IMPEDANCE  
BYPASS  
SelectBoundaryScanRegister  
SelectBoundaryScanRegister  
SelectChipIdentificationdataregister  
JTAG  
SelectBypassRegister  
JTAG INSTRUCTION REGISTER DECODING  
TEST BYPASS REGISTER  
TheregisterisusedtoallowtestdatatoflowthroughthedevicefromTDI  
toTDO. Itcontainsasinglestageshiftregisterforaminimumlengthinserialpath.  
Whenthebypassregisterisselectedbyaninstruction,theshiftregisterstage  
is settoa logiczeroonthe risingedge ofTCLKwhenthe TAPcontrolleris in  
theCapture-DRstate.  
Thefollowingsectionsprovideabriefdescriptionofeachinstruction. For  
acompletedescriptionrefertotheIEEEStandardTestAccessPortSpecification  
(IEEEStd. 1149.1-1990).  
EXTEST  
The operation of the bypass register should not have any effect on the  
operationofthedeviceinresponsetotheBYPASSinstruction.  
TherequiredEXTESTinstructionplacestheICintoanexternalboundary-  
testmodeandselectstheboundary-scanregistertobeconnectedbetweenTDI  
andTDO.Duringthisinstruction,theboundary-scanregisterisaccessedto  
drivetestdataoff-chipviatheboundaryoutputsandreceivetestdataoff-chip  
viatheboundaryinputs.Assuch,theEXTESTinstructionistheworkhorseof  
IEEE.Std1149.1,providingforprobe-lesstestingofsolder-jointopens/shorts  
andoflogicclusterfunction.  
THE BOUNDARY-SCAN REGISTER  
TheBoundaryScanRegisterallowsserialdataTDIbeloadedintoorread  
outoftheprocessorinput/outputports. TheBoundaryScanRegisterisapart  
oftheIEEE1149.1-1990StandardJTAGImplementation.  
THE DEVICE IDENTIFICATION REGISTER  
IDCODE  
The Device IdentificationRegisteris a ReadOnly32-bitregisterusedto  
specify the manufacturer, part number and version of the processor to be  
determinedthroughtheTAPinresponsetotheIDCODEinstruction.  
IDT JEDEC ID number is 0xB3. This translates to 0x33 when the parity  
is droppedinthe11-bitManufacturerIDfield.  
TheoptionalIDCODEinstructionallowstheICtoremaininitsfunctionalmode  
andselectstheoptionaldeviceidentificationregistertobeconnectedbetween  
TDI and TDO. The device identification register is a 32-bit shift register  
containinginformationregardingtheICmanufacturer,devicetype,andversion  
code.Accessingthedeviceidentificationregisterdoesnotinterferewiththe  
operationoftheIC.Also,accesstothedeviceidentificationregistershouldbe  
immediatelyavailable,viaaTAPdata-scanoperation,afterpower-upofthe  
ICoraftertheTAPhasbeenresetusingtheoptionalTRSTpinorbyotherwise  
movingtotheTest-Logic-Resetstate.  
FortheIDT72T51233/72T51243/72T51253,thePartNumberfieldcon-  
tainsthefollowingvalues:  
Device  
Part# Field (HEX)  
0x451  
IDT72T51233  
IDT72T51243  
IDT72T51253  
0x452  
0x453  
SAMPLE/PRELOAD  
TherequiredSAMPLE/PRELOADinstructionallowstheICtoremainina  
normalfunctionalmodeandselectstheboundary-scanregistertobeconnected  
betweenTDIandTDO.Duringthisinstruction,theboundary-scanregistercan  
beaccessedviaadatescanoperation,totakeasampleofthefunctionaldata  
enteringandleavingtheIC.This instructionis alsousedtopreloadtestdata  
intotheboundary-scanregisterbeforeloadinganEXTESTinstruction.  
31(MSB)  
28 27  
12 11  
1 0(LSB)  
Version (4 bits) Part Number (16-bit) Manufacturer ID (11-bit)  
0X0  
0X33  
1
JTAG DEVICE IDENTIFICATION REGISTER  
52  
IDT72T51233/72T51243/72T512532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
HIGH-IMPEDANCE  
BYPASS  
TheoptionalHigh-Impedanceinstructionsetsalloutputs(includingtwo-state  
aswellasthree-statetypes)ofanICtoadisabled(high-impedance)stateand  
selects the one-bit bypass register to be connected between TDI and TDO.  
Duringthisinstruction,datacanbeshiftedthroughthebypassregisterfromTDI  
toTDOwithoutaffectingtheconditionoftheICoutputs.  
The required BYPASS instruction allows the IC to remain in a normal  
functional mode and selects the one-bit bypass register to be connected  
between TDI and TDO. The BYPASS instruction allows serial data to be  
transferredthroughtheICfromTDItoTDOwithoutaffectingtheoperationof  
theIC.  
53  
IDT72T51233/72T51243/72T512532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
tTCK  
t4  
t1  
t2  
TCK  
t3  
TDI/  
TMS  
tDS  
tDH  
TDO  
TDO  
tDO  
t6  
TRST  
6115 drw36  
Notes to diagram:  
t1 = tTCKLOW  
t2 = tTCKHIGH  
t5  
t3 = tTCKFALL  
t4 = tTCKRISE  
t5 = tRST (reset pulse width)  
t6 = tRSR (reset recovery)  
Figure 32. Standard JTAG Timing  
JTAG  
ACELECTRICALCHARACTERISTICS  
(vcc = 2.5V ± 5%; Tcase = 0°C to +85°C)  
Parameter  
Symbol  
Test  
Conditions  
Min. Max. Units  
SYSTEMINTERFACEPARAMETERS  
JTAGClockInputPeriod tTCK  
-
-
-
-
-
-
-
100  
40  
40  
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
IDT72T51233  
IDT72T51243  
IDT72T51253  
JTAGClockHIGH  
JTAGClockLow  
tTCKHIGH  
tTCKLOW  
tTCKRISE  
tTCKFALL  
tRST  
-
Parameter  
Symbol Test Conditions Min. Max. Units  
JTAGClockRiseTime  
JTAGClockFallTime  
JTAGReset  
5(1)  
5(1)  
-
(1)  
DataOutput  
tDO  
-
20  
-
ns  
ns  
ns  
-
(1)  
DataOutputHold tDOH  
0
50  
50  
DataInput  
tDS  
tDH  
trise=3ns  
tfall=3ns  
10  
10  
-
-
JTAG Reset Recovery  
tRSR  
-
NOTE:  
1. Guaranteed by design.  
NOTE:  
1. 50pf loading on external output signals.  
54  
ORDERINGINFORMATION  
IDT  
XXXXX  
X
XX  
X
X
Process /  
Temperature  
Range  
Device Type  
Power  
Speed  
Package  
BLANK  
I(1)  
Commercial (0°C to +70°C)  
Industrial (-40°C to +85°C)  
Plastic Ball Grid Array (PBGA, BB256-1)  
BB  
Clock Cycle Time (tCLK  
Speed in Nanoseconds  
)
5
6
Commercial Only  
Commercial and Industrial  
Low Power  
L
72T51233 589,824 bits 2.5V Multi-Queue Flow-Control Device  
72T51243 1,179,648 bits 2.5V Multi-Queue Flow-Control Device  
72T51253 2,359,296 bits 2.5V Multi-Queue Flow-Control Device  
6115 drw36  
NOTE:  
1. Industrial temperature range product for the 6ns is available as a standard device. All other speed grades available by special order.  
DATASHEETDOCUMENTHISTORY  
08/05/2003  
11/06/2003  
pgs. 1 through 55.  
pgs. 1, 4, 15 and 16.  
CORPORATE HEADQUARTERS  
2975StenderWay  
Santa Clara, CA 95054  
for SALES:  
for Tech Support:  
408-330-1533  
email:Flow-Controlhelp@idt.com  
800-345-7015 or 408-727-6116  
fax: 408-492-8674  
www.idt.com  
55  

相关型号:

IDT72T51243L6BB

2.5V MULTI-QUEUE FLOW-CONTROL DEVICES (32 QUEUES) 36 BIT WIDE CONFIGURATION 1,179,648 bits and 2,359,296 bits
IDT

IDT72T51243L6BBI

2.5V MULTI-QUEUE FLOW-CONTROL DEVICES (32 QUEUES) 36 BIT WIDE CONFIGURATION 1,179,648 bits and 2,359,296 bits
IDT

IDT72T51243L7-5BBI

FIFO, 64KX18, Synchronous, CMOS, PBGA256, 17 X 17 MM, 1 MM PITCH, PLASTIC, BGA-256
IDT

IDT72T51246

2.5V MULTI-QUEUE FLOW-CONTROL DEVICES (4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824 bits, 1,179,648 bits and 2,359,296 bits
IDT

IDT72T51246L5BB

2.5V MULTI-QUEUE FLOW-CONTROL DEVICES (4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824 bits, 1,179,648 bits and 2,359,296 bits
IDT

IDT72T51246L5BB8

FIFO, 32KX36, 3.6ns, Synchronous, CMOS, PBGA256, 17 X 17 MM, 1 MM PITCH, PLASTIC, BGA-256
IDT

IDT72T51246L5BBI

2.5V MULTI-QUEUE FLOW-CONTROL DEVICES (4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824 bits, 1,179,648 bits and 2,359,296 bits
IDT

IDT72T51246L6BB

2.5V MULTI-QUEUE FLOW-CONTROL DEVICES (4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824 bits, 1,179,648 bits and 2,359,296 bits
IDT

IDT72T51246L6BB8

FIFO, 32KX36, 3.7ns, Synchronous, CMOS, PBGA256, 17 X 17 MM, 1 MM PITCH, PLASTIC, BGA-256
IDT

IDT72T51246L6BBI

2.5V MULTI-QUEUE FLOW-CONTROL DEVICES (4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824 bits, 1,179,648 bits and 2,359,296 bits
IDT

IDT72T51246L7-5BBI

FIFO, 32KX36, Synchronous, CMOS, PBGA256, 17 X 17 MM, 1 MM PITCH, PLASTIC, BGA-256
IDT

IDT72T51248L6-7BB

FIFO, 32KX40, 3.8ns, Synchronous, CMOS, PBGA324, 19 X 19 MM, 1 MM PITCH, PLASTIC, BGA-324
IDT