IDT77V1254L25PGI9 [IDT]

ATM Network Interface, 1-Func, CMOS, PQFP144, 28 X 28 MM, PLASTIC, QFP-144;
IDT77V1254L25PGI9
型号: IDT77V1254L25PGI9
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

ATM Network Interface, 1-Func, CMOS, PQFP144, 28 X 28 MM, PLASTIC, QFP-144

ATM 异步传输模式 电信 电信集成电路
文件: 总48页 (文件大小:362K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IDT77V1254L25  
Quad Port PHY (Physical Layer)  
for 25.6 and 51.2  
ATM Networks  
Features List  
Description  
!
Performs the PHY-Transmission Convergence (TC) and  
The IDT77V1254L25 is a member of IDT's family of products  
supporting Asynchronous Transfer Mode (ATM) data communications  
and networking. The IDT77V1254L25 implements the physical layer for  
25.6 Mbps ATM, connecting four serial copper links (UTP Category 3  
and 5) to one ATM layer device such as a SAR or a switch ASIC. The  
IDT77V1254L25 also operates at 51.2 Mbps, and is well suited to back-  
plane driving applications.  
Physical Media Dependent (PMD) Sublayer functions for  
four 25.6 Mbps ATM channels  
!
Compliant to ATM Forum (af-phy-040.000) and ITU-T I.432.5  
specifications for 25.6 Mbps physical interface  
!
!
!
!
!
!
!
!
!
!
Also operates at 51.2 Mbps data rate  
UTOPIA Level 1, UTOPIA Level 2, or DPI-4 Interface  
3-Cell Transmit & Receive FIFOs  
The 77V1254L25-to-ATM layer interface is selectable as one of three  
options: 16-bit UTOPIA Level 2, 8-bit UTOPIA Level 1 Multi-PHY, or  
quadruple 4-bit DPI (Data Path Interface).  
LED Interface for status signalling  
Supports UTP Category 3 and 5 physical media  
Interfaces to standard magnetics  
Low-Power CMOS  
The IDT77V1254L25 is fabricated using IDT's state-of-the-art CMOS  
technology, providing the highest levels of integration, performance and  
reliability, with the low-power consumption characteristics of CMOS.  
3.3V supply with 5V tolerant inputs  
144-pin PQFP Package (28 x 28 mm)  
Industrial Temperature Ranges  
Block Diagram  
TXREF  
TXCLK  
TXDATA[15:0]  
TXPARITY  
TXSOC  
+
-
TX 0  
RX 0  
Driver  
5B/4B  
Encoding/  
Decoding  
TX/RX ATM  
Cell FIFO  
Scrambler/  
Descrambler  
P/S and S/P  
NRZI  
+
-
TXEN  
TXCLAV  
Clock Recovery  
TXADDR[4:0]  
MODE[1:0]  
PHY-ATM  
Interface  
(UTOPIA or DPI)  
+
-
RXADDR[4:0]  
RXCLK  
Tx 1  
Rx 1  
Driver  
5B/4B  
Encoding/  
Decoding  
TX/RX ATM  
Cell FIFO  
Scrambler/  
Descrambler  
P/S and S/P  
NRZI  
RXDATA[15:0]  
RXPARITY  
RXSOC  
+
-
Clock Recovery  
RXEN  
RXCLAV  
+
-
INT  
RST  
TX 2  
RX 2  
Driver  
5B/4B  
Encoding/  
Decoding  
TX/RX ATM  
Cell FIFO  
Scrambler/  
Descrambler  
P/S and S/P  
NRZI  
+
-
Clock Recovery  
Microprocessor  
Interface  
RD  
WR  
CS  
AD[7:0]  
+
-
ALE  
TX 3  
RX 3  
Driver  
5B/4B  
Encoding/  
Decoding  
TX/RX ATM  
Cell FIFO  
Scrambler/  
Descrambler  
P/S and S/P  
NRZI  
+
-
Clock Recovery  
OSC  
4
4
RXREF  
RXLED[3:0] TXLED[3:0]  
3505 drw 01  
.
IDT and the IDT logo are trademarks of Integrated Device Technology, Inc.  
1 of 48  
December 2004  
DSC 6003/1  
2004 Integrated Device Technology, Inc. All rights reserved. Product specification subject to change without notice.  
IDT77V1254L25  
Operation AT 51.2 Mbps  
Applications  
!
Up to 204.8Mbps backplane transmission  
In addition to operation at the standard rate of 25.6 Mbps, the  
77V1254L25 is also specified to operate at 51.2 Mbps. Except for the  
doubled bit rate, all other aspects of operation are identical to the 25.6  
Mbps mode.  
!
!
Rack-to-rack short links  
ATM Switches  
The rate is determined by the frequency of the clock applied to the  
OSC input pin. OSC is 32 MHz for the 25.6 Mbps line rate, and 64 MHz  
for the 51.2 Mbps line rate. All ports operate at the same frequency.  
77V1254L25 Overview  
The 77V1254L25 is a four port implementation of the physical layer  
standard for 25.6Mbps ATM network communications as defined by  
ATM Forum document af-phy-040.000 and ITU-T I.432.5. The physical  
layer is divided into a Physical Media Dependent sub layer (PMD) and  
Transmission Convergence (TC) sub layer. The PMD sub layer includes  
the functions for the transmitter, receiver and clock recovery for opera-  
tion across 100 meters of category 3 and 5 unshielded twisted pair  
(UTP) cable. This is referred to as the Line Side Interface. The TC sub  
layer defines the line coding, scrambling, data framing and synchroniza-  
tion.  
See Figure 36 for recommended line magnetics. Magnetics for 51.2  
Mbps operation have a higher bandwidth than magnetics optimized for  
25.6 Mbps.  
Functional Description  
Transmission Convergence (TC) Sub Layer  
Introduction  
The TC sub layer defines the line coding, scrambling, data framing  
and synchronization. Under control of a switch interface or Segmenta-  
tion and Reassembly (SAR) unit, the 25.6Mbps ATM PHY accepts a 53-  
byte ATM cell, scrambles the data, appends a command byte to the  
beginning of the cell, and encodes the entire 53 bytes before transmis-  
sion. These data transformations ensure that the signal is evenly distrib-  
uted across the frequency spectrum. In addition, the serialized bit  
stream is NRZI coded. An 8kHz timing sync pulse may be used for  
isochronous communications.  
On the other side, the 77V1254L25 interfaces to an ATM layer device  
(such as a switch core or SAR). This cell level interface is configurable  
as either 8-bit Utopia Level 1 Multi-PHY, 16-bit Utopia Level 2, or as four  
4-bit DPI interfaces, as determined by two MODE pins. This is referred  
to as the PHY-ATM Interface. The pinout and front page block diagram  
are based on the Utopia 2 configuration. Table 2 shows the corre-  
sponding pin functions for the other two modes, and Figure 2 and Figure  
3 show functional block diagrams.  
The 77V1254L25 is based on the 77105, and maintains significant  
register compatibility with it. The 77V1254L25, however, has additional  
register features, and also duplicates most of its registers to provide  
significant independence between the four ports.  
Data Structure and Framing  
Each 53-byte ATM cell is preceded with a command byte. This byte  
is distinguished by an escape symbol followed by one of 17 encoded  
symbols. Together, this byte forms one of seventeen possible command  
bytes. Three command bytes are defined:  
Access to these status and control registers is through the utility bus.  
This is an 8-bit muxed address and data bus, controlled by a conven-  
tional asynchronous read/write handshake.  
1. X_X (read: 'escape' symbol followed by another 'escape'): Start-  
of-cell with scrambler/descrambler reset.  
2. X_4 ('escape' followed by '4'): Start-of-cell without scrambler/  
descrambler reset.  
Additional pins permit insertion and extraction of an 8kHz timing  
marker, and provide LED indication of receive and transmit status.  
3. X_8 ('escape' followed by '8'): 8kHz timing marker. This  
command byte is generated when the 8kHz sync pulse is  
detected, and has priority over all line activity (data or command  
bytes). It is transmitted immediately when the sync pulse is  
detected. When this occurs during a cell transmission, the data  
transfer is temporarily interrupted on an octet boundary, and the  
X_8 command byte is inserted. This condition is the only allowed  
interrupt in an otherwise contiguous transfer.  
Auto-Synchronization and Good Signal  
Indication  
The 77V1254L25 features a new receiver synchronization algorithm  
that allow it to achieve 4b/5b symbol framing on any valid data stream.  
This is an improvement on earlier products which could frame only on  
the escape symbol, which occurs only in start-of-cell or 8kHz (X8) timing  
marker symbol pairs.  
Below is an illustration of the cell structure and command byte  
usage:  
ATM25 transceivers always transmit valid 4b/5b symbols, allowing  
the 77V1254L25 receive section to achieve symbol framing and properly  
indicate receive signal status, even in the absence of ATM cells or 8kHz  
(X8) timing markers in the receive data stream. A state maching moni-  
tors the received symbols and asserts the Good Signal” status bit when  
a valid signal is being received. Good Signal” is deasserted and the  
receive FIFO is disabled when the signal is lost. This is sometimes  
referred to as Loss of Signal (LOS).  
{X_X} {53-byte ATM cell} {X_4} {53-byte ATM {X_8} cell} ...  
In the above example, the first ATM cell is preceded by the X_X  
start-of-cell command byte which resets both the transmitter-scrambler  
and receiver-descrambler pseudo-random nibble generators (PRNG) to  
their initial states. The following cell illustrates the insertion of a start-of-  
cell command without scrambler/descrambler reset. During this cell's  
transmission, an 8kHz timing sync pulse triggers insertion of the X_8  
8kHz timing marker command byte.  
2 of 48  
December 2004  
IDT77V1254L25  
Transmission Description  
Data  
0000  
0100  
1000  
1100  
Symbol  
10101  
00111  
10010  
10111  
Data  
0001  
0101  
1001  
1101  
Symbol  
01001  
01101  
11001  
11101  
Refer to Figure 4. Cell transmission begins with the PHY-ATM Inter-  
face. An ATM layer device transfers a cell into the 77V1254L25 across  
the Utopia or DPI transmit bus. This cell enters a 3-cell deep transmit  
FIFO. Once a complete cell is in the FIFO, transmission begins by  
passing the cell, four bits (MSB first) at a time to the 'Scrambler'.  
The 'Scrambler' takes each nibble of data and exclusive-ORs them  
against the 4 high order bits (X(t), X(t-1), X(t-2), X(t-3)) of a 10 bit  
pseudo-random nibble generator (PRNG). Its function is to provide the  
appropriate frequency distribution for the signal across the line.  
Data  
0010  
0110  
1010  
1110  
Symbol  
01010  
01110  
11010  
11110  
Data  
0011  
0111  
1011  
1111  
Symbol  
01011  
01111  
11011  
11111  
The PRNG is clocked every time a nibble is processed, regardless of  
whether the processed nibble is part of a data or command byte. Note  
however that only data nibbles are scrambled. The entire command byte  
(X _C) is NOT scrambled before it's encoded (see diagram for illustra-  
tion). The PRNG is based upon the following polynomial:  
3505 drw 05a  
ESC(X) = 00010  
This encode/decode implementation has several very desirable prop-  
erties. Among them is the fact that the output data bits can be repre-  
sented by a set of relatively simple symbols;  
10  
7
!
X + X + 1  
Run length is limited to <= 5;  
Disparity never exceeds +/- 1.  
!
With this polynomial, the four output data bits (D3, D2, D1, D0) will be  
generated from the following equations:  
On the receiver, the decoder determines from the received symbols  
whether a timing marker command (X_8) or a start-of-cell command was  
sent (X_X or X_4). If a start-of-cell command is detected, the next 53  
bytes received are decoded and forwarded to the descrambler. (See TC  
Receive Block Diagram, Figure 5).  
D3 = d3 xor X(t-3)  
D2 = d2 xor X(t-2)  
D1 = d1 xor X(t-1)  
D0 = d0 xor X(t)  
The following nibble is scrambled with X(t+4), X(t+3), X(t+2), and  
X(t+1).  
A scrambler lock between the transmitter and receiver occurs each  
time an X_X command is sent. An X_X command is initiated only at the  
beginning of a cell transfer after the PRNG has cycled through all of its  
10  
states (2 - 1 = 1023 states). The first valid ATM data cell transmitted  
after power on will also be accompanied with an X_X command byte.  
Each time an X_X command byte is sent, the first nibble after the last  
escape (X) nibble is XOR'd with 1111b (PRNG = 3FFx).  
Because a timing marker command (X_8) may occur at any time, the  
possibility of a reset PRNG start-of-cell command and a timing marker  
command occurring consecutively does exist (e.g. X_X_X_8). In this  
case, the detection of the last two consecutive escape (X) nibbles will  
cause the PRNG to reset to its initial 3FFx state. Therefore, the PRNG is  
clocked only after the first nibble of the second consecutive escape pair.  
Once the data nibbles have been scrambled using the PRNG, the  
nibbles are further encoded using a 4b/5b process. The 4b/5b scheme  
ensures that an appropriate number of signal transitions occur on the  
line. A total of seventeen 5-bit symbols are used to represent the sixteen  
4-bit data nibbles and the one escape (X) nibble. The table below lists  
the 4-bit data with their corresponding 5-bit symbols:  
3 of 48  
December 2004  
IDT77V1254L25  
VDD  
GND  
TX0-  
TX0+  
VDD  
MM  
1
2
3
4
5
6
7
8
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
VDD  
GND  
TX3+  
TX3-  
VDD  
DA  
MODE1  
MODE0  
SE  
AD7  
AD6  
AD5  
AD4  
GND  
AD3  
AD2  
AD1  
AD0  
VDD  
ALE  
9
RXREF  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
TXREF  
GND  
TXLED3  
TXLED2  
TXLED1  
77V1254L25  
TXLED0  
144-PQFP  
VDD  
TXDATA0  
TXDATA1  
TXDATA2  
TXDATA3  
TXDATA4  
TXDATA5  
TXDATA6  
TXDATA7  
TXDATA8  
TXDATA9  
TXDATA10  
TXDATA11  
TXDATA12  
TXDATA13  
TXDATA14  
TXDATA15  
TXPARITY  
CS  
RD  
WR  
RST  
GND  
INT  
VDD  
GND  
RXLED3  
RXLED2  
RXLED1  
RXLED0  
VDD  
GND  
RXDATA0  
RXDATA1  
RXDATA2  
RXDATA3  
TXEN  
TXSOC  
TXADDR4  
.
3505 drw 02  
Figure 1 Pin Assignments  
4 of 48  
December 2004  
IDT77V1254L25  
Signal Descriptions  
Line Side Signals  
Signal Description  
Signal Name Pin Number  
I/O  
In  
RX0+,-  
RX1+,-  
RX2+,-  
RX3+,-  
TX0+,-  
TX1+,-  
TX2+,-  
TX3+,-  
139, 138  
133, 132  
121, 120  
115, 114  
4, 3  
Port 0 positive and negative receive differential input pair.  
Port 1 positive and negative receive differential input pair.  
Port 2 positive and negative receive differential input pair.  
Port 3 positive and negative receive differential input pair.  
Port 0 positive and negative transmit differential output pair.  
Port 1 positive and negative transmit differential output pair.  
Port 2 positive and negative transmit differential output pair.  
Port 3 positive and negative transmit differential output pair.  
In  
In  
In  
Out  
Out  
Out  
Out  
144, 143  
110, 109  
106, 105  
Utility Bus Signals  
Signal Name Pin Number  
I/O  
Signal Description  
AD[7:0]  
ALE  
CS  
101, 100, 99, 98, 96, 95, 94, In/Out Utility bus address/data bus. The address input is sampled on the falling edge of ALE. Data is output on this  
93  
bus when a read is performed. Input data is sampled at the completion of a write operation.  
91  
In  
Utility bus address latch enable. Asynchronous input. An address on the AD bus is sampled on the falling  
edge of ALE. ALE must be low when the AD bus is being used for data.  
90  
89  
88  
Utility bus asynchronous chip select. CS must be asserted to read or write an internal register. It may remain  
asserted at all times if desired  
RD  
In  
In  
Utility bus read enable. Active low asynchronous input. After latching an address, a read is performed by  
deasserting WR and asserting RD and CS.  
WR  
Utility bus write enable. Active low asynchronous input. After latching an address, a write is performed by  
deasserting RD, placing data on the AD bus, and asserting WR and CS. Data is sampled when WR or CS is  
deasserted.  
Miscellaneous Signals  
Signal Name Pin Number  
I/O  
In  
Signal Description  
DA  
INT  
103  
85  
Reserved signal. This input must be connected to logic low.  
Out  
Interrupt. INT is an open-drain output, driven low to indicate an interrupt. Once low, INT remains low until the  
interrupt status in the appropriate interrupt Status Register is read. Interrupt sources are programmable via  
the interrupt Mask Registers.  
MM  
6
In  
In  
Reserved signal. This input must be connected to logic low.  
MODE[1:0]  
7, 8  
Mode Selects. They determine the configuration of the PHY/ATM interface. 00 = UTOPIA Level 2. 01 = UTO-  
PIA Level 1. 10 = DPI. 11 is reserved.  
OSC  
RST  
126  
87  
In  
In  
TTL line rate clock source, driven by a 100 ppm oscillator. 32 MHz for 25.6 Mbps; 64 MHz for 51.2 Mbps.  
Reset. Active low asynchronous input resets all control logic, counters and FIFOs. A reset must be per-  
formed after power up prior to normal operation of the part.  
RXLED[3:0]  
RXREF  
82, 81, 80, 79  
9
Out  
Out  
Receive LED drivers. Driven low for 223 cycles of OSC, beginning with RXSOC when that port receives a  
good (non-null and non-errored) cell. Drives 8 mA both high and low. One per port.  
Receive Reference. Active low, synchronous to OSC. RXREF pulses low for a programmable number of  
clock cycles when an x_8 command byte is received. Register 0x40 is programmed to indicate which port is  
referenced.  
SE  
102  
In  
Reserved signal. This input must be connected to logic low.  
Table 1 Signal Descriptions (Part 1 of 3)  
5 of 48  
December 2004  
IDT77V1254L25  
TXLED[3:0]  
TXREF  
12, 13, 14, 15  
10  
Out  
In  
Ports 3 thru 0 Transmit LED driver. Goes low for 223 cycles of OSC, beginning with TXSOC when this port  
receives a cell for transmission. 8 mA drive current both high and low. One per port.  
Transmit Reference. Synchronous to OSC. On the falling edge, an X_8 command byte is inserted into the  
transmit data stream. Logic for this signal is programmed in register 0x40. Typical application is WAN timing.  
Power Supply Signals  
Signal Name Pin Number  
I/O  
Signal Description  
AGND  
AVDD  
GND  
112, 117, 118, 123, 124,  
127, 129, 130, 135, 136, 141  
____ Analog ground. AGND supply a ground reference to the analog portion of the ship, which sources a more  
constant current than the digital portion.  
113, 116, 119, 122, 125,  
128, 131, 134, 137, 140  
____ Analog power supply 3.3 ± 0.3V AVDD supply power to the analog portion of the chip, which draws a more  
constant current than the digital portion.  
2, 11, 44, 50, 56, 67, 77, 83, ____ Digital Ground.  
86, 97, 107, 111, 142  
VDD  
1, 5, 16, 38, 45, 57, 68, 78, ____ Digital power supply. 3.3 ± 0.3V.  
84, 92, 104, 108  
16-BIT UTOPIA 2 Signals (MODE[1:0] = 00)  
Signal Description  
Signal Name Pin Number  
I/O  
RXADDR[4:0] 53, 52, 51, 49, 48  
In  
Utopia 2 Receive Address Bus. This bus is used in polling and selecting the receive port. The port addresses  
are defined in bits [4:0] of the Enhanced Control Registers.  
RXCLAV  
54  
Out  
Utopia 2 Receive Cell Available. Indicates the cell available status of the addressed port. It is asserted when  
a full cell is available for retrieval from the receive FIFO. When non of the four ports is addressed. RXCLAV is  
high impedance.  
RXCLK  
46  
In  
Utopia 2 Receive Clock. This is a free running clock input.  
RXDATA[15:0] 59, 60, 61, 62, 63, 64, 65,  
66, 69, 70, 71, 72, 73, 74,  
75, 76  
Out  
Utopia 2 Receive Data. When one of the four ports is selected, the 77V1254L25 transfers received cells to an  
ATM device across this bus. Also see RXPARITY.  
RXEN  
47  
In  
Utopia 2 Receive Enable. Driven by an ATM device to indicate its ability to receive data across the RXDATA  
bus.  
RXPARITY  
RXSOC  
58  
55  
Out  
Out  
In  
Utopia 2 Receive Data Parity. Odd parity over RXDATA[15:0].  
Utopia 2 Receive Start of Cell. Asserted coincident with the first word of data for each cell on RXDATA.  
TXADDR[4:0] 36, 37, 39, 40, 41  
Utopia 2 Transmit Address Bus. This bus is used in polling and selecting the transmit port. The port  
addresses are defined in bits [4:0] of the Enhanced Control Registers.  
TXCLAV  
42  
Out  
Utopia 2 Transmit Cell Available. Indicates the availability of room in the transmit FIFO of the addressed port  
for a full cell. When none of the four ports is addressed, TXCLAV is high impedance.  
TXCLK  
43  
In  
In  
Utopia Transmit Clock. This is a free running clock input.  
TXDATA[15:0] 32, 31, 30, 29, 28, 27, 26,  
25, 24, 23, 22, 21, 20, 19,  
18, 17  
Utopia 2 Transmit Data. An ATM device transfers cells across this bus to the 77V1254L25 for transmission.  
Also see TXPARITY.  
TXEN  
34  
In  
In  
Utopia 2 Transmit Enable. Driven by an ATM device to indicate it is transmitting data across the TXDATA  
bus.  
TXPARITY  
33  
Utopia 2 Transmit Data Parity. Odd parity across TXDATA[15:0]. Parity is checked and errors are indicated in  
the Interrupt Status Registers, as enabled in the Master Control Registers. No other action is taken in the  
event of an error. Tie high or low if unused.  
TXSOC  
35  
In  
Utopia 2 Transmit Start of Cell. Asserted coincident with the first word of data for each cell on TXDATA.  
Table 1 Signal Descriptions (Part 2 of 3)  
6 of 48  
December 2004  
IDT77V1254L25  
8-BIT UTOPIA Level 1 Signals (MODE[1:0] = 01)  
Signal Name Pin Number  
I/O  
Signal Description  
RXCLAV[3:0] 64, 65, 66, 54  
Out  
Utopia 1 Receive Cell Available. Indicates the cell available status of the respective port. It is asserted when  
a full cell is available for retrieval from the receive FIFO.  
RXCLK  
46  
In  
Utopia 1 Receive Clock. This is a free running clock input.  
RXDATA[7:0] 69, 70, 71, 72, 73, 74, 75, 76 Out  
Utopia 1 Receive Data. When one of the four ports is selected, the 77V1254L25 transfers received cells to an  
ATM device across this bus. Bit 5 in the Diagnostic Control Registers determines whether RXDATA tri-states  
when RXEN[3:0] are high. Also see RXPARITY.  
RXEN[3:0]  
51, 49, 48, 47  
In  
Utopia 1 Receive Enable. Driven by an ATM device to indicate its ability to receive data across the RXDATA  
bus. One for each port  
RXPARITY  
RXSOC  
58  
55  
Out  
Out  
Utopia 1 Receive Data Parity. Odd parity over RXDATA[7:0].  
Utopia 1 Receive Start of Cell. Asserted coincident with the first word of data for each cell on RXDATA. Tri-  
statable as determined by bit 5 in the Diagnostic Control Registers.  
TXCLAV[3:0] 39, 40, 41, 42  
TXCLK 43  
Out  
In  
Utopia 1 Transmit cell Available. Indicates the availability of room in the transmit FIFO of the respective port  
for a full cell.  
Utopia 1 Transmit Clock. This is a free running clock input.  
TXDATA[7:0] 24, 23, 22, 21, 20, 19, 18, 17 In  
Utopia 1 Transmit Data. An ATM device transfers cells across the bus to the 77V1254L25 for transmission.  
Also see TXPARITY.  
TXEN[3:0]  
TXPARITY  
27, 26, 25, 34  
33  
In  
In  
Utopia 1 Transmit Enable. Driven by an ATM device to indicate it is transmitting data across the TXDATA  
bus. One for each port.  
Utopia 1 Transmit Data Parity. Odd parity across TXDATA[7:0]. Parity is checked and errors are indicated in  
the Interrupt Status Registers, as enabled in the Master Control Registers. No other action is taken in the  
event of an error. Tie high or low if unused.  
TXSOC  
35  
In  
Utopia 1 Transmit Start of Cell. Asserted coincident with the first word of data for each cell on TXDATA.  
DPI Mode Signals (MODE[1:0] = 10)  
Signal Name Pin Number  
I/O  
In  
Signal Description  
DPICLK  
43  
DPI Source Clock for Transmit. This is the free-running clock used as the source to generate Pn_TCLK.  
Pn_RCLK  
52, 51, 49, 48  
In  
DPI Port n’ Receive Clock. Pn_RCLK is cycled to indicate that the interfacing device is ready to receive a  
nibble of data on Pn_RD[3:0] of port n.  
Pn_RD[3:0]  
59, 60, 61, 62, 63, 64, 65,  
66, 69, 70, 71, 72, 73, 74,  
75, 76  
Out  
DPI Port n’ Receive Data. Cells received on port n’ are passed to the interfacing device across this bus.  
Each port has its own dedicated bus.  
Pn_RFRM  
Pn_TCLK  
Pn_TD[3:0]  
53, 58, 54, 55  
Out  
Out  
In  
DPI Port n’ Receive Frame. Pn_RFRM is asserted for one cycle immediately preceding the transfer of each  
cell on Pn_RD[3:0].  
37, 39, 40, 41  
DPI Port n’ Transmit Clock. Pn_TCLK is derived from DPICLK and is cycled when the respective port is  
ready to accept another 4 bits of data on Pn_TD[3:0].  
32, 31, 30, 29, 28, 27, 26,  
25, 24, 23, 22, 21, 20, 19,  
18, 17  
DPI Port n’ Transmit Data. Cells are passed across this bus to the PHY for transmission on port n. Each  
port has its own dedicated bus.  
Pn_TFRM  
36, 33, 34, 35  
In  
DPI Port n’ Transmit Frame. Start of cell signal which is asserted for one cycle immediately preceding the  
first 4 bits of each cell on Pn_TD[3:0].  
Table 1 Signal Descriptions (Part 3 of 3)  
7 of 48  
December 2004  
IDT77V1254L25  
Signal Assignment as a Function of PHY/ATM Interface Mode  
16-BIT UTOPIA 2  
MODE[1,0] = 00  
8-BIT UTOPIA 1  
MODE[1,0] = 01  
DPI  
SIGNAL NAME  
VDD  
PIN NUMBER  
MODE[1,0] = 10  
1
GND  
2
TX0-  
3
TX0+  
4
VDD  
5
MM  
6
MODE1  
MODE0  
RXREF  
7
8
9
TXREF  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
GND  
TXLED3  
TXLED2  
TXLED1  
TXLED0  
VDD  
TXDATA0  
TXDATA1  
TXDATA2  
TXDATA3  
TXDATA4  
TXDATA5  
TXDATA6  
TXDATA7  
TXDATA8  
TXDATA9  
TXDATA10  
TXDATA11  
TXDATA12  
TXDATA13  
TXDATA14  
TXDATA15  
TXPARITY  
TXEN  
TXDATA0  
TXDATA1  
TXDATA2  
TXDATA3  
TXDATA4  
TXDATA5  
TXDATA6  
TXDATA7  
TXDATA8  
TXDATA9  
TXDATA10  
TXDATA11  
TXDATA12  
TXDATA13  
TXDATA14  
TXDATA15  
TXPARITY  
TXEN  
TXDATA0  
TXDATA1  
TXDATA2  
TXDATA3  
TXDATA4  
TXDATA5  
TXDATA6  
TXDATA7  
TXEN[1]  
P0_TD[0]  
P0_TD[1]  
P0_TD[2]  
P0_TD[3]  
P1_TD[0]  
P1_TD[1]  
P1_TD[2]  
P1_TD[3]  
P2_TD[0]  
P2_TD[1]  
P2_TD[2]  
P2_TD[3]  
P3_TD[0]  
P3_TD[1]  
P3_TD[2]  
P3_TD[3]  
P2_TFRM  
P1_TFRM  
P0_TFRM  
P3_TFRM  
TXEN[2]  
TXEN[3]  
see note 2  
see note 2  
see note 2  
see note 2  
see note 2  
TXPARITY  
TXEN[0]  
TXSOC  
TXSOC  
TXSOC  
TXADDR4  
TXADDR4  
see note 2  
Table 2 Signal Assignment as a Function of PHY/ATM Interface Mode (Part 1 of 4)  
8 of 48  
December 2004  
IDT77V1254L25  
16-BIT UTOPIA 2  
MODE[1,0] = 00  
8-BIT UTOPIA 1  
MODE[1,0] = 01  
DPI  
SIGNAL NAME  
PIN NUMBER  
MODE[1,0] = 10  
TXADDR3  
VDD  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
TXADDR3  
see note 2  
P3_TCLK  
TXADDR2  
TXADDR1  
TXADDR0  
TXCLAV  
TXCLK  
TXADDR2  
TXADDR1  
TXADDR0  
TXCLAV  
TXCLK  
TXCLAV[3]  
TXCLAV[2]  
TXCLAV[1]  
TXCLAV[0]  
TXCLK  
P2_TCLK  
P1_TCLK  
P0_TCLK  
see note 1  
DPICLK  
GND  
VDD  
RXCLK  
RXCLK  
RXCLK  
see note 2  
see note 2  
P0_RCLK  
P1_RCLK  
RXEN  
RXEN  
RXEN[0]  
RXEN[1]  
RXEN[2]  
RXADDR0  
RXADDR1  
GND  
RXADDR0  
RXADDR1  
RXADDR2  
RXADDR3  
RXADDR4  
RXCLAV  
RXSOC  
RXADDR2  
RXADDR3  
RXADDR4  
RXCLAV  
RXSOC  
RXEN[3]  
P2_RCLK  
P3_RCLK  
P3_RFRM  
P1_RFRM  
P0_FRM  
see note 2  
see note 2  
RXCLAV[0]  
RXSOC  
GND  
VDD  
RXPARITY  
RXDATA15  
RXDATA14  
RXDATA13  
RXDATA12  
RXDATA11  
RXDATA10  
RXDATA9  
RXDATA8  
GND  
RXPARITY  
RXDATA15  
RXDATA14  
RXDATA13  
RXDATA12  
RXDATA11  
RXDATA10  
RXDATA9  
RXDATA8  
RXPARITY  
see note 1  
see note 1  
see note 1  
see note 1  
see note 1  
RXCLAV[3]  
RXCLAV[2]  
RXCLAV[1]  
P2_RFRM  
P3_RD[3]  
P3_RD[2]  
P3_RD[1]  
P3_RD[0]  
P2_RD[3]  
P2_RD[2]  
P2_RD[1]  
P2_RD[0]  
VDD  
RXDATA7  
RXDATA6  
RXDATA5  
RXDATA4  
RXDATA3  
RXDATA7  
RXDATA6  
RXDATA5  
RXDATA4  
RXDATA3  
RXDATA7  
RXDATA6  
RXDATA5  
RXDATA4  
RXDATA3  
P1_RD[3]  
P1_RD[2]  
P1_RD[1]  
P1_RD[0]  
P0_RD[3]  
Table 2 Signal Assignment as a Function of PHY/ATM Interface Mode (Part 2 of 4)  
9 of 48  
December 2004  
IDT77V1254L25  
16-BIT UTOPIA 2  
MODE[1,0] = 00  
8-BIT UTOPIA 1  
MODE[1,0] = 01  
DPI  
SIGNAL NAME  
PIN NUMBER  
MODE[1,0] = 10  
RXDATA2  
RXDATA1  
RXDATA0  
GND  
VDD  
RXLED0  
RXLED1  
RXLED2  
RXLED3  
GND  
VDD  
INT  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
RXDATA2  
RXDATA1  
RXDATA0  
RXDATA2  
RXDATA1  
RXDATA0  
P0_RD[2]  
P0_RD[1]  
P0_RD[0]  
GND  
RST  
WR  
RD  
CS  
ALE  
VDD  
AD0  
AD1  
AD2  
AD3  
GND  
AD4  
AD5  
AD6  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
AD7  
SE  
DA  
VDD  
TX3-  
TX3+  
GND  
VDD  
TX2-  
TX2+  
Table 2 Signal Assignment as a Function of PHY/ATM Interface Mode (Part 3 of 4)  
10 of 48  
December 2004  
IDT77V1254L25  
16-BIT UTOPIA 2  
MODE[1,0] = 00  
8-BIT UTOPIA 1  
MODE[1,0] = 01  
DPI  
SIGNAL NAME  
PIN NUMBER  
111  
MODE[1,0] = 10  
GND  
AGND  
AVDD  
RX3-  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
RX3+  
AVDD  
AGND  
AGND  
AVDD  
RX2-  
RX2+  
AVDD  
AGND  
AGND  
AVDD  
OSC  
AGND  
AVDD  
AGND  
AGND  
AVDD  
RX1-  
RX1+  
AVDD  
AGND  
AGND  
AVDD  
RX0-  
RX0+  
AVDD  
AGND  
GND  
TX1-  
TX1+  
Table 2 Signal Assignment as a Function of PHY/ATM Interface Mode (Part 4 of 4)  
Note: 1.This output signal is unused in this mode. It must be left unconnected.  
2.This input signal is unused in this mode. It must be connected to either logic high or logic low.  
11 of 48  
December 2004  
IDT77V1254L25  
TXRef  
TXCLK  
+
-
TX Port 0  
RX Port 0  
TXDATA[7:0]  
TXParity  
5B/4B  
Encoding/  
Decoding  
TX/RX ATM  
Cell FIFO  
Scrambler/  
Descrambler  
P/S and S/P  
NRZI  
Clock Recovery  
Clock Recovery  
Clock Recovery  
Clock Recovery  
TXSOC  
+
-
TXEN[3:0]  
TXCLAV[3:0]  
UTOPIA  
Multi-PHY  
Interface  
Mode[1:0]  
+
-
RXCLK  
RXDATA[7:0]  
RXParity  
TX Port 1  
RX Port 1  
5B/4B  
Encoding/  
Decoding  
TX/RX ATM  
Cell FIFO  
Scrambler/  
Descrambler  
P/S and S/P  
NRZI  
+
-
RXSOC  
RXEN[3:0]  
RXCLAV[3:0]  
+
-
INT  
RST  
RD  
WR  
CS  
TX Port 2  
RX Port 2  
5B/4B  
Encoding/  
Decoding  
TX/RX ATM  
Cell FIFO  
Scrambler/  
Descrambler  
P/S and S/P  
NRZI  
+
-
AD[7:0]  
Microprocessor  
Interface  
ALE  
+
-
TX Port 3  
RX Port 3  
5B/4B  
Encoding/  
Decoding  
TX/RX ATM  
Cell FIFO  
Scrambler/  
Descrambler  
P/S and S/P  
NRZI  
+
-
OSC  
4
4
.
RXRef  
RXLED[3:0] TXLED[3:0]  
3505 drw 03  
Figure 2 Block Diagram for Utopia Level 1 Configuration (MODE[1:0] = 01)  
12 of 48  
December 2004  
IDT77V1254L25  
DPICLK  
TXRef  
Mode[1:0]  
P0_TCLK  
P0_TFRM  
P0_TD[3:0]  
+
-
TX Port 0  
RX Port 0  
5B/4B  
Encoding/  
Decoding  
TX/RX ATM  
Cell FIFO  
Scrambler/  
Descrambler  
P/S and S/P  
NRZI  
Clock Recovery  
Clock Recovery  
Clock Recovery  
Clock Recovery  
+
-
P0_RCLK  
P0_RFRM  
P0_RD[3:0]  
P1_TCLK  
P1_TFRM  
P1_TD[3:0]  
+
-
TX Port 1  
RX Port 1  
5B/4B  
Encoding/  
Decoding  
TX/RX ATM  
Cell FIFO  
Scrambler/  
Descrambler  
P/S and S/P  
NRZI  
+
-
P1_RCLK  
P1_RFRM  
P1_RD[3:0]  
DPI  
Multi-PHY  
Interface  
P2_TCLK  
P2_TFRM  
P2_TD[3:0]  
+
-
TX Port 2  
RX Port 2  
5B/4B  
Encoding/  
Decoding  
TX/RX ATM  
Cell FIFO  
Scrambler/  
Descrambler  
P/S and S/P  
NRZI  
+
-
P2_RCLK  
P2_RFRM  
P2_RD[3:0]  
P3_TCLK  
P3_TFRM  
P3_TD[3:0]  
+
-
TX Port 3  
RX Port 3  
5B/4B  
Encoding/  
Decoding  
TX/RX ATM  
Cell FIFO  
Scrambler/  
Descrambler  
P/S and S/P  
NRZI  
P3_RCLK  
P3_RFRM  
P3_RD[3:0]  
+
-
.
4
4
INT  
RST  
R D  
W R  
C S  
Microprocessor  
Interface  
AD[7:0]  
ALE  
OSC  
RXLED[3:0]  
TXLED[3:0]  
RXRef  
3505 drw 04  
Figure 3 Block Diagram for DPI configuration (MODE[1:0] = 10)  
13 of 48  
December 2004  
IDT77V1254L25  
The output of the 4b/5b encoder provides serial data to the NRZI  
encoder. The NRZI code transitions the wire voltage each time a '1' bit is  
sent. This, together with the previous encoding schemes guarantees  
that long run lengths of either '0' or '1's are prevented. Each symbol is  
shifted out with its most significant bit sent first.  
(registers 0x01, 0x11, 0x21 and 0x31) contain a Good Signal Bit (bit 6,  
set to 0 = Bad signal initially) which shows the status of the line per the  
following algorithm:  
To declare 'Good Signal' (from "Bad" to "Good") There is an up-  
down counter that counts from 7 to 0 and is initially set to 7. When the  
clock ticks for 1,024 cycles (32MHz clock, 1,024 cycles = 204.8  
symbols) and no "bad symbol" has been received, the counter  
decreases by one. However, if at least one "bad symbol" is detected  
during these 1,024 clocks, the counter is increased by one, to a  
maximum of 7. The Good Signal Bit is set to 1 when this counter  
reaches 0. The Good Signal Bit could be set to 1 as quickly as 1,433  
symbols (204.8 x 7) if no bad symbols have been received.  
When no cells are available to transmit, the 77V1254L25 keeps the  
line active by continuing to transmit valid symbols. But it does not  
transmit another start-of-cell command until it has another cell for trans-  
mission. The 77V1254L25 never generates idle cells.  
Transmit HEC Byte Calculation/Insertion  
Byte #5 of each ATM cell, the HEC (Header Error Control) is calcu-  
lated automatically across the first 4 bytes of the cell header, depending  
upon the setting of bit 5 of registers 0x03, 0x13, 0x23 and 0x33. This  
byte is then either inserted as a replacement of the fifth byte transferred  
to the PHY by the external system, or the cell is transmitted as received.  
A third operating mode provides for insertion of  
"Bad" HEC codes which may aid in communication diagnostics. These  
modes are controlled by the LED Driver and HEC Status/Control Regis-  
ters.  
To declare 'Bad Signal' (from "Good" to "Bad") The same up-  
down counter counts from 0 to 7 (being at 0 to provide a "Good" status).  
When the clock ticks for 1,024 cycles (32MHz clock, 1,024 cycles =  
204.8 symbols) and there is at least one "bad symbol", the counter  
increases by one. If it detects all "good symbols" and no "bad symbols"  
in the next time period, the counter decreases by one. The "Bad Signal"  
is declared when the counter reaches 7. The Good Signal Bit could be  
set to 0 as quickly as 1,433 symbols (204.8 x 7) if at least one "bad  
symbol" is detected in each of seven consecutive groups of 204.8  
symbols.  
Receiver Description  
The receiver side of the TC sublayer operates like the transmitter, but  
in reverse. The data is NRZI decoded before each symbol is reassem-  
bled. The symbols are then sent to the 5b/4b decoder, followed by the  
Command Byte Interpreter, De-Scrambler, and finally through a FIFO to  
the UTOPIA or DPI interface to an ATM Layer device.  
8kHz Timing Marker  
The 8kHz timing marker, described earlier, is a completely optional  
feature which is essential for some applications requiring synchroniza-  
tion for voice or video, and unnecessary for other applications. Figure 7  
shows the options available for generating and receiving the 8kHz  
timing marker.  
ATM Cell Format  
Bit 7  
Bit 0  
Header Byte 1  
Header Byte 2  
Header Byte 3  
Header Byte 4  
The source of the marker is programmable in the RXREF and  
TXREF Control Register (0x40). Each port is individually programmable  
to either a local source or a looped remote source. The local source is  
TXREF, which is an 8kHz clock of virtually any duty cycle. When  
unused, TXREF should be tied high. Also note that it is not limited to  
8kHz, should a different frequency be desired. When looped, a received  
X_8 command byte causes one to be generated on the transmit side.  
UDF  
Payload Byte 1  
A received X_8 command byte causes the 77V1254L25 to issue a  
negative pulse on RXREF. The source channel of the marker is  
programmable.  
Payload Byte 48  
3505 drw 52  
.
UDF = User Defined Field (or HEC)  
PHY-ATM Interface  
Note that although the IDT77V1254L25 can detect symbol and HEC  
errors, it does not attempt to correct them.  
The 77V1254L25 PHY offers three choices in interfacing to ATM  
layer devices such as segmentation and reassembly (SAR) and  
switching chips. MODE[1:0] are used to select the configuration of this  
interface, as shown in the table below.  
Upon reset or the re-connect, each port's receiver is typically not  
symbol-synchronized. When not symbol-synchronized, the receiver will  
indicate a significant number of bad symbols, and will deassert the Good  
Signal Bit as described below. Synchronization is established immedi-  
ately once that port receives an Escape symbol, usually as part of the  
start-of-cell command byte preceding the first received cell.  
UTOPIA is a Physical Layer to ATM Layer interface standardized by  
the ATM Forum. It has separate transmit and receive channels and  
specific handshaking protocols. UTOPIA Level 2 has dedicated address  
signals for both the transmit and receive directions that allow the ATM  
layer device to specify with which of the four PHY channels it is commu-  
nicating. UTOPIA Level 1 does not have address signals.  
The IDT77V1254L25 monitors line conditions and can provide an  
interrupt if the line is deemed 'bad'. The Interrupt Status Registers  
14 of 48  
December 2004  
IDT77V1254L25  
Start of Cell  
TXRef (8kHz)  
3 Cells  
4
4
Command  
Byte  
Scrambler  
Insertion  
PHY-ATM  
Interface  
Control,  
Reset  
UTOPIA  
or  
Interface  
HEC Gen. &  
Insertion  
4
4
Scramble  
Nibble  
Next  
Pseudo Random  
4b/5b  
Encoding  
Nibble Generator  
1
OSC  
Clock Input  
NRZI  
Encoding  
+
TX  
+
TX -  
3505 drw 05  
.
Figure 4 TC Transmit Block Diagram  
PRNG  
Scramble  
Nibble  
Reset  
RXRef  
4
Next  
Command  
Byte  
5b/4b  
Decoding  
NRZI  
Decoding  
De-  
Scrambler  
Detection,  
Removal,  
& Decode  
RX +  
RX  
5
4
4
.
Start of Cell  
4
3 Cells  
Clock  
OSC  
Recovery  
UTOPIA  
PHY-ATM  
o
Interface  
Interface  
Control -  
RECV  
3505 drw 06  
Figure 5 TC Receive Block Diagram  
15 of 48  
December 2004  
IDT77V1254L25  
Instead, key handshaking signals are duplicated so that each channel has its own signals. In both versions of UTOPIA, all channels share a single  
transmit data bus and a single receive data bus for data transfer.  
DPI is a low-pin count Physical Layer to ATM Layer interface. The low-pin count characteristic allows the 77V1254L25 to incorporate four separate  
DPI 4-bit ports, one for each of the four serial ports. As with the UTOPIA interfaces, the transmit and receive directions have their own data paths and  
handshaking.  
UTOPIA Level 2 Interface option  
The 16-bit Utopia Level 2 interface operates as defined in ATM Forum document af-phy-0039. This PHY-ATM interface is selected by setting the  
MODE[1:0] pins both low.  
This mode is configured as a single 16-bit data bus in the transmit (ATM-to-PHY) direction, and a single 16-bit data bus in the receive (PHY-to-  
ATM) direction. In addition to the data bus, each direction also includes a single optional parity bit, an address bus, and several handshaking signals.  
The UTOPIA address of each channel is determined by bits 4 to 0 in the Enhanced Control Registers. Please note that the transmit bus and the  
receive bus operate completely independently. The Utopia 2 signals are summarized below:  
TXDATA[15:0]  
TXPARITY  
TXSOC  
ATM to PHY  
ATM to PHY  
ATM to PHY  
ATM to PHY  
ATM to PHY  
PHY to ATM  
ATM to PHY  
TXADDR[4:0]  
TXEN  
TXCLAV  
TXCLK  
RXDATA[15:0]  
RXPARITY  
RXSOC  
PHY to ATM  
PHY to ATM  
PHY to ATM  
ATM to PHY  
ATM to PHY  
PHY to ATM  
ATM to PHY  
RXADDR[4:0]  
RXEN  
RXCLAV  
RXCLK  
To determine if any of them has room to accept a cell for transmission (TXCLAV), or has a receive cell available to pass on to the ATM device  
(RXCLAV). To poll, the ATM device drives an address (TXADDR or RXADDR) then observes TXCLAV or RXCLAV on the next cycle of TXCLK or  
RXCLK. A port must tri-state TXCLAV and RXCLAV except when it is addressed.  
If TXCLAV or RXCLAV is asserted, the ATM device may select that port, then transfer a cell to or from it. Selection of a port is performed by driving  
the address of the desired port while TXEN or RXEN is high, then driving TXEN or RXEN low. When TXEN is driven low, TXSOC (start of cell) is  
driven high to indicate that the first 16 bits of the cell are being driven on TXDATA. The ATM device may chose to temporarily suspend transfer of the  
cell by deasserting TXEN. Otherwise, TXEN remains asserted as the next 16 bits are driven onto TXDATA with each cycle of TXCLK.  
In the receive direction, the ATM device selects a port if it wished to receive the cell that the port is holding. It does this by asserting RXEN. The  
PHY then transfers the data 16 bits each clock cycle, as determined by RXEN. As in the transmit direction, the ATM device may suspend transfer by  
deasserting RXEN at any time. Note that the PHY asserts RXSOC coincident with the first 16 bits of each cell.  
TXPARITY and RXPARITY are parity bits for the corresponding 16-bit data fields. Odd parity is used.  
Figure 9 through Figure 14 may be referenced for Utopia 2 bus examples.  
Because this interface transfers an even number of bytes, rather than the ATM standard of 53 bytes, a filler byte is inserted between the 5-byte  
header and the 48-byte payload. This is shown in Figure 8.  
UTOPIA Level 1 multi-phy interface Option  
16 of 48  
December 2004  
IDT77V1254L25  
In the transmit direction, the PHY first asserts TXCLAV (transmit cell  
available) to indicate that it has room in its transmit FIFO to accept at  
least one 53-byte ATM cell. When the ATM layer device is ready to begin  
passing the cell, it asserts TXEN (transmit enable) and TXSOC (start of  
cell), coincident with the first byte of the cell on TXDATA. TXEN remains  
asserted for the duration of the cell transfer, but the ATM device may  
deassert TXEN at any time once the cell transfer has begun, but data is  
transferred only when TXEN is asserted.  
The UTOPIA Level 1 MULTI-PHY interface is based on ATM Forum  
document af-phy-0017. Utopia Level 1 is essentially the same as Utopia  
Level 2, but without the addressing, polling and selection features.  
Bit 15  
Bit 0  
Header byte 2  
First Header byte 1  
Header byte 3  
Header byte 5  
Payload byte 1  
Payload byte 3  
Payload byte 5  
Header byte 4  
stuff byte  
In the receive direction, RXEN indicates when the ATM device is  
prepared to receive data. As with transmit, it may be asserted or deas-  
serted at any time. Note, however, that not more than one RXEN should  
be asserted at a time. Also, once a given RX port is selected, that port's  
FIFO must be emptied of cells (as indicated by RXCLAV) before a  
different RX port may be enabled.  
Payload byte 2  
Payload byte 4  
Payload byte 6  
Payload byte 45 Payload byte 46  
In both transmit and receive, TXSOC and RXSOC (start of cell) is  
asserted for one clock, coincident with the first byte of each cell. Odd  
parity is utilized across each 8-bit data field.  
Last Payload byte 47 Payload byte 48  
Figure 6 Utopia Level 2 Data Format and Sequence  
Figure 8 shows the data sequence for an ATM cell over Utopia Level  
1, and Figures 15 to 21 are examples of the Utopia Level 1 handshake.  
Instead of addressing, this mode utilizes separate TXCLAV, TXEN,  
RXCLAV and RXEN signals for each channel of the 77V1254L25. There  
are just one each of the TXSOC and RXSOC signals, which are shared  
across all four channels.  
In addition to Utopia Level 2's cell mode transfer protocol, Utopia  
Level 1 also offers the option of a byte mode protocol. Bit 1 of the Master  
Control Registers is used to program whether the UTOPIA Level 1 bus is  
in cell mode or byte mode. In byte mode, the PHY is allowed to control  
data transfer on a byte-by-byte basis via the TXCLAV and RXCLAV  
signals. In cell mode, TXCLAV and RXCLAV are ignored once the  
transfer of a cell has begun. In every other way the two modes are iden-  
tical. Cell mode is the default configuration and is the one described  
later.  
The Utopia 1 signals are summarized below:  
TXDATA[7:0]  
TXPARITY  
TXSOC  
ATM to PHY  
ATM to PHY  
ATM to PHY  
ATM to PHY  
PHY to ATM  
ATM to PHY  
TXEN[3:0]  
TXCLAV[3:0]  
TXCLK  
RXDATA[7:0]  
RXPARITY  
RXSOC  
PHY to ATM  
PHY to ATM  
PHY to ATM  
ATM to PHY  
PHY to ATM  
ATM to PHY  
RXEN[3:0]  
RXCLAV[3:0]  
RXCLK  
Transmit and receive both utilize free running clocks, which are  
inputs to the 77V1254L25. All Utopia signals are timed to these clocks.  
17 of 48  
December 2004  
IDT77V1254L25  
TXRef Input  
( Reg 40, Bit 0)  
LTSel#0  
LTSel#1  
RXRef#0  
(X_8 received)  
Mux  
Mux  
TXRef#0  
(X_8 generator)  
( Reg 40, Bit 1)  
RXRef#1  
(X_8 received)  
TXRef#1  
(X_8 generator)  
( Reg 40, Bit 2)  
LTSel#2  
LTSel#3  
RXRef#2  
Mux  
Mux  
(X_8 received)  
TXRef#2  
(X_8 generator)  
( Reg 40, Bit 3)  
RXRef#3  
(X_8 received)  
TXRef#3  
(X_8 generator)  
.
RXRef  
Select  
Decoder  
RXRefSel[1:0]  
IDT77V1254L25  
RXRef Output  
3505 drw 0  
Figure 7 RXREF and TXREF Block Diagram  
Bit 7  
Bit 0  
First Header byte 1  
Header byte 2  
Header byte 3  
Header byte 4  
Header byte 5  
Payload byte 1  
Payload byte 2  
Payload byte 3  
Payload byte 46  
Payload byte 47  
Last Payload byte 48  
3505 drw 15  
.
Figure 8 Utopia 1 Data Format and Sequence  
18 of 48  
December 2004  
IDT77V1254L25  
selection  
polling  
polling  
polling:  
TXCLK  
TXADDR[4:0]  
1F  
N+3  
1F  
N+2  
1F  
N+3  
1F  
N
1F  
High-Z  
TXCLAV  
N+1  
N+3  
N+2  
N+3  
N
TXEN  
TXData[15:0],  
TXPARITY  
H5, undefined  
P39, 40  
P41, 42  
P43, 44  
P45, 46  
P47, 48  
H1, 2  
H3, 4  
P1, 2  
.
TXSOC  
PHY N+3  
PHY N  
cell transmission to:  
3505 drw 09  
Figure 9 Utopia 2 Transmit Handshake - Back to Back Cells  
selection  
polling  
polling  
polling:  
TXCLK  
TXADDR[4:0]  
1F  
N+3  
1F  
N+2  
1F  
N+3  
1F  
N
1F  
N
High-Z  
TXCLAV  
N+1  
N+3  
N+2  
N+3  
TXEN  
TXData[15:0],  
TXPARITY  
H5, undefined  
P43, 44  
P45, 46  
P47, 48  
H1, 2  
H3, 4  
P1, 2  
.
TXSOC  
PHY N+3  
PHY N  
cell transmission to:  
3505 drw 10  
Figure 10 Utopia 2 Transmit Handshake - Delay Between Cells  
selection  
polling  
polling  
polling:  
TXCLK  
TXADDR[4:0]  
TXCLAV  
TXEN  
1F  
N+3  
1F  
N+2  
1F  
M
1F  
N
1F  
N
High-Z  
N+1  
N+3  
N+2  
M
High-Z  
High-Z  
TXData[15:0],  
TXPARITY  
P25, 26  
P27, 28  
P29, 30  
P31, 32  
P33, 34  
P35, 36  
.
TXSOC  
PHY M  
PHY M  
cell transmission to:  
3505 drw 11  
Figure 11 Utopia 2 Transmit Handshake - Transmission Suspended  
19 of 48  
December 2004  
IDT77V1254L25  
selection  
polling  
polling  
polling:  
RXCLK  
RXADDR[4:0]  
N+3  
1F  
N+2  
1F  
N+3  
1F  
N
1F  
N+1  
1F  
High-Z  
RXCLAV  
N+3  
N+2  
N+3  
N
RXEN  
High-Z  
High-Z  
RXData[15:0],  
RXPARITY  
H5, undefined  
P39, 40  
P41, 42  
P43, 44  
P45, 46  
P47, 48  
H1, 2  
H3, 4  
P1, 2  
.
RXSOC  
PHY N+3  
PHY N  
cell transmission to:  
3505 drw 12  
Figure 12 Utopia 2 Receive Handshake - Back to Back Cells  
selection  
polling  
polling  
polling:  
RXCLK  
RXADDR[4:0]  
N+3  
1F  
N+2  
1F  
N+1  
1F  
N+1  
1F  
N
1F  
High-Z  
RXCLAV  
N+3  
N+2  
N+1  
N+1  
RXEN  
High-Z  
High-Z  
RXData[15:0],  
RXPARITY  
P45, 46  
P47, 48  
H1, 2  
H3, 4  
undefined  
.
RXSOC  
PHY N+1  
PHY N+3  
cell transmission to:  
3505 drw 13  
Figure 13 Utopia 2 Receive Handshake - Delay Between Cells  
20 of 48  
December 2004  
IDT77V1254L25  
re-selection  
polling  
polling  
polling:  
RXCLK  
RXADDR[4:0]  
N+3  
1F  
N+2  
1F  
M
1F  
N+1  
1F  
N+2  
High-Z  
RXCLAV  
N+3  
N+2  
M
N+1  
RXEN  
High-Z  
RXData[15:0],  
RXPARITY  
P25, 26  
P27, 28  
P29, 30  
P31, 32  
P33, 34  
P35, 36  
High-Z  
RXSOC  
PHY M  
PHY M  
cell transmission from:  
3505 drw 14  
.
Figure 14 Utopia 2 Receive Handshake - Suspended Transfer of Data  
TXCLK  
TXCLAV[3:0]  
TXEN[3:0]  
TXDATA[7:0],  
TXPARITY  
X
H1  
H2  
P44  
P45  
P46  
P47  
P48  
X
TXSOC  
.
3505 drw 16  
Figure 15 Utopia 1 Transmit Handshake - Single Cell  
21 of 48  
December 2004  
IDT77V1254L25  
TXCLK  
TXCLAV[3:0]  
TXEN[3:0]  
TXDATA[7:0],  
TXPARITY  
P46  
P47  
P48  
H1  
H2  
H3  
H4  
X
H5  
TXSOC  
3505 drw  
3505 drw 17  
Figure 16 Utopia 1 Transmit Handshake - Back-to-Back Cells, and TXEN Suspended Transmission  
TXCLK  
TXCLAV[3:0]  
TXEN[3:0]  
TXDATA[7:0],  
TXPARITY  
P42  
P43  
P44  
P45  
P46  
X
X
X
P47  
P48  
H1  
TXSOC  
.
3505 drw 18  
Figure 17 Utopia 1 Transmit Handshake - TXEN Suspended Transmission and Back-to-Back Cells (Byte Mode Only)  
RXCLK  
RXCLAV[3:0]  
RXEN[3:0]  
High-Z  
High-Z  
RXDATA[7:0],  
RXPARITY  
P47  
P48  
H1  
H2  
H3  
RXSOC  
3505 drw 19  
.
Figure 18 Utopia 1 Receive Handshake - Delay Between Cells  
22 of 48  
December 2004  
IDT77V1254L25  
RXCLK  
RXCLAV[3:0]  
RXEN[3:0]  
High-Z  
High-Z  
RXDATA[7:0],  
RXPARITY  
P47  
P48  
H1  
P47  
P48  
X
X
H1  
H2  
RXSOC  
.
3505 drw 20  
Figure 19 Utopia 1 Receive Handshake - RXEN and RXCLAV Control  
RXCLK  
RXCLAV[3:0]  
Early RxCLAV option (bit 6=1, registers 0x02, 0x12, 0x22, 0x32)  
RXEN[3:0]  
High-Z  
High-Z  
High-Z  
RXDATA[7:0],  
RXPARITY  
P42  
P43  
P44  
P45  
P46  
P47  
P48  
X
X
High-Z  
RXSOC  
.
3505 drw 21  
Figure 20 Utopia 1 Receive Handshake - RXCLAV Deassertion  
RXCLK  
RXCLAV[3:0]  
RXEN[3:0]  
High-Z  
High-Z  
RXDATA[7:0],  
RXPARITY  
H1  
H2  
X
H3  
H4  
H5  
P1  
RXSOC  
3505 drw 22  
.
Figure 21 Utopia 1 Receive Handshake - RXCLAV Suspended Transfer (Byte Mode Only) Control and Status Interface  
23 of 48  
December 2004  
IDT77V1254L25  
DPI Interface Option  
The DPI interface is relatively new and worth additional description. The biggest difference between the DPI configurations and the UTOPIA config-  
urations is that each channel has its own DPI interface. Each interface has a 4-bit data path, a clock and a start-of-cell signal, for both the transmit  
direction and the receive direction. Therefore, each signal is point-to-point, and none of these signals has high-Z capability. Additionally, there is one  
master DPI clock input (DPICLK) into the 77V1254L25 which is used as a source for the DPI transmit clock outputs. DPI is a cell-based transfer  
scheme like Utopia Level 2, whereas UTOPIA Level 1 transfers can be either byte- or cell-based.  
Another unique aspect of DPI is that it is a symmetrical interface. It is as easy to connect two PHYs back-to-back as it is to connect a PHY to a  
switch fabric chip. In contrast, Utopia is asymmetrical. Note that for the 77V1254L25 the nomenclature "transmit" and "receive" is used in the naming  
of the DPI signals, whereas other devices may use more generic "in" and "out" nomenclature for their DPI signals.  
The DPI signals are summarized below, where "Pn_" refers to the signals for channel number "n":  
DPICLK  
input to PHY  
PHY to ATM  
ATM to PHY  
ATM to PHY  
Pn_TCLK  
Pn_TD[3:0]  
Pn_TFRM  
Pn_RCLK  
Pn_RD[3:0]  
Pn_RFRM  
ATM to PHY  
PHY to ATM  
PHY to ATM  
In the transmit direction (ATM to PHY), the ATM layer device asserts start-of-cell signal (Pn_TFRM) for one clock cycle, one clock prior to driving  
the first nibble of the cell on Pn_TD[3:0]. Once the ATM side has begun sending a cell, it is prepared to send the entire cell without interruption. The  
77V1254L25 drives the transmit DPI clocks (Pn_TCLK) back to the ATM device, and can modulate (gap) it to control the flow of data. Specifically, if it  
cannot accept another nibble, the 77V1254L25 disables Pn_TCLK and does not generate another rising edge until it has room for the nibble.  
Pn_TCLK are derived from the DPICLK free running clock source.  
The DPI protocol is exactly symmetrical in the receive direction, with the 77V1254L25 driving the data and start-of-cell signals while receiving  
Pn_RCLK as an input.  
The DPI data interface is four bits, so the 53 bytes of an ATM cell are transferred in 106 cycles. Figure 22 shows the sequence of that data transfer.  
igures 23 through 30 show how the handshake operates.  
Bit 3  
Bit 0  
First  
Header byte 1, (8:5)  
Header byte 1, (4:1)  
Header byte 2, (8:5)  
Header byte 2, (4:1)  
Header byte 3, (8:5)  
Header byte 3, (4:1)  
Header byte 4, (8:5)  
Header byte 4, (4:1)  
Header byte 5, (8:5)  
Header byte 5, (4:1)  
Payload byte 1, (8:5)  
Payload byte 1, (4:1)  
Payload byte 47, (8:5)  
Payload byte 47, (4:1)  
Payload byte 48, (8:5)  
Payload byte 48, (4:1)  
Last  
Figure 22 DPI Data Format and Sequence  
24 of 48  
December 2004  
IDT77V1254L25  
P_RCLK (in)  
P_RFRM (out)  
P_RD(3:0) (out)  
Cell 1  
Nibble 104  
Cell 1  
Nibble 105  
Cell 1  
Nibble 0  
X
X
X
X
3505 drw 24  
.
Figure 23 DPI Receive Handshake - One Cell Received  
P_RCLK (in)  
P_RFRM (out)  
Cell 1  
Nibble 104  
Cell 1  
Nibble 0  
Cell 1  
Nibble 1  
Cell 1  
Nibble 105  
Cell 2  
Nibble 0  
Cell 2  
Nibble 1  
P_RD(3:0) (out)  
X
X
Cell 1  
3505 drw 25  
.
Figure 24 DPI Receive Handshake - Back-to-Back Cells  
P_RCLK (in)  
P_RFRM (out)  
Cell 2  
Nibble 1  
Cell 1  
Nibble 104  
Cell 1  
Nibble 105  
Cell 2  
Nibble 0  
Cell 2  
Nibble 2  
Cell 2  
Nibble 3  
Cell 2  
Nibble 4  
P_RD(3:0) (out)  
3505 drw 26  
.
Figure 25 DPI Receive Handshake - ATM Layer Device Suspends Transfer  
ATM Layer Device Not Ready  
77V1254 Not Ready  
P_RCLK (in)  
P_RFRM (out)  
Cell 1  
Nibble 104  
Cell 1  
Nibble 105  
Cell 2  
Nibble 0  
Cell 2  
Nibble 1  
Cell 2  
Nibble 2  
P_RD(3:0) (out)  
X
X
X
X
3505 drw 27  
.
Figure 26 DPI Receive Handshake - Neither Device Ready  
25 of 48  
December 2004  
IDT77V1254L25  
P_TCLK (out)  
P_TFRM (in)  
Cell 1  
Nibble 0  
Cell 1  
Nibble 1  
Cell 1  
Nibble 104  
Cell 1  
Nibble 105  
P_TD(3:0) (in)  
X
X
X
X
3505 drw 28  
.
Figure 27 DPI Transmit Handshake - One Cell for Transmission  
P_TCLK (out)  
P_TFRM (in)  
Cell 1  
Nibble 104  
Cell 1  
Nibble 0  
Cell 1  
Nibble 1  
Cell 1  
Nibble 105  
Cell 2  
Nibble 0  
Cell 2  
Nibble 1  
P_TD(3:0) (in)  
X
X
Cell 1  
3505 drw 29  
.
Figure 28 DPI Transmit Handshake - Back-to-Back Cells for Transmission  
P_TCLK (out)  
P_TFRM (in)  
P_TD(3:0) (in)  
Cell 2  
Nibble 1  
Cell 1  
Nibble 104  
Cell 1  
Nibble 105  
Cell 2  
Nibble 0  
Cell 2  
Nibble 2  
Cell 2  
Nibble 3  
Cell 2  
Nibble 4  
3505 drw 30  
.
Figure 29 DPI Transmit Handshake - 77V1254L25 Transmit FIFO Full  
26 of 48  
December 2004  
IDT77V1254L25  
77V1254 Not Ready  
ATM Layer Device Not Ready  
P_TCLK (out)  
P_TFRM (in)  
Cell 1  
Nibble 104  
Cell 1  
Nibble 105  
Cell 2  
Nibble 0  
Cell 2  
Nibble 1  
Cell 2  
Nibble 2  
P_TD(3:0) (in)  
X
X
X
X
3505 drw 31  
.
Figure 30 DPI Transmit Handshake - Neither Device Ready  
Control and Status Interface  
Utility Bus  
The Utility Bus is a byte-wide interface that provides access to the registers within the IDT77V1254L25. These registers are used to select desired  
operating characteristics and functions, and to communicate status to external systems.  
The Utility Bus is implemented using a multiplexed address and data bus (AD[7:0]) where the register address is latched via the Address Latch  
Enable (ALE) signal.  
The Utility Bus interface is comprised of the following pins: AD[7:0], ALE, CS, RD, WR  
Read Operation  
Refer to the Utility Bus timing waveforms in Figures 43 and 44. A register read is performed as follows:  
1. Initial condition:  
– RD, WR, CS not asserted (logic 1)  
ALE not asserted (logic 0)  
2. Set up register address:  
– place desired register address on AD[7:0]  
– set ALE to logic 1;  
latch this address by setting ALE to logic 0.  
3. Read register data:  
– Remove register address data from AD[7:0]  
– assert CS by setting to logic 0;  
– assert RD by setting to logic 0  
wait minimum pulse width time (see AC specifications)  
Write Operation  
A register write is performed as described below:  
1. Initial condition:  
– RD, WR, CS not asserted (logic 1)  
ALE not asserted (logic 0)  
2. Set up register address:  
– place desired register address on AD[7:0]  
– set ALE to logic 1;  
latch this address by setting ALE to logic 0.  
3. Write data:  
– place data on AD[7:0]  
– assert CS by setting to logic 0;  
– assert WR (logic 0) for minimum time (according to timing specification); reset WR to logic 1 to complete register write cycle.  
Interrupt Operations  
27 of 48  
December 2004  
IDT77V1254L25  
The IDT77V1254L25 provides a variety of selectable interrupt and signalling conditions which are useful both during normal’ operation, and as  
diagnostic aids. Refer to the Status and Control Register List section.  
Overall interrupt control is provided via bit 0 of the Master Control Registers. When this bit is cleared (set to 0), interrupt signalling is prevented on  
the respective port. The Interrupt Mask Registers allow individual masking of different interrupt sources. Additional interrupt signal control is provided  
by bit 5 of the Master Control Registers. When this bit is set (=1), receive cell errors will be flagged via interrupt signalling and all other interrupt condi-  
tions are masked. These errors include:  
!
Bad receive HEC  
Short (fewer than 53 bytes) cells  
Received cell symbol error  
!
!
Normal interrupt operations are performed by setting bit 0 and clearing bit 5 in the Master Control Registers. INT (pin 85) will go to a low state  
when an interrupt condition is detected. The external system should then interrogate the 77V1254L25 to determine which one (or more) conditions  
caused this flag, and reset the interrupt for further occurrences. This is accomplished by reading the Interrupt Status Registers. Decoding the bits in  
these bytes will tell which error condition caused the interrupt. Reading these registers also:  
!
clears the (sticky) interrupt status bits in the registers that are read  
resets INT  
!
This leaves the interrupt system ready to signal an alarm for further problems.  
LED Control and Signaling  
The LED outputs provide bi-directional LED drive capability of 8 mA. As an example, the RXLED outputs are described in the truth table:  
State  
Pin Voltage  
Low  
High  
Cells being received  
Cells not being received  
As illustrated in the following drawing (Figure 31), this could be connected to provide for a two-LED condition indicator. These could also be  
different colors to provide simple status indication at a glance. (The minimum value for R should be 330).  
TXLED Truth Table  
State  
Pin Voltage  
Low  
Cells being transmitted  
Cells not being transmitted High  
Diagnostic Function  
3.3V  
R
(Indicates: Cells  
being received or  
transmitted)  
RxLED(3:0)  
TxLED(3:0)  
(Indicates: Cells are  
not being received or  
transmitted)  
R
3505 drw 32  
Figure 31 LED Indicator  
28 of 48  
December 2004  
IDT77V1254L25  
Loopback  
There are two loopback modes supported by the 77V1254L25. The loopback mode is controlled via bits 1 and 0 of the Diagnostic Control Regis-  
ters:  
Bit 1  
Bit 0  
Mode  
0
0
Normal operating mode  
PHY Loopback  
1
1
0
1
Line Loopback  
Normal Mode  
This mode, Figure 32, supports normal operating conditions: data to be transmitted is transferred to the TC, where it is queued and formatted for  
transmission by the PMD. Receive data from the PMD is decoded along with its clock for transfer to the receiving "upstream system".  
PHY Loopback  
As Figure 33 illustrates below, this loopback mode provides a connection within the PHY from the transmit PHY-ATM interface to the PHY-ATM  
receive interface. Note that while this mode is operating, no data is forwarded to or received from the line interface. Line Loopback  
Line Loopback  
Figure 34 might also be called remote loopback” since it provides for a means to test the overall system, including the line. Since this mode will  
probably be entered under direction from another system (at a remote location), receive data is also decoded and transferred to the upstream system  
to allow it to listen for commands. A common example would be a command asking the upstream system to direct the TC to leave this loopback state,  
and resume normal operations.  
77V1254L25  
ATM Layer Device  
Line  
Interface  
TC sublayer  
PMD sublayer  
3505 drw 33  
Figure 32 Normal Mode  
77V1254L25  
ATM Layer Device  
Line  
Interface  
PMD sublayer  
TC sublayer  
3505 drw 34  
Figure 33 PHY Loopback  
29 of 48  
December 2004  
IDT77V1254L25  
77V1254L25  
ATM Layer Device  
PMD  
sublayer  
Line  
Interface  
TC sublayer  
3505 drw 35  
Figure 34 Line Loopback  
Counters  
Several condition counters are provided to assist external systems (e.g., software drivers) in evaluating communications conditions. It is antici-  
pated that these counters will be polled from time to time (user selectable) to evaluate performance. A separate set of registers exists for each channel  
of the PHY.  
!
Symbol Error Counters  
– 8 bits  
– counts all invalid 5-bit symbols received  
Transmit Cell Counters  
!
– 16 bits  
– counts all transmitted cells  
Receive Cell Counters  
!
– 16 bits  
– counts all received cells, excluding idle cells and HEC errored cells  
Receive HEC Error Counters  
!
– 5 bits  
– counts all HEC errors received  
The TXCell and RXCell counters are sized (16 bits) to provide a full cell count (without roll over) if the counter is read once/second. The Symbol  
Error counter and HEC Error counter were given sufficient size to indicate exact counts for low error-rate conditions. If these counters overflow, a  
gross condition is occurring, where additional counter resolution does not provide additional diagnostic benefit.  
Reading Counters  
1. Decide which counter value is desired. Write to the Counter Select Register(s) (0x06, 0x16, 0x26 and 0x36) to the bit location corresponding  
to the desired counter. This loads the High and Low Byte Counter Registers with the selected counters value, and resets this counter to zero.  
Note: Only one counter may be enabled at any time in each of the Counter Select Registers.  
2. Read the Counter Registers (0x04, 0x14, 0x24 or 0x34 (low byte)) and (0x05, 0x15, 0x25 or 0x35 (high byte)) to get the value.  
Further reads may be accomplished in the same manner by writing to the Counter Select Registers.  
Note: The PHY takes some time to set up the low and high byte counters after a specific counter has been selected in the Counter Selector  
register. This time delay (in µS) varies with the line rate and can be calculated as follows:  
Time delay (µS) =  
12.5___  
line rate (Mbps)  
Loop Timing Feature  
The 77V1254L25 also offers a loop timing feature for specific applications where data needs to be repeated / transmitted using the recovered  
clock. If the loop timing mode is enabled in the Enhanced Control Register 1 bit 6, the recovered receive clock is used as to clock out data on transmit  
side. This mode is port specific, i.e., the user can select one or more ports to be in loop timing mode. In normal mode, the transmitter transmits data  
using the multiplied oscillator clock.  
30 of 48  
December 2004  
IDT77V1254L25  
Jitter in Loop Timing Mode  
One of the primary concerns when using loop timing mode is the amount of jitter that gets added each time data is transmitted. Table 3 shows the  
jitter measured at various data rates. The set-up shown in Figure 35 was used to perform these tests. The maximum jitter seen was at TX point 5 and  
the minimum jitter was at point 2. The loop timing jitter is defined as the amount of jitter generated by each TX node. In other words, the loop timing  
jitter or the jitter added by a loop-timed port in the set-up below is the difference between the Total Output Jitter and the Total Input Jitter.  
OSC  
1
2
RX  
TX  
Data  
Data  
CLK  
TX  
RX  
P1  
Loop Timing Mode  
P0  
Normal Mode  
3
RX  
TX  
Data  
Data  
CLK  
P2  
Loop Timing Mode  
4
Data  
Data  
RX  
TX  
CLK  
P3  
5
SWITCH  
Loop Timing Mode  
Figure 35 Test Setup for Loop Timing Jitter Measurements  
Loop Timing Jitter Specification  
Line Rate  
Mbps  
Data Rate  
Min.  
Typ.  
Max.  
Note  
Mbps  
32  
64  
25.6  
51.2  
--  
--  
100 ps  
100 ps  
--  
--  
Using 32Mhz OSC  
Using 64Mhz OSC  
Table 3 Loop Timing Jitter  
The waveforms below show some of the measurements taken with the set-up in Figure 35. Using the formula above, the jitter specification was  
derived. For example, at data rate of 25.6Mbps, jitter added going through Line Card 3 is 1.5ns -1.4ns (as shown in the waveforms below).  
31 of 48  
December 2004  
IDT77V1254L25  
Jitter at 25.6Mbps at point 5 with respect to point 1  
Jitter at 25.6Mbps at point 4 with respect to point 1  
Jitter at 51.2Mbps at point 4 with respect to point 1  
Jitter at 51.2Mbps at point 5 with respect to point 1  
From the above measurements taken, the amount of jitter being added at each TX point is not significant. These tests were also run for extended  
periods of time (64 hours) and no bit errors were seen.  
VPI/VCI Swapping  
For compatibility with IDT's SwitchStar products (77V400 and 77V500), the 77V1254L25 has the ability to swap parts of the VPI/VCI address  
space in the header of receive cells. This function is controlled by the VPI/VCI Swap bits, which are bit 5 of the Enhanced Control Registers (0x08,  
0x18, 0x28 and 0x38). The portions of the VPI/VCI that are swapped are shown below. Bits X(7:0) are swapped with Y(7:0) when the VPI/VCI Swap  
bit is set and the chip is in DPI mode.  
7
0
7
0
VPI  
VCI  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
Byte 4  
X7 X6 X5 X4 X3 X2 X1 X0 Byte 0  
Y7 Y6 Y5 Y4 Byte 1  
GFC/VPI  
VPI  
VCI  
Y3 Y2 Y1 Y0  
Byte 2  
Byte 3  
Byte 4  
VCI  
PTI  
CLP  
HEC  
32 of 48  
December 2004  
IDT77V1254L25  
Line Side (Serial) Interface  
Each of the four ports has two pins for differential serial transmission, and two pins for differential serial receiving.  
PHY to Magnetics Interface  
A standard connection to 100and 120unshielded twisted pair cabling is shown in Figure 36. Note that the transmit signal is somewhat attenu-  
ated in order to meet the launch amplitude specified by the standards. The external receive circuitry is designed to attenuate low frequencies in order  
to compensate for the high frequency attenuation of the cable.  
Also, the receive circuitry biases the positive and negative RX inputs to slightly different voltages. This is done so that the receiver does not receive  
false signals in the absence of a real signal. This can be important because the 77V1254L25 does not disable error detection or interrupts when an  
input signal is not present.  
When connecting to UTP at 51.2 Mbps, it is necessary to use magnetics with sufficient bandwidth. Such a device can also operate satisfactorily at  
25.6 Mbps. Refer to Table 5 for the recommended magnetics.  
IDT77V1253  
IDT77V1254  
AGND  
1
R1  
R2  
4
3
5
TxD+  
1
2
3
4
5
6
7
8
7
8
R3  
TxD-  
2
AVDD  
R5  
Magnetics  
C1  
R8  
RxD+  
16  
15  
R7  
L1  
R4  
10  
9
R9  
C2  
RxD-  
14  
13  
12  
R6  
.
AGND  
3505 drw 36  
AGND  
Figure 36 Recommended Connection to Magnetics  
Component  
R1  
Value  
47  
Tolerance  
±5%  
R2  
R3  
R4  
R5  
R6  
R7  
R8  
R9  
47Ω  
±5%  
±5%  
±5%  
±5%  
±5%  
±5%  
±5%  
±5%  
620Ω  
110Ω  
2700Ω  
2700Ω  
82Ω  
33Ω  
33Ω  
Table 4 Analog Component Values (Part 1 of 2)  
33 of 48  
December 2004  
IDT77V1254L25  
Component  
C1  
Value  
470pF  
Tolerance  
±20%  
C2  
L1  
470pF  
±20%  
±20%  
3.3µH  
Table 4 Analog Component Values (Part 2 of 2)  
Magnetics Modules for 25.6 Mbps  
Pulse PE-67583 or R4005  
TDK TLA-6M103  
www.pulseeng.com  
www.component.tdk.com  
Magnetics Module for 51.2 Mbps  
Pulse R4005  
www.pulseeng.com  
Table 5 Magnetics Modules  
Status and Control Register List  
The 77V1254L25 has 37 registers that are accessible through the utility bus. Each of the four ports has 9 registers dedicated to that port. There is  
only one register (0x40) which is not port specific.  
For those register bits which control operation of the Utopia interface, the operation of the Utopia interface is determined by the registers corre-  
sponding to the port which is selected at that particular time. For consistent operation, the Utopia control bits should be programmed the same for all  
four ports, except for the Utopia 2 port addresses in the Enhanced Control Registers.  
Register Address  
Register Name  
Port 0  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
Port 1  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
Port 2  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
Port 3  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
All Ports  
Master Control Registers  
Interrupt Status Registers  
Diagnostic Control Registers  
LED Driver and HEC Status/control  
Low Byte Counter Register [7:0]  
High Byte Counter Register [15:8]  
Counter Registers Read Select  
Interrupt Mask Registers  
Enhanced Control 1 Registers  
RXREF and TXREF Control Register  
0x40  
Nomenclature  
"Reserved" register bits, if written, should always be written "0"  
R-only or W-only = register is read-only or write-only  
0” = cleared’ or not set’  
R/W = register may be read and written via the utility bus  
sticky = register bit is cleared after the register containing it is read; all sticky bits are read-only  
1” = set’  
34 of 48  
December 2004  
IDT77V1254L25  
Master Control Registers  
Addresses: 0x00, 0x10, 0x20, 0x30  
Bit  
Type  
R/W  
Initial State  
Function  
7
6
0
Reserved  
R/W  
1 = discard errored cells Discard Receive Error Cells - On receipt of any cell with an error (e.g. short cell, invalid command mnemonic, receive  
HEC error (if enabled), this cell will be discarded and will not enter the receive FIFO.  
5
R/W  
0 = all interrupts  
Enable Cell Error Interrupts Only - If Bit 0 in this register is set (Interrupts Enabled), setting of this bit enables only  
"Received Cell Error" (as defined in bit 6) to trigger interrupt line.  
4
3
R/W  
R/W  
0 = disabled  
Transmit Data Parity Check - Directs TC to check parity of TXDATA against parity bit located in TXPARITY.  
1 = discard idle cells  
Discard Received Idle Cells - Directs TC to discard received idle (VPI/VCI = 0) cells from PMD without signalling  
external systems.  
2
1
0
R/W  
R/W  
R/W  
0 = not halted  
Halt Transmit - Halts transmission of data from TC to PMD and forces the TXD outputs to the "0" state  
UTOPIA Level 1 mode select: - 0 = cell mode, 1 = byte mode. Not applicable for Utopia 2 or DPI modes.  
0 = cell mode  
1 = enable interrupts  
Enable Interrupt Pin (Interrupt Mask Bit) - Enables interrupt output pin (pin 85). If cleared, pin is always high and  
interrupt is masked. If set, an interrupt will be signaled by setting the interrupt pin to "0". It doesnt affect the Interrupt  
Status Registers.  
Interrupt Status Registers  
Addresses: 0x01, 0x11, 0x21, 0x31  
Bit  
Type  
Initial State  
Reserved  
Function  
7
6
R
0 = Bad Signal  
Good Signal Bit - See definition on page 13.  
1 - Good Signal  
0 - Bad Signal  
5
4
sticky  
sticky  
0
0
HEC error cell received - Set when a HEC error is detected on received cell.  
"Short Cell" Received - Interrupt signal which flags received cells with fewer than 53 bytes. This condition is detected  
when receiving Start-of-Cell command bytes with fewer than 53 bytes between them.  
3
2
sticky  
sticky  
0
0
Transmit Parity Error - If Bit 4 of Register 0x00 / 0x10 / 0x20 / 0x30 is set (Transmit Data Parity Check), this interrupt  
flags a transmit data parity error condition. Odd parity is used.  
Receive Signal Condition change - This interrupt is set when the received signal’ changes either from bad to good’  
or from ’good to bad’.  
1
0
sticky  
sticky  
0
0
Received Symbol Error - Set when an undefined 5-bit symbol is received.  
Receive FIFO Overflow - Interrupt which indicates when the receive FIFO has filled and cannot accept additional data.  
Diagnostic Control Registers  
Addresses: 0x02, 0x12, 0x22, 0x32  
Bit  
Type  
R/W  
Initial State  
0 = normal  
Function  
7
Force TXCLAV deassert - (applicable only in Utopia 1 and 2 modes) Used during line loopback mode to prevent  
upstream system from continuing to send data to the 77V1254L25.  
35 of 48  
December 2004  
IDT77V1254L25  
Addresses: 0x02, 0x12, 0x22, 0x32  
Bit  
Type  
R/W  
Initial State  
Function  
6
0 = UTOPIA  
RXCLAV Operation Select - (for Utopia 1 mode) The UTOPIA standard dictates that during cell mode operation, if the  
receive FIFO no longer has a complete cell available for transfer from PHY, RXCLAV is deasserted following transfer of  
the last byte out of the PHY to the upstream system. With this bit set, early deassertion of this signal will occur coinci-  
dent with the end of Payload byte 44 (as in octet mode for TXCLAV). This provides early indication to the upstream  
system of this impending condition.  
0 = "Standard UTOPIA RXCLAV’  
1 = "Cell mode = Byte mode"  
5
R/W  
1 = tri-state  
Single/Multi-PHY configuration select - (applicable and writable only in Utopia 1 mode)  
0 = single:  
Never tri-state RXDATA, RXPARITY and RXSOC  
1 = Multi-PHY mode: Tri-state RXDATA, RXPARITY and RXSOC when RXEN = 1  
4
3
R/W  
R/W  
0 = normal  
0 = normal  
RFLUSH = Clear Receive FIFO - This signal is used to tell the TC to flush (clear) all data in the receive FIFO. The TC  
signals this completion by clearing this bit.  
Insert Transmit Payload Error - Tells TC to insert cell payload errors in transmitted cells. This can be used to test  
error detection and recovery systems at destination station, or, under loopback control, at the local receiving station.  
This payload error is accomplished by flipping bit 0 of the last cell payload byte.  
2
R/W  
R/W  
0 = normal  
Insert Transmit HEC Error - Tells TC to insert HEC error in Byte 5 of cell. This can be used to test error detection and  
recovery systems in downstream switches, or, under loopback control, the local receiving station. The HEC error is  
accomplished by flipping bit 0 of the HEC byte.  
1,0  
00 = normal  
Loopback Control  
bit # 1  
0
0
0 Normal mode (receive from network)  
1
1
0 PHY Loopback  
1 Line Loopback  
LED Driver and HEC Status/Control Registers  
Addresses: 0x03, 0x13, 0x23, 0x33  
Bit  
Type  
Initial State  
Function  
7
6
0
Reserved  
R/W  
0 = enable checking  
Disable Receive HEC Checking (HEC Enable) - When not set, the HEC is calculated on first 4 bytes of received cell,  
and compared against the 5th byte. When set (= 1), the HEC byte is not checked.  
5
R/W  
R/W  
0 = enable calculate & Disable Transmit HEC Calculate & Replace - When set, the 5th header byte of cells queued for transmit is not  
replace  
replaced with the HEC calculated across the first four bytes of that cell.  
4, 3  
00 = 1 cycle  
RXREF Pulse Width Select  
bit #  
4
3
0
0 RXREF active for 1 OSC cycle  
0
1
1
1 RXREF active for 2 OSC cycles  
0 RXREF active for 4 OSC cycles  
1 RXREF active for 8 OSC cycles  
2
1
0
R
R
R
1 = empty  
FIFO Status  
1 = TxFIFO empty  
0 = Cell Transmitted  
0 = Cell Received  
0 = TxFIFO not empty  
1
1
TXLED Status  
RXLED Status  
1 = Cell Not Transmitted  
1 = Cell Not Received  
36 of 48  
December 2004  
IDT77V1254L25  
Low Byte Counter Registers [7:0]  
Addresses: 0x04, 0x14, 0x24, 0x34  
Bit  
[7:0]  
Type  
Initial State  
0x00  
Function  
R
Provides low byte of counter value selected via registers 0x06, 0x16, 0x26, and 0x36  
High Byte Counter Registers [15:8]  
Addresses: 0x05, 0x15, 0x25, 0x35  
Bit  
[7:0]  
Type  
Initial State  
0x00  
Function  
R
Provides high-byte of counter value selected via registers 0x06, 0x16, 0x26, and 0x36  
Counter Select Registers  
Addresses: 0x06, 0x16, 0x26, 0x36  
Bit  
Type  
Initial State  
Function  
7
6
5
4
3
2
1
0
0
Reserved.  
W
W
W
W
Reserved.  
Reserved.  
Reserved.  
Symbol Error Counter.  
TXCell Counter.  
0
0
RXCell Counter. Cells with HEC errors are never counted.  
Receive HEC Error Counter.  
0
Note: For proper operation, only one bit may be set in a Counter Select Register at any time.  
Interrupt Mask Registers  
Addresses: 0x07, 0x17, 0x27, 0x37  
Bit  
Type  
Initial State  
Function  
7
6
5
4
3
2
1
0
0
0
Reserved.  
Reserved.  
R/W  
0 = interrupt enabled  
0 = interrupt enabled  
0 = interrupt enabled  
0 = interrupt enabled  
0 = interrupt enabled  
0 = interrupt enabled  
HEC Error Cell.  
R/W  
R/W  
R/W  
R/W  
R/W  
Short Cell Error.  
Transmit Parity Error.  
Receive Signal Condition Change.  
Receive Cell Symbol Error.  
Receive FIFO Overflow.  
Note: When set to "1", these bits mask the corresponding interrupts going to the interrupt pin (INT). When set to "0", the interrupts are  
unmasked. These interrupts correspond to the interrupt status bits in the Interrupt Status Registers.  
37 of 48  
December 2004  
IDT77V1254L25  
Enhanced Control 1 Registers  
Addresses: 0x08, 0x18, 0x28, 0x38  
Bit  
Type  
Initial State  
0 = not reset  
Function  
7
6
W
Individual Port Software Reset 1= Reset. This bit is self-cleaning; It isnt necessary to write “0” to exit reset.  
R/W  
0 =OSC  
Transmit Line Clock (or Loop Timing Mode). When set to 0, the OSC input is used as the transmit line clock.  
When set to 1, the recovered receive clock is used as the transmit line clock.  
5
R/W  
R/W  
0
Reserved  
4-0  
Port 0 (Reg 0x08) 00000  
Port 1 (Reg 0x18) 00001  
Port 2 (Reg 0x28) 00010  
Port 3 (Reg 0x38) 00011  
Utopia 2 Port Address When operating in Utopia 2 Mode, these register bits determine the Utopia 2 port address  
RXREF and TXREF Control Register  
Addresses: 0x40  
Bit  
7-6  
Type  
Initial State  
Function  
R/W  
W
0 = RXREF0 (Port 0) RXREF Source Select Selects which of the four ports (0-3) is the source of RXREF.  
5
0 = not reset  
0
Master Software Reset 1 = Reset. This bit is self-cleaning; it isnt necessary to write “0” to exit reset.  
4
Reserved  
3-0  
R/W  
0000 = not looped RXREF to TXREF Loop Select When set to 0, TXREF is used to generate X_8 timing marker commands.  
When set to 1, TXREF input is ignored, and received X_8 timing commands.  
are looped back and added to the transmit stream of that same port. See Figure 7.  
bit 3: port 3  
bit 2: port 2  
bit 1: port 1  
bit 0: port 0  
Absolute Maximum Ratings  
Symbol  
Rating  
Value  
Unit  
VTERM  
TBIAS  
TSTG  
IOUT  
Terminal Voltage with Respect to GND  
Temperature Under Bias  
Storage Temperature  
-0.5 to +5.5  
-55 to +125  
-55 to +120  
50  
V
°C  
°C  
DC Output Current  
mA  
Note: Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a  
stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of  
this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.  
38 of 48  
December 2004  
IDT77V1254L25  
Recommended DC Operating Conditions  
Symbol  
VDD  
Parameter  
Min.  
3.0  
Typ.  
3.3  
Max.  
3.6  
Unit  
Digital Supply Voltage  
Digital Ground Voltage  
Input High Voltage  
Input Low Voltage  
V
GND  
VIH  
0
0
0
V
V
V
V
V
V
2.0  
-0.3  
3.0  
0
____  
____  
3.3  
0
5.25  
0.8  
3.6  
0
VIL  
AVDD  
AGND  
VDIF  
Analog Supply Voltage  
Analog Ground Voltage  
VDD - AVDD  
-0.5  
0
0.5  
Capacitance (TA = +25°C, F = 1MHz)  
Symbol  
Parameter  
Input Capacitance  
I/O Capacitance  
Conditions  
Max.  
Unit  
1
CIN  
VIN = 0V  
10  
10  
pF  
pF  
1
CIO  
VOUT = 0V  
1.  
Characterized values, not tested.  
DC Electrical Characteristics (All Pins except TX+/- and RX+/-)  
Symbol  
Parameter  
Input Leakage Current  
Test Conditions  
Gnd VIN VDD  
Min.  
-5  
Max.  
Unit  
µA  
ILI  
ILO  
5
/O (as input) Leakage Current  
Output Logic "1" Voltage  
Gnd VIN VDD  
-10  
2.4  
2.4  
10  
0.4  
90  
µA  
V
1
VOH1  
IOH = -2mA, VDD = min.  
2
VOH2  
Output Logic "1" Voltage  
IOH = -8mA, VDD = min.  
V
3
VOL  
Output Logic "0" Voltage  
IOL = -8mA, VDD = min.  
V
4, 5  
IDD1  
Digital Power Supply Current - VDD  
OSC = 32 MHz, all outputs unloaded  
OSC = 64 MHz, all outputs unloaded  
OSC = 32 MHz, all outputs unloaded  
OSC = 64 MHz, all outputs unloaded  
mA  
mA  
mA  
mA  
170  
55  
5
IDD2  
Analog Power Supply Current - AVDD  
60  
1.  
For AD[7:0] pins only.  
2.  
3.  
4.  
5.  
For all output pins except AD[7:0], INT and TX+/-.  
For all output pins except TX+/-.  
Add 15mA for each TX+/- pair that is driving a load.  
Total supply current is the sum of IDD1 and IDD2  
39 of 48  
December 2004  
IDT77V1254L25  
DC Electrical Characteristics (TX+/- Output Pins Only)  
Symbol  
Parameter  
Output Logic High Voltage  
Output Logic Low Voltage  
Test Conditions  
IOH = -20mA  
IOL = -20mA  
Min.  
Max.  
Unit  
VOH1  
VOL  
VDD - 0.5V  
V
0.5  
V
DC Electrical Characteristics (RXD+/- Input Pins Only)  
Symbol  
Parameter  
RXD+/- input voltage range  
Min.  
Typ  
Max.  
Unit  
VIR  
0
VDD  
V
VIP  
RXD+/- input peak-to-peak differential voltage  
RXD+/- input common mode voltage  
0.6  
1.0  
2*VDD  
VDD-0.5  
V
V
VICM  
VDD/2  
UTOPIA Level 2 Bus Timing Parameters  
Symbol  
Parameter  
Min.  
Max.  
Unit  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
t9  
TXCLK Frequency  
0.2  
40  
4
50  
60  
10  
10  
50  
60  
10  
10  
10  
10  
10  
10  
MHz  
%
TXCLK Duty Cycle (% of t1)  
TXDATA[15:0], TXPARITY Setup Time to TXCLK  
TXDATA[15:0], TXPARITY Hold Time to TXCLK  
TXADDR[4:0], Setup Time to TXCLK  
TXADDR[4:0], Hold Time to TXCLK  
TXSOC, TXEN Setup Time to TXCLK  
TXSOC, TXEN Hold Time to TXCLK  
TXCLK to TXCLAV High-Z  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
MHz  
%
1.5  
4
1.5  
4
1.5  
2
t10  
t12  
t13  
t14  
t15  
t16  
t17  
t18  
t19  
t20  
t21  
t22  
t23  
TXCLK to TXCLAV Low-Z (min) and Valid (max)  
RXCLK Frequency  
2
0.2  
40  
4
RXCLK Duty Cycle (% of t12)  
RXEN Setup Time to RXCLK  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RXCLK Hold Time to RXCLK  
1.5  
4
RXADDR[4:0] Setup Time to RXCLK  
RXADDR[4:0] Hold Time to RXCLK  
RXCLK to RXCLAV High-Z  
1.5  
2
RXCLK to RXCLAV Low-Z (min) and Valid (max)  
RXCLK to RXSOC High-Z  
2
2
RXCLK to RXSOC Low-Z (min) and Valid (max)  
RXCLK to RXDATA, RXPARITY High-Z  
2
2
RXCLK to RXDATA, RXPARITY Low-Z (min) and Valid (max)  
2
40 of 48  
December 2004  
IDT77V1254L25  
t3  
t4  
t2  
t1  
TXCLK  
TXDATA[15:0],  
TXPARITY  
Octet 1  
Octet 2  
t
5
7
t
6
TXADDR[4:0]  
TXSOC  
t
t
8
t10  
t9  
t10  
TXEN  
High-Z  
High-Z  
TXCLAV  
3505 drw 37  
Figure 37 UTOPIA Level 2 Transmit  
t12  
t13  
RXCLK  
t
14  
16  
t15  
RXEN  
t
t17  
RXADDR[4:0]  
t18  
t19  
t19  
High-Z  
High-Z  
High-Z  
RXCLAV  
RXSOC  
t
21  
t
21  
t
20  
High-Z  
High-Z  
t
23  
t
23  
t
22  
High-Z  
RXDATA[15:0],  
RXPARITY  
3505 drw 38  
.
Figure 38 UTOPIA Level 2 Receive  
UTOPIA Level 1 Bus Timing Parameters  
Symbol  
t31  
Parameter  
Min.  
Max.  
50  
Unit  
TXCLK Frequency  
0.2  
40  
4
MHz  
%
t32  
t33  
t34  
t35  
t36  
t37  
t39  
t40  
t41  
TXCLK Duty Cycle (% of t31)  
60  
10  
50  
60  
TXDATA[7:0], TXPARITY Setup Time to TXCLK  
TXDATA[7:0], TXPARITY Hold Time to TXCLK  
TXSOC, TXEN[3:0] Setup Time to TXCLK  
TXSOC, TXEN[3:0] Hold Time to TXCLK  
TXCLK to TXCLAV[3:0] Invalid (min) and Valid (max)  
RXCLK Frequency  
ns  
1.5  
4
ns  
ns  
1.5  
2
ns  
ns  
0.2  
40  
4
MHz  
%
RXCLK Duty Cycle (% of t39)  
RXEN[3:0] Setup Time to RXCLK  
ns  
41 of 48  
December 2004  
IDT77V1254L25  
Symbol  
Parameter  
RXEN[3:0] Hold Time to RXCLK  
Min.  
Max.  
Unit  
ns  
t42  
t43  
t44  
t45  
t46  
t47  
1.5  
2
RXCLK to RXCLAV[3:0] Invalid (min) and Valid (max)  
RXCLK to RXSOC High-Z  
10  
10  
10  
10  
10  
ns  
ns  
ns  
ns  
ns  
2
RXCLK to RXSOC Low-Z (min) and Valid (max)  
RXCLK to RXDATA, RXPARITY High-Z  
2
2
RXCLK to RXDATA, RXPARITY Low-Z (min) and Valid (max)  
2
t31  
t32  
t33  
t
34  
TXCLK  
TXDATA[7:0],  
TXPARITY  
Octet 1  
Octet 2  
t35  
t36  
t
37  
TXSOC  
TXEN[3:0]  
TXCLAV[3:0]  
3505 drw 39  
Figure 39 UTOPIA Level 1 Transmit  
t39  
t40  
t43  
RXCLK  
t41  
t42  
RXEN[3:0]  
RXCLAV[3:0]  
RXSOC  
t45  
t47  
t45  
t47  
t44  
t46  
High-Z  
High-Z  
High-Z  
High-Z  
RXDATA[7:0],  
RXPARITY  
3505 drw 40  
Figure 40 UTOPIA Level 1 Receive  
DPI Bus Timing Parameters  
Symbol  
Parameter  
Min.  
Max.  
Unit  
t51  
t52  
t53  
t54  
t55  
t56  
t57  
DPICLK Frequency  
0.2  
50  
60  
14  
MHz  
%
DPICLK Duty Cycle (% of t51)  
40  
2
DPICLK to Pn_TCLK Propagation Delay  
Pn_TFRM Setup Time to Pn_TCLK  
Pn_TFRM Hold Time to Pn_TCLK  
Pn_TD[3:0] Setup Time to Pn_TCLK  
Pn_TD[3:0] Hold Time to Pn_TCLK  
ns  
4
ns  
1
ns  
4
ns  
1
ns  
42 of 48  
December 2004  
IDT77V1254L25  
Symbol  
t61  
Parameter  
Min.  
Max.  
Unit  
ns  
Pn_RCLK Period  
25  
10  
10  
2
t62  
t63  
t64  
t65  
Pn_RCLK High Time  
Pn_RCLK Low Time  
12  
12  
ns  
ns  
ns  
ns  
Pn_RCLK to Pn_TFRM Invalid (min) and Valid (max)  
Pn_RCLK to Pn_RD Invalid (min) and Valid (max)  
2
t
51  
t52  
DPICLK  
Pn_TCLK  
Pn_TFRM  
Pn_TD[3:0]  
t
53  
t54  
t55  
t56  
t57  
3505 drw 41  
.
Figure 41 DPI Transmit  
t61  
t62  
t63  
Pn_RCLK  
Pn_RFRM  
Pn_RD[3:0]  
t64  
t65  
3505 drw 42  
.
Figure 42 DPI Receive  
Utility Bus Read Cycle  
Name Min. Max. Unit  
Description  
Tas  
10  
0
MHz  
%
Address setup to ALE  
Chip select to read enable  
Address hold to ALE  
Tcsrd  
Tah  
5
ns  
Tapw  
Ttria  
10  
0
ns  
ALE min pulse width  
ns  
Address tri-state to RD assert  
43 of 48  
December 2004  
IDT77V1254L25  
Name Min. Max. Unit  
Description  
Trdpw  
Tdh  
20  
0
10  
18  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Min. RD pulse width  
Data Valid hold time  
Tch  
0
RD deassert to CS deassert  
RD deassert to data tri-state  
Read Data access  
Ttrid  
Trd  
5
Tar  
ALE low to start of read  
Start of read to Data low-Z  
Trdd  
0
Utility Bus Write Cycle  
Name Min. Max. Unit  
Description  
Tapw  
Tas  
10  
10  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ALE min pulse widt  
Address set up to ALE  
Address hold time to ALE  
CS Assert to WR  
Tah  
Tcswr  
Twrpw  
Tdws  
Tdwh  
Tch  
0
20  
20  
10  
0
Min. WR pulse width  
Write Data set up  
Write Data hold time  
WR deassert to CS deassert  
ALE low to end of write  
Taw  
20  
Tah  
Tas  
AD[7:0]  
(input)  
Address  
Tapw  
ALE  
Tch  
Tcsrd  
CS  
Tar  
Trdpw  
Ttrid  
RD  
Tdh  
Trd  
Trdd  
AD[7:0]  
(output)  
Data  
3505 drw 43  
.
Figure 43 Utility Bus Read Cycle  
44 of 48  
December 2004  
IDT77V1254L25  
Tas  
Tah  
Tdws  
Tdwh  
AD[7:0]  
ALE  
Data (input)  
Address  
Tapw  
Tch  
Taw  
CS  
Tcswr  
Twrpw  
WR  
3505 drw 44  
.
Figure 44 Utility Bus Write Cycle  
OSC, RXREF, TXREF and Reset Timing  
Symbol  
Tcyc  
Parameter  
Min.  
Typ.  
31.25  
Max.  
33  
16.5  
60  
60  
1
Unit  
ns  
OSC cycle period  
30  
15  
15.625  
ns  
%
%
%
ns  
ns  
ns  
Tch  
Tcl  
OSC high tim  
OSC low time  
40  
40  
1
Tcc  
OSC cycle to cycle period variation  
OSC to RXREF Propagation Delay  
TXREF High Time  
Trrpd1  
Ttrh  
Ttrl  
30  
35  
35  
TXREF Low Time  
Trspw  
Minimum RST Pulse Width  
two OSC cycles  
1.  
The width of the RXREF pulse is programmable in the LED Driver and HEC Status/Control Registers.  
Tch  
Tcl  
Tcyc  
OSC  
Trrpd  
Trrpd  
RXREF  
Ttrl  
Ttrh  
TXREF  
Trspw  
RST  
.
3505 drw 45  
Figure 45 OSC, RXREF, TXREF and Reset Timing  
45 of 48  
December 2004  
IDT77V1254L25  
AC Test Conditions  
Input Pulse Levels  
GND to 3.0V  
3ns  
Input Rise/Fall Times  
Input Timing Reference Levels 1.5V  
Output Reference Levels  
Output Load  
1.5V  
See Figure 46  
3.3V  
1.2KΩ  
D.U.T.  
30pF*  
900Ω  
* Includes jig and scope capacitances.  
Figure 46 Output Load  
A note about Figures 47 and 48: The ATM Forum and ITU-T standards for 25 Mbps ATM define "Network" and "User" interfaces. They are identical  
except that transmit and receive are switched between the two. A Network device can be connected directly to a User device with a straight-through  
cable. User-to-User or Network-to-Network connections require a cable with 1-to-7 and 2-to-8 crossovers.  
Note 3  
105  
106  
TX3+ TX3-  
111  
112  
Note 1  
Note 2  
AGND  
Rx  
Filter  
1
114 RX3-  
115 RX3+  
Rx  
2
8 7  
6
5
4 3 2 1  
RJ45  
Connector  
Magnetics  
7
8
9 10 11 12 13 14 15 16  
AGND  
Tx  
Filter  
Tx  
IDT  
77V1254L25  
RJ45  
RJ45  
RJ45  
Magnetics  
Magnetics  
Magnetics  
141  
142  
3505 drw 47  
.
Figure 47 PC Board Layout for ATM Network  
Note: 1.No power or ground plane inside this area.  
2.Analog power plane inside this area.  
3.Digital power plane inside this area.  
4.A single ground plane should extend over the area covered by the analog and digital power planes, without breaks.  
5.All analog signal traces should avoid 90° corners.  
46 of 48  
December 2004  
IDT77V1254L25  
105  
TX3+ TX3-  
106  
Note 3  
Note 2  
111  
112  
Note 1  
AGND  
Tx  
Filter  
1
2
Tx  
8 7 6 5 4 3 2  
1
RJ45  
Connector  
Magnetics  
7
8
114 RX3-  
115 RX3+  
9 10 11 12 13 14 15 16  
AGND  
Rx  
Filter  
Rx  
IDT  
77V1254L25  
RJ45  
RJ45  
RJ45  
Magnetics  
Magnetics  
Magnetics  
141  
142  
.
3505 drw 48  
Figure 48 PC Board Layout for ATM User  
Note: 1.No power or ground plane inside this area.  
2.Analog power plane inside this area.  
3.Digital power plane inside this area.  
4.A single ground plane should extend over the area covered by the analog and digital power planes, without breaks.  
5.All analog signal traces should avoid 90° corners.  
Package Dimensions  
144  
109  
A2  
1
A1  
108  
.
e
144-Pin  
PQFP  
E
E1  
73  
36  
A
37  
72  
D1  
D
L
b
SYMBOL  
MIN.  
NOM.  
MAX.  
A
A1  
A2  
D
-
3.70  
0.33  
3.37  
31.20  
28.00  
31.20  
28.00  
0.88  
0.65  
-
4.07  
0.25  
-
3.20  
3.60  
-
-
D1  
E
-
-
-
-
-
-
E1  
L
0.73  
-
1.03  
-
e
b
0.22  
0.38  
Dimensions are in millimeters  
3505 drw 49  
PSC-4053 is a more comprehensive package outline drawing and is available from the packaging section of the IDT web site.  
47 of 48  
December 2004  
IDT77V1254L25  
Ordering Information  
IDT  
NNNNN  
A
NNN  
A
A
Process/  
Temp. Range  
Device Type  
Speed  
Package  
Power  
I
Industrial (-40°C to +85°C)  
PG  
144-Pin PQFP (PU-144)  
25.6 - 51.2 Mb/s  
25  
L
77V1254L25  
Quad 25Mb/s ATM PHY  
Transmission Convergence (TC)  
and PMD Sublayers  
3505 drw 50  
.
Revision History  
3/2/98:  
ADVANCE INFORMATION. Initial Draft.  
PRELIMINARY. TXOSC pin name changed to OSC. Missing information added. Package code corrected in ordering code.  
10/5/98  
11/30/98  
PRELIMINARY. Numerous minor edits. Corrections to Figures 26 and 30. Elimination of Line Rate Selection bit in the Master Control  
Registers. IDD1 and IDD2 values updated. Addition of VPI/VCI Swap feature. Improvements to Utopia bus timing parameters.  
3/23/99:  
3/8/01  
Update to new format, revisions to Utopia 1 text.  
Changed from Preliminary to Final. Various typographic corrections. Corrected default values for UTOPIA 2 Port Address in the  
Enhanced Control 1 Registers. Added IDD values for 51 Mbps.Removed Trd minimum spec. IDD Values for 25 Mbps and 51 Mbps  
updated.  
9/21/2001  
Changed values in the Max. column for IDD1 and IDD2 in the DC Electrical Characteristics (All pins except TX and RX) table.  
Changed value in Max. column for t23 in Utopia Level 2 Bus Timing Parameters table. Added Loop Timing Feature section.  
12/10/2004 Removed Commercial Temperature Range from datasheet, updated IDT logo and datasheet to current template.  
CORPORATE HEADQUARTERS  
2975 Stender Way  
Santa Clara, CA 95054  
for SALES:  
800-345-7015 or 408-727-6116  
fax: 408-492-8649  
for Tech Support:  
email: telecomhelp@idt.com  
phone: 408-330-1552  
48 of 48  
December 2004  

相关型号:

IDT77V1254L25PU

ATM Network Interface, 1-Func, CMOS, PQFP144, 28 X 28 MM, PLASTIC, QFP-144
IDT

IDT77V1254L25PUI

ATM Network Interface, 1-Func, CMOS, PQFP144, 28 X 28 MM, PLASTIC, QFP-144
IDT

IDT77V1264L200

Quad Port PHY (Physical Layer) for 25.6, 51.2, and 204.8 Mbps ATM Networks and Backplane Applications
IDT

IDT77V1264L200PG

Telecommunication IC
ETC

IDT77V1264L200PGI

Quad Port PHY (Physical Layer) for 25.6, 51.2, and 204.8 Mbps ATM Networks and Backplane Applications
IDT

IDT77V1264L200PGI8

ATM Network Interface, 1-Func, CMOS, PQFP144, 28 X 28 MM, PLASTIC, QFP-144
IDT

IDT77V126L200

Single Port PHY (Physical Layer) for 25.6, 51.2, and 204.8 Mbps ATM Networks and Backplane Applications
IDT

IDT77V126L200TF

ATM Network Interface, 1-Func, CMOS, PQFP64, 10 X 10 MM, TQFP-64
IDT

IDT77V126L200TF8

ATM Network Interface, 1-Func, CMOS, PQFP64, 10 X 10 MM, TQFP-64
IDT

IDT77V126L200TFI

Single Port PHY (Physical Layer) for 25.6, 51.2, and 204.8 Mbps ATM Networks and Backplane Applications
IDT

IDT77V222L155PG

ATM Segmentation and Reassembly Device, 1-Func, CMOS, PQFP208, 28 X 28 MM, PLASTIC, QFP-208
IDT

IDT77V222L155PG8

ATM Segmentation and Reassembly Device, 1-Func, CMOS, PQFP208, PLASTIC, QFP-208
IDT