IDT82V1054APF8 [IDT]

PCM Codec, A/MU-Law, 1-Func, PQFP64, TQFP-64;
IDT82V1054APF8
型号: IDT82V1054APF8
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

PCM Codec, A/MU-Law, 1-Func, PQFP64, TQFP-64

PC 电信 电信集成电路
文件: 总42页 (文件大小:441K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
QUAD PROGRAMMABLE PCM  
CODEC WITH MPI INTERFACE  
IDT82V1054A  
2 programmable tone generators per channel for testing,  
ringing and DTMF generation  
Two programmable chopper clocks  
Master clock frequency selectable: 1.536 MHz, 1.544 MHz, 2.048  
MHz, 3.072 MHz, 3.088 MHz, 4.096 MHz, 6.144 MHz, 6.176 MHz or  
8.192 MHz  
Advanced test capabilities:  
- 3 analog loopback tests  
- 5 digital loopback tests  
- Level metering function  
High analog driving capability (300 AC)  
3 V digital I/O with 5 V tolerance  
CODEC identification  
+3.3 V single power supply  
Low power consumption  
FEATURES  
4-channel CODEC with on-chip digital filters  
Software selectable A/µ-law, linear code conversion  
Meets ITU-T G.711 - G.714 requirements  
Programmabledigitalfiltersadaptingtosystemdemands:  
- AC impedance matching  
- Transhybrid balance  
- Frequency response correction  
- Gain setting  
Supports two programmable PCM buses  
Flexible PCM interface with up to 128 programmable time slots,  
data rate from 512 kbits/s to 8.192 Mbits/s  
MPI control interface  
Broadcast mode for coefficient setting  
7 SLIC signaling pins (including 2 debounced pins) per channel  
Fast hardware ring trip mechanism  
Operating temperature range: -40°C to +85°C  
Package available: 64 Pin TQFP  
FUNCTIONAL BLOCK DIAGRAM  
CH1  
CH3  
Filter and A/D  
VIN1  
Filter and A/D  
VIN3  
D/A and Filter  
VOUT1  
D/A and Filter  
VOUT3  
DSP  
2 Inputs  
3 I/Os  
2 Outputs  
2 Inputs  
3 I/Os  
2 Outputs  
Core  
SLIC Signaling  
CH2  
SLIC Signaling  
CH4  
DR1  
DR2  
DX1  
DX2  
MCLK  
CHCLK1  
CHCLK2  
PLL and Clock  
Generation  
General Control  
Logic  
MPI Interface  
PCM Interface  
TSX1 TSX2  
FS BCLK  
RESET INT12 INT34 CCLK CS CI CO  
The IDT logo is a registered trademark of Integrated Device Technology, Inc.  
JULY 19, 2004  
INDUSTRIAL TEMPERATURE RANGE  
1
2004 Integrated Device Technology, Inc.  
DSC-6223/4  
IDT82V1054A QUAD PROGRAMMABLE PCM CODEC WITH MPI INTERFACE  
INDUSTRIAL TEMPERATURE  
four channels of the IDT82V1054A. The device also provides 7 signaling  
pins per channel for SLICs.  
The IDT82V1054A is programmed via a Microprocessor Interface  
(MPI). Two PCM buses are provided to transfer the compressed or  
linear PCM data.  
The device offers strong test capability with several analog/digital  
loopbacks and level metering function. It brings convenience to system  
maintenance and diagnosis.  
DESCRIPTION  
The IDT82V1054A is a feature rich, single-chip, programmable 4-  
channel PCM CODEC with on-chip filters. Besides the µ-Law/A-Law  
companding and linear coding/decoding (14 effective bits + 2 extra sign  
bits), the IDT82V1054A also provides 2 programmable tone generators  
per channel (which can generate ring signals) and 2 programmable  
chopper clocks for SLICs.  
The digital filters in the IDT82V1054A provide necessary transmit  
and receive filtering for voice telephone circuits to interface with time-  
division multiplexed systems. An integrated programmable DSP realizes  
AC impedance matching, transhybrid balance, frequency response  
correction and gain adjustment functions. The IDT82V1054A supports 2  
PCM buses with programmable sampling edge, which allows an extra  
delay of up to 7 clocks. Once the delay is determined, it is effective to all  
A unique feature of “Hardware Ring Trip” is implemented in the  
IDT82V1054A. When an off-hook signal is detected, the IDT82V1054A  
will reverse an output pin to stop the ringing signal immediately.  
The IDT82V1054A can be used in digital telecommunication  
applications such as Central Office Switch, PBX, DLC and Integrated  
Access Devices (IADs), i.e. VoIP and VoDSL.  
PIN CONFIGURATION  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
BCLK  
FS  
VIN1  
GNDA1  
VOUT1  
VDDA12  
VOUT2  
GNDA2  
VIN2  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
DR2  
DX2  
TSX2  
DR1  
DX1  
IDT82V1054A  
64 Pin TQFP  
TSX1  
VDDD  
RESET  
MCLK  
GNDD  
CO  
CNF  
VDDB  
VIN3  
GNDA3  
VOUT3  
VDDA34  
VOUT4  
GNDA4  
VIN4  
CI  
CCLK  
CS  
2
IDT82V1054A QUAD PROGRAMMABLE PCM CODEC WITH MPI INTERFACE  
INDUSTRIAL TEMPERATURE  
TABLE OF CONTENTS  
1
2
Pin Description...................................................................................................................................................................................................7  
Functional Description ......................................................................................................................................................................................9  
2.1 MPI/PCM Interface ....................................................................................................................................................................................9  
2.1.1 Microprocessor Interface (MPI) ....................................................................................................................................................9  
2.1.2 PCM Bus ....................................................................................................................................................................................10  
2.2 DSP Programming...................................................................................................................................................................................11  
2.2.1 Signal Processing.......................................................................................................................................................................11  
2.2.2 Gain Adjustment.........................................................................................................................................................................11  
2.2.3 Impedance Matching.................................................................................................................................................................11  
2.2.4 Transhybrid Balance ..................................................................................................................................................................12  
2.2.5 Frequency Response Correction................................................................................................................................................12  
2.3 SLIC Control............................................................................................................................................................................................12  
2.3.1 SI1 and SI2.................................................................................................................................................................................12  
2.3.2 SB1, SB2 and SB3.....................................................................................................................................................................12  
2.3.3 SO1 and SO2.............................................................................................................................................................................12  
2.4 Hardware Ring Trip .................................................................................................................................................................................12  
2.5 Interrupt and Interrupt Enable..................................................................................................................................................................12  
2.6 Debounce Filters .....................................................................................................................................................................................13  
2.7 Chopper Clock.........................................................................................................................................................................................13  
2.8 Dual Tone and Ring Generation..............................................................................................................................................................13  
2.9 Level Metering.........................................................................................................................................................................................14  
2.10 Channel Power Down/Standby Mode......................................................................................................................................................14  
2.11 Power Down/Suspend Mode...................................................................................................................................................................14  
3
Operating The IDT82V1054A...........................................................................................................................................................................15  
3.1 Programming Description........................................................................................................................................................................15  
3.1.1 Command Type and Format ......................................................................................................................................................15  
3.1.2 Addressing the Local Registers..................................................................................................................................................15  
3.1.3 Addressing the Global Registers................................................................................................................................................15  
3.1.4 Addressing the Coe-RAM...........................................................................................................................................................15  
3.1.5 Programming Examples .............................................................................................................................................................16  
3.1.5.1 Example of Programming Local Registers .................................................................................................................16  
3.1.5.2 Example of Programming Global Registers................................................................................................................16  
3.1.5.3 Example of Programming the Coefficient-RAM..........................................................................................................16  
3.2 Power-on Sequence................................................................................................................................................................................19  
3.3 Default State After Reset.........................................................................................................................................................................19  
3.4 Registers Description ..............................................................................................................................................................................20  
3.4.1 Registers Overview ....................................................................................................................................................................20  
3.4.2 Global Registers List ..................................................................................................................................................................22  
3.4.3 Local Registers List....................................................................................................................................................................28  
4
5
6
Absolute Maximum Ratings............................................................................................................................................................................32  
Recommended DC Operating Conditions .....................................................................................................................................................32  
Electrical Characteristics ................................................................................................................................................................................32  
6.1 Digital Interface........................................................................................................................................................................................32  
6.2 Power Dissipation....................................................................................................................................................................................32  
6.3 Analog Interface ......................................................................................................................................................................................33  
7
Transmission Characteristics.........................................................................................................................................................................34  
7.1 Absolute Gain..........................................................................................................................................................................................34  
7.2 Gain Tracking ..........................................................................................................................................................................................34  
7.3 Frequency Response ..............................................................................................................................................................................34  
7.4 Group Delay ............................................................................................................................................................................................35  
7.5 Distortion .................................................................................................................................................................................................35  
7.6 Noise .......................................................................................................................................................................................................36  
3
IDT82V1054A QUAD PROGRAMMABLE PCM CODEC WITH MPI INTERFACE  
INDUSTRIAL TEMPERATURE  
7.7 Interchannel Crosstalk.............................................................................................................................................................................36  
7.8 Intrachannel Crosstalk.............................................................................................................................................................................36  
8
9
Timing Characteristics ....................................................................................................................................................................................37  
8.1 Clock Timing............................................................................................................................................................................................37  
8.2 Microprocessor Interface Timing .............................................................................................................................................................38  
8.3 PCM Interface Timing..............................................................................................................................................................................39  
Appendix: IDT82V1054A Coe-RAM Mapping.................................................................................................................................................40  
10 Ordering Information .......................................................................................................................................................................................41  
4
IDT82V1054A QUAD PROGRAMMABLE PCM CODEC WITH MPI INTERFACE  
INDUSTRIAL TEMPERATURE  
LIST OF FIGURES  
Figure - 1  
Figure - 2  
Figure - 3  
Figure - 4  
Figure - 5  
Figure - 6  
Figure - 7  
Figure - 8  
Figure - 9  
An Example of the MPI Interface Write Operation .............................................................................................................................. 9  
An Example of the MPI Interface Read Operation (ID = 81H)............................................................................................................. 9  
Sampling Edge Selection Waveform................................................................................................................................................. 10  
Signal Flow for Each Channel........................................................................................................................................................... 11  
Debounce Filter................................................................................................................................................................................. 13  
Clock Timing...................................................................................................................................................................................... 37  
MPI Input Timing ............................................................................................................................................................................... 38  
MPI Output Timing ............................................................................................................................................................................ 38  
Transmit and Receive Timing............................................................................................................................................................ 39  
Figure - 10 Typical Frame Sync Timing (2 MHz Operation) ................................................................................................................................ 39  
Figure - 11 Coe-RAM Mapping............................................................................................................................................................................ 40  
5
IDT82V1054A QUAD PROGRAMMABLE PCM CODEC WITH MPI INTERFACE  
INDUSTRIAL TEMPERATURE  
LIST OF TABLES  
Table - 1  
Table - 2  
Table - 3  
Table - 4  
Consecutive Adjacent Addressing......................................................................................................................................................15  
Global Registers (GREG) Mapping....................................................................................................................................................20  
Local Registers (LREG) Mapping.......................................................................................................................................................21  
Coe-RAM Address Allocation.............................................................................................................................................................40  
6
IDT82V1054A QUAD PROGRAMMABLE PCM CODEC WITH MPI INTERFACE  
INDUSTRIAL TEMPERATURE  
1
PIN DESCRIPTION  
Name  
Type  
Pin Number  
Description  
GNDA1  
GNDA2  
GNDA3  
GNDA4  
50  
54  
59  
63  
Analog Ground.  
All ground pins should be connected together.  
Ground  
Digital Ground.  
All digital signals are referred to this pin.  
GNDD  
Ground  
21  
+3.3 V Analog Power Supply.  
These pins should be connected to ground via a 0.1 µF capacitor. All power supply pins should be  
connected together.  
VDDA12  
VDDA34  
52  
61  
Power  
Power  
Power  
VDDD  
VDDB  
24  
57  
+3.3 V Digital Power Supply.  
+3.3 V Analog Power Supply.  
This pin should be connected to ground via a 0.1 µF capacitor. All power supply pins should be connected  
together.  
Capacitor Noise Filter.  
This pin should be connected to ground via a 0.22 µF capacitor.  
CNF  
I
56  
Analog Voice Inputs of Channel 1-4.  
These pins should be connected to the corresponding SLIC via a 0.22 µF capacitor.  
VIN1-4  
49, 55, 58, 64  
51, 53, 60, 62  
Voice Frequency Receiver Outputs of Channel 1-4.  
These pins can drive 300 AC load. It can drive transformers directly.  
VOUT1-4  
O
I
SI1_(1-4)  
SI2_(1-4)  
36, 47, 2, 13  
35, 48, 1, 14  
SLIC Signalling Inputs with debounce function for Channel 1-4.  
SB1_(1-4)  
SB2_(1-4)  
SB3_(1-4)  
39, 44, 5, 10  
38, 45, 4, 11  
37, 46, 3, 12  
Bi-directional SLIC Signalling I/Os for Channel 1-4.  
These pins can be individually programmed as input or output.  
I/O  
O
SO1_(1-4)  
SO2_(1-4)  
41, 42, 7, 8  
40, 43, 6, 9  
SLIC Signalling Outputs for Channel 1-4.  
Transmit PCM Data Output, PCM Highway One.  
DX1  
DX2  
DR1  
O
26  
29  
27  
Transmit PCM Data to PCM highway one. The PCM data is output through DX1 or DX2 as selected by  
local register LREG5. This pin remains in high-impedance state until a pulse appears on the FS pin.  
Transmit PCM Data Output, PCM Highway Two.  
Transmit PCM Data to PCM highway two. The PCM data is output thought DX1 or DX2 as selected by  
local register LREG5. This pin remains in high-impedance state until a pulse appears on the FS pin.  
O
I
Receive PCM Data Input, PCM Highway One.  
The PCM data is received from PCM highway one (DR1) or two (DR2). The receive PCM highway is  
selected by local register LREG6.  
Receive PCM Data Input, PCM Highway Two.  
DR2  
FS  
I
I
I
30  
31  
32  
The PCM data is received from PCM highway one (DR1) or two (DR2). The receive PCM highway is  
selected by local register LREG6.  
Frame Synchronization.  
FS is an 8 kHz synchronization clock that identifies the beginning of the PCM frame.  
Bit Clock.  
BCLK  
This pin clocks out the PCM data to DX1 or DX2 pin and clocks in PCM data from DR1 or DR2 pin. It may  
vary from 512 kHz to 8.192 MHz and should be synchronous to FS.  
7
IDT82V1054A QUAD PROGRAMMABLE PCM CODEC WITH MPI INTERFACE  
INDUSTRIAL TEMPERATURE  
Name  
Type  
Pin Number  
Description  
Transmit Output Indicator.  
The TSX1 pin becomes low when PCM data is transmitted via DX1. Open-drain.  
The TSX2 pin becomes low when PCM data is transmitted via DX2. Open-drain.  
TSX1  
TSX2  
25  
28  
0
Chip Selection.  
A logic low level on this pin enables the Serial Control Interface.  
CS  
I
I
17  
19  
Serial Control Interface Data Input.  
Control data input pin. CCLK determines the data rate.  
CI  
Serial Control Interface Data Output.  
CO  
O
I
20  
18  
22  
23  
34  
Control data output pin. CCLK determines the data rate. This pin is in high-impedance state when the CS  
pin is logic high.  
Serial Control Interface Clock.  
This is the clock for the Serial Control Interface. It can be up to 8.192 MHz.  
CCLK  
MCLK  
RESET  
INT12  
Master Clock Input.  
I
This pin provides the clock for the DSP of the IDT82V1054A. The frequency of the MCLK can be 1.536  
MHz, 1.544 MHz, 2.048 MHz, 3.072 MHz, 3.088 MHz, 4.096 MHz, 6.144 MHz, 6.176 MHz or 8.192 MHz.  
Reset Input.  
Forces the device to default mode. Active low.  
I
Interrupt Output Pin for Channel 1-2.  
Active high interrupt signal for Channel 1 and 2, open-drain. It reflects the changes on the corresponding  
SLIC input pins.  
O
Interrupt Output Pin for Channel 3-4.  
INT34  
O
15  
Active high interrupt signal for Channel 3 and 4, open-drain. It reflects the changes on the corresponding  
SLIC input pins.  
Chopper Clock Output One.  
Provides a programmable output signal (2 -28 ms) synchronous to MCLK.  
CHCLK1  
CHCLK2  
O
O
33  
16  
Chopper Clock Output Two.  
Provides a programmable output signal (256 kHz, 512 kHz or 16.384 MHz) synchronous to MCLK.  
8
IDT82V1054A QUAD PROGRAMMABLE PCM CODEC WITH MPI INTERFACE  
INDUSTRIAL TEMPERATURE  
interface and the Coefficient-RAM of the IDT82V1054A are programmed  
by the master device via MPI, which consists of four lines (pins): CCLK,  
CS, CI and CO. All commands and data are aligned in byte (8 bits) and  
transferred via the MPI interface. CCLK is the clock of the MPI interface.  
The frequency of CCLK can be up to 8.192 MHz. CS is the chip  
selection pin. A low level on CS enables the MPI interface. CI and CO  
are data input and data output pins, carrying control commands and  
data bytes to/from the IDT82V1054A.  
The data transfer is synchronized to the CCLK signal. The contents  
of CI is latched on the rising edges of CCLK, while CO changes on the  
falling edges of CCLK. The CCLK signal is the only reference of CI and  
CO pins. Its duty and frequency may not necessarily be standard.  
When the CS pin becomes low, the IDT82V1054A treats the first byte  
on the CI pin as command and the rest as data. To write another  
command, the CS pin must be changed from low to high to finish the  
previous command and then changed from high to low to indicate the  
start of a new command. When a read/write operation is completed, the  
CS pin must be set to high in 8-bit time.  
2
FUNCTIONAL DESCRIPTION  
The IDT82V1054A is a four-channel PCM CODEC with on-chip  
digital filters. It provides a four-wire solution for the subscriber line  
circuitry in digital switches. The IDT82V1054A converts analog voice  
signals to digital PCM samples and digital PCM samples back to analog  
voice signals. The digital filters are used to bandlimit the voice signals  
during conversion. High performance oversampling Analog-to-Digital  
Converters (ADC) and Digital-to-Analog Converters (DAC) in the  
IDT82V1054A provide the required conversion accuracy. The  
associated decimation and interpolation filtering is performed by both  
dedicated hardware and Digital Signal Processor (DSP). The DSP also  
handles all other necessary procession such as PCM bandpass filtering,  
sample rate conversion and PCM companding.  
2.1  
MPI/PCM INTERFACE  
A serial Microprocessor Interface (MPI) is provided for the master  
device to control the IDT82V1054A. Two PCM buses are provided to  
transfer the digital voice data.  
During the execution of commands that are followed by output data  
byte(s), the IDT82V1054A will not accept any new commands from the  
CI pin. But the data transfer sequence can be interrupted by setting the  
CS pin to high at any time. See Figure - 1 and Figure - 2 for examples of  
MPI write and read operation timing diagrams.  
2.1.1  
MICROPROCESSOR INTERFACE (MPI)  
The internal configuration registers (local/global), the SLIC signaling  
CCLK  
CS  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
CI  
Command Byte  
Data Byte 1  
Data Byte 2  
High 'Z'  
CO  
Figure - 1 An Example of the MPI Interface Write Operation  
CCLK  
CS  
Ignored  
7
6
5
4
3
2
1
0
CI  
Command Byte  
Identification Code  
Data Byte 1  
High 'Z'  
CO  
'1' '0' '0' '0' '0' '0' '0' '1'  
7
6
5
4
3
2
1
0
Figure - 2 An Example of the MPI Interface Read Operation (ID = 81H)  
9
 
 
IDT82V1054A QUAD PROGRAMMABLE PCM CODEC WITH MPI INTERFACE  
2.1.2 PCM BUS  
INDUSTRIAL TEMPERATURE  
complement number (b13 to b0 are effective bits, b15 and b14 are as  
same as the sign bit b13). So, the voice data of one channel occupies  
one time slot group, which consists of 2 adjacent time slots. The TT[6:0]  
bits in LREG5 select a transmit time slot group for the specified channel.  
If TT[6:0] = n(d), it means that time slots TS(2n+1) and TS(2n+2) are  
selected. For example, if TT[6:0] = 00H, it means that TS0 and TS1 are  
selected. The RT[6:0] bits in LREG6 select a receive time slot group for  
the specified channel in the same way.  
The IDT82V1054A provides two flexible PCM buses for all 4  
channels. The digital PCM data can be compressed (A/µ-law) or linear  
code. As shown in Figure - 3, the data rate can be configured as same  
as the Bit Clock (BCLK) or half of it. The PCM data is transmitted or  
received either on the rising edges or on the falling edges of the BCLK  
signal. The transmit and receive time slots can offset from the FS signal  
by 0 to 7 periods of BCLK. All these configurations are made by global  
register GREG7, which is effective for all four channels.  
The PCM data of each channel can be assigned to any time slot of  
the PCM bus. The number of available time slots is determined by the  
frequency of the BCLK signal. For example, if the frequency is 512 kHz,  
8 time slots (TS0 to TS7) are available. If the frequency is 1.024 MHz,  
16 time slots (TS0 to TS15) are available. The IDT82V1054A accepts  
BCLK frequency of 512 kHz to 8.192 MHz at increments of 64 kHz.  
When compressed PCM code (8-bit wide) is selected, the voice data  
of one channel occupies one time slot. The TT[6:0] bits in local register  
LREG5 select the transmit time slot for each channel, while the RT[6:0]  
bits in LREG6 select the receive time slot for each channel.  
The PCM data of each individual channel can be clocked out to  
transmit PCM highway one (DX1) or two (DX2) on the programmed  
edges of BCLK according to time slot assignment. The transmit PCM  
highway is selected by the THS bit in LREG5. The frame sync (FS)  
pulse identifies the beginning of a transmit frame (TS0). The PCM data  
is serially transmitted on DX1 or DX2 with MSB first.  
The PCM data of each individual channel is received from receive  
PCM highway one (DR1) or two (DR2) on the programmed edges of  
BCLK according to time slot assignment. The receive PCM highway is  
selected by the RHS bit in LREG6. The frame sync (FS) pulse identifies  
the beginning of a receive frame (TS0). The PCM data is serially  
received from DR1 or DR2 with MSB first.  
When linear PCM code is selected, the voice data is a 16-bit 2’s  
Transmit  
Receive  
FS  
PCM Clock Slope Bits  
in GREG7:  
BCLK  
CS = 000  
CS = 001  
CS = 010  
CS = 011  
Single Clock  
Bit 7  
TS0  
BCLK  
Double Clock  
CS = 100  
CS = 101  
CS = 110  
CS = 111  
Figure - 3 Sampling Edge Selection Waveform  
10  
 
IDT82V1054A QUAD PROGRAMMABLE PCM CODEC WITH MPI INTERFACE  
INDUSTRIAL TEMPERATURE  
impedance, balance transhybrid and correct frequency response. All the  
coefficients of the digital filters can be calculated automatically by a  
software provided by IDT. When users provide accurate SLIC model,  
impedance and gain requirements, this software will calculate all the  
coefficients automatically. After loading these coefficients to the  
coefficient RAM of the IDT82V1054A, the final AC characteristics of the  
line card (consists of SLIC and CODEC) will meet the ITU-T  
specifications.  
2.2  
DSP PROGRAMMING  
2.2.1  
SIGNAL PROCESSING  
Several blocks are programmable for signal processing. This allows  
users to optimize the performance of the IDT82V1054A for the system.  
Figure - 4 shows the signal flow for each channel and indicates the  
programmable blocks.  
The programmable digital filters are used to adjust gain and  
LREG1: CS[3]  
CS[3] = 1: enable (normal)  
CS[3] = 0: disable (bypass)  
Transmit Path  
@8 KHz  
Analog  
@2 MHz  
@64 KHz  
@16 KHz  
LPF  
TS  
PCM Highway  
DX1/DX2  
Level Meter  
CMP  
∑ −∆  
VIN  
LPF/AA  
D1  
GTX  
D2  
FRX  
HPF  
TSA  
GIS  
IMF  
ECF  
∑ −∆  
U1  
VOUT  
LPF/SC  
UF  
GRX  
U2  
LPF  
FRR  
EXP  
TSA  
DR1/DR2  
CUT-OFF-PCM  
Dual Tone  
LREG1: CS[2]  
LREG1: CS[0]  
LREG1: CS[1]  
CS[2] = 1: enable (normal)  
CS[2] = 0: disable (cut)  
CS[0] = 1: enable (normal)  
CS[0] = 0: disable (cut)  
CS[1] = 1: enable (normal)  
CS[1] = 0: disable (cut)  
Bold Black Framed: Programmable Filters  
Fine Black Framed: Fixed Filters  
Receive Path  
Figure - 4 Signal Flow for Each Channel  
IMF: Impedance Matching Filter  
Abbreviation List:  
LPF/AA: Anti-Alias Low-pass Filter  
LPF/SC: Smoothing Low-pass Filter  
LPF: Low-pass Filter  
ECF: Echo Cancellation Filter  
GTX: Gain for Transmit Path  
HPF: High-pass Filter  
GRX: Gain for Receive Path  
GIS: Gain for Impedance Scaling  
D1: 1st Down Sample Stage  
D2: 2nd Down Sample Stage  
U1: 1st Up Sample Stage  
FRX: Frequency Response Correction for Transmit  
FRR: Frequency Response Correction for Receive  
CMP: Compression  
EXP: Expansion  
U2: 2nd Up Sample Stage  
UF: Up Sampling Filter (64 k - 128 k)  
TSA: Time Slot Assignment  
2.2.2  
GAIN ADJUSTMENT  
minimum 0.1 dB step.  
For each channel, the digital gain filter in the receive path (GRX) can  
be disabled by setting the CS[7] bit in LREG1 to ‘0’. If the CS[7] bit in  
LREG1 is set to ‘1’, the GRX filter will be enabled and the digital gain will  
be programmed by the coefficient RAM. Note that the RAM block for  
containing GRX coefficient is shared by all four channels. That is, once  
the GRX coefficient is written to the coe-RAM, it will be used by all four  
channels. The GRX is programmable from -12 dB to +3 dB with  
minimum 0.1 dB step.  
For each individual channel, the analog A/D gain in the transmit path  
can be selected as 0 dB or 6 dB. The selection is done by the GAD bit in  
LREG9. It is 0 dB by default.  
For each individual channel, the analog D/A gain in the receive path  
can be selected as 0 dB or -6 dB. The selection is done by the GDA bit  
in LREG9. It is 0 dB by default.  
For each channel, the digital gain filter in the transmit path (GTX) can  
be disabled by setting the CS[5] bit in LREG1 to ‘0’. If the CS[5] bit in  
LREG1 is set to ‘1’, the GTX filter will be enabled and the digital gain will  
be programmed by the coefficient RAM. Note that the RAM block for  
containing GTX coefficient is shared by all four channels. That is, once  
the GTX coefficient is written to the coe-RAM, it will be used by all four  
channels. The GTX is programmable from -3 dB to +12 dB with  
2.2.3  
IMPEDANCE MATCHING  
The IDT82V1054A provides a programmable feedback path from  
VIN to VOUT for each channel. This feedback synthesizes the two-wire  
impedance of the SLIC. The programmable Impedance Matching Filter  
11  
 
 
IDT82V1054A QUAD PROGRAMMABLE PCM CODEC WITH MPI INTERFACE  
INDUSTRIAL TEMPERATURE  
(IMF) and Gain of Impedance Scaling filter (GIS) work together to realize  
impedance matching. If the CS[0] bit in LREG1 is ‘0’, the IMF is  
disabled. If the CS[0] bit is ‘1’, the IMF coefficient is programmed by the  
coefficient RAM. If the CS[2] bit in LREG1 is ‘0’, the GIS filter is disabled.  
If the CS[2] bit is ‘1’, the GIS coefficient is programmed by the coefficient  
RAM.  
channels. Users can also read the information of SB1, SB2 and SB3 of  
the specified channel from local register LREG4.  
If the SB1, SB2 and SB3 pins are configured as outputs, data can  
only be written to them via GREG10, GREG11 and GREG12  
respectively.  
2.3.3  
SO1 AND SO2  
2.2.4  
TRANSHYBRID BALANCE  
The control data can only be written to the two output pins SO1 and  
SO2 by local register LREG4 on a per-channel basis. When being read,  
the SO1 and SO2 bits in LREG4 will be read out with the data written to  
them in the previous write operation.  
The ECF filter is used to adjust transhybrid balance and ensure that  
the echo cancellation meets the ITU-T specifications. If the CS[1] bit in  
LREG1 is ‘0’, the ECF filter is disabled. If the CS[1] bit is ‘1’, the ECF  
coefficient is programmed by the coefficient RAM.  
2.4  
HARDWARE RING TRIP  
2.2.5  
FREQUENCY RESPONSE CORRECTION  
In order to avoid the damage caused by high voltage ring signal, the  
IDT82V1054A provides a hardware ring trip function to respond to the  
off-hook signal as fast as possible. This function is enabled by setting  
the RTE bit in GREG8 to ‘1’.  
The off-hook signal can be input via either SI1 or SI2 pin, while the  
ring control signal can be output via any of the SO1, SO2, SB1, SB2 and  
SB3 pins (assume that SB1-SB3 are configured as outputs). The IS bit  
in GREG8 is used to select an input pin and the OS[2:0] bits are used to  
select an output pin.  
When a valid off-hook signal arrives at the selected input pin (SI1 or  
SI2), the IDT82V1054A will turn off the ring signal by inverting the logic  
level of the selected output pin (SO1, SO2, SB1, SB2 or SB3),  
regardless of the value of the corresponding SLIC output control register  
(the value should be changed later). This function provides a much  
faster response to off-hook signals than the software ring trip which  
turns off the ring signal by changing the value of the corresponding  
register.  
The IDT82V1054A provides two filters that can be programmed to  
correct any frequency distortion caused by the impedance matching  
filter. They are the Frequency Response Correction in the Transmit path  
filter (FRX) and the Frequency Response Correction in the Receive path  
filter (FRR). If the CS[4] bit in LREG1 is ‘0’, the FRX filter is disabled. If  
the CS[4] bit is ‘1’, the FRX coefficient is programmed by the coefficient  
RAM. If the CS[6] bit in LREG1 is ‘0’, the FRR filter is disabled. If the  
CS[6] bit is ‘1’, the FRR coefficient is programmed by the coefficient  
RAM.  
Refer to “9 Appendix: IDT82V1054A Coe-RAM Mapping” for the  
address of the GTX, GRX, FRX, FRR, GIS, ECF and IMF coefficients.  
2.3  
SLIC CONTROL  
The SLIC control interface of the IDT82V1054A consists of 7 pins per  
channel: 2 inputs SI1 and SI2, 3 I/Os SB1 to SB3, and 2 outputs SO1  
and SO2.  
The IPI bit in GREG8 is used to indicate the valid polarity of the input  
pin. If the off-hook signal is active low, the IPI bit should be set to ‘0’. If  
the off-hook signal is active high, the IPI bit should be set to ‘1’. The OPI  
bit in GREG8 is used to indicate the valid polarity of the output pin. If the  
ring control signal is required to be low in normal status and high to  
activate a ring, the OPI bit should be set to ‘1’. If it is required to be high  
in normal status and low to activate a ring, the OPI bit should be set to  
‘0’.  
Here is an example: In a system where the off-hook signal is active  
low and ring control signal is active high, the IPI bit should be set to ‘0’  
and the OPI bit should be set to ‘1’. In normal status, the selected input  
(off-hook signal) is high and the selected output (ring control signal) is  
low. When the ring is activated by setting the output (ring control signal)  
to high, a low pulse appearing on the input (off-hook signal) will inform  
the device to invert the output to low and cut off the ring signal.  
2.3.1  
SI1 AND SI2  
The SLIC inputs SI1 and SI2 can be read in 2 ways - globally for all 4  
channels or locally for each individual channel.  
The SI1 and SI2 status of all 4 channels can be read via global  
register GREG9. The SIA[3:0] bits in this register represent the  
debounced SI1 data of Channel 4 to Channel 1. The SIB[3:0] bits in this  
register represent the debounced SI2 data of Channel 4 to Channel 1.  
Both the SI1 and SI2 pins can be connected to off-hook, ring trip,  
ground key signals or other signals. The global register GREG9  
provides a more efficient way to obtain time-critical data such as on/off-  
hook and ring trip information from the SLIC input pins SI1 and SI2.  
The SI1 and SI2 status of each channel can also be read via the  
corresponding local register LREG4.  
2.3.2  
SB1, SB2 AND SB3  
2.5  
INTERRUPT AND INTERRUPT ENABLE  
The SLIC I/O pin SB1 of each channel can be configured as input or  
output via global register GREG10. The SB1C[3:0] bits in GREG10  
determine the SB1 directions of Channel 4 to Channel 1: ‘0’ means input  
and '1' means output. The SB2C[3:0] bits in GREG11 and the SB3C[3:0]  
bits in GREG12 respectively determine the SB2 and SB3 directions of  
Channel 4 to Channel 1 in the same way.  
If the SB1, SB2 or SB3 pin is selected as input, its information can be  
read from both global and local registers. The SB1[3:0], SB2[3:0] and  
SB3[3:0] bits in global registers GREG10, GREG11 and GREG12  
respectively contain the information of SB1, SB2 and SB3 for all four  
An interrupt mechanism is provided in the IDT82V1054A for reading  
the SLIC input state. Each change of the SLIC input state will generate  
an interrupt.  
Any of the SLIC inputs including SI1, SI2, SB1, SB2 and SB3 (if SB1-  
SB3 are configured as inputs) can be an interrupt source. As SI1 and  
SI2 signals are debounced while the SB1 to SB3 signals are not, users  
should pay more attention to the interrupt sources of SB1 to SB3.  
Local register LREG2 is used to enable/disable the interrupts. Each  
bit of IE[4:0] in LREG2 corresponds to one interrupt source of the  
12  
IDT82V1054A QUAD PROGRAMMABLE PCM CODEC WITH MPI INTERFACE  
INDUSTRIAL TEMPERATURE  
specified channel. When one bit of IE[4:0] is ‘0’, the corresponding  
interrupt is ignored (disabled), otherwise, the corresponding interrupt is  
recognized (enabled).  
initially clocked at half of the frame sync rate (250 µs). Any data  
changing at this sample rate resets a counter that clocks at the rate of 2  
ms. The value of the counter is programmable from 0 to 30 via LREG3.  
The debounced SI1 signals of Channel 4 to 1 are written to the SIA[3:0]  
bits in GREG9. The corresponding SIA bit will not be updated until the  
value of the counter is reached. The SI1 pin usually contains the SLIC  
switch hook status.  
The GK[3:0] bits in LREG3 are used to program the debounce  
interval of the SI2 input of the corresponding channel. The debounced  
SI2 signals of Channel 4 to 1 are written to the SIB[3:0] bits in GREG9.  
The GK debounce filter consists of a six-state up/down counter that  
ranges between 0 and 6. This counter is clocked by the GK timer at the  
sampling period of 0-30 ms, which is programmed via LREG3. If the  
sampled value is low, the value of the counter will be decremented by  
each clock pulse. If the sampled value is high, the value of the counter is  
incremented by each clock pulse. When the value increases to 6, it sets  
a latch whose output is routed to the corresponding SIB bit. If the value  
decreases to 0, the latch will be cleared and the output bit will be set to  
0. In other cases, the latch and the SIB status remain in their previous  
state without being changed. In this way, at least six consecutive GK  
clocks with the debounce input remaining at the same state can effect  
an output change.  
Multiple interrupt sources can be enabled at the same time. All  
interrupts can be cleared simultaneously by executing a write operation  
to global register GREG2. Additionally, the interrupts caused by all four  
channels’ SI1 and SI2 status changes can be cleared by applying a read  
operation to GREG9. If SB1, SB2 and SB3 pins are configured as  
inputs, a read operation to GREG10, GREG11 and GREG12 clears the  
interrupt generated by the corresponding SB port of all four channels. A  
read operation to LREG4 clears all 7 interrupt sources of the specified  
channel.  
2.6  
DEBOUNCE FILTERS  
For each channel, the IDT82V1054A provides two debounce filter  
circuits: Debounced Switch Hook (DSH) Filter for the SI1 signal and  
Ground Key (GK) Filter for the SI2 signal. See Figure - 5 for details. The  
two debounce filters are used to buffer the input signals on SI1 and SI2  
pins before changing the state of the SLIC Debounced Input SI1/SI2  
Register (GREG9). The Frame Sync (FS) signal is necessary for both  
DSH and GK filters.  
The DSH[3:0] bits in LREG3 are used to program the debounce  
period of the SI1 input of the corresponding channel. The DSH filter is  
SI1  
D
Q
D
Q
D
Q
D
E
Q
SIA  
DSH[3:0]  
Debounce  
Period  
D
Q
(0-30 ms)  
FS/2  
4 kHz  
7 bit Debounce  
Counter  
RST  
SI2  
= 0  
SIB  
up/  
down  
0  
GK[3:0]  
Debounce  
Interval  
Q
D
Q
(0-30 ms)  
GK  
6 states  
Up/down  
Counter  
7 bit Debounce  
Counter  
Figure - 5 Debounce Filter  
and tone generator 1) for each channel. They can produce signals such  
as test tone, DTMF, dial tone, busy tone, congestion tone and Caller-ID  
Alerting Tone, and output it to the VOUT pin.  
The dual tone generators of each channel can be enabled by setting  
the TEN0 and TEN1 bits in LREG10 to ‘1’respectively.  
The frequency and amplitude of the tone signal are programmed by  
the Coe-RAM. The frequency and amplitude coefficients are calculated  
by the following formulas:  
2.7  
CHOPPER CLOCK  
The IDT82V1054A provides two programmable chopper clock  
outputs CHCLK1 and CHCLK2. They can be used to drive the power  
supply switching regulators on SLICs. The two chopper clocks are  
synchronous to MCLK. The CHCLK1 outputs a signal which clock cycle  
is programmable from 2 to 28 ms. The CHCLK2 outputs a signal which  
frequency can be 256 kHz, 512 kHz or 16.384 MHz. The frequencies of  
the two chopper clocks are programmed by global register GREG5.  
Frequency coefficient = 32767cos(f / 8000 ∗ 2 ∗ π)  
Amplitude coefficient = A 32767 sin(f / 8000 ∗ 2 ∗ π)  
Herein, 'f' is the desired frequency of the tone signal, 'A' is the scaling  
parameter of the amplitude. The range of 'A' is from 0 to 1.  
A = 1, corresponds to the maximum amplitude of 1.57 V.  
2.8  
DUAL TONE AND RING GENERATION  
The IDT82V1054A provides two tone generators (tone generator 0  
13  
 
IDT82V1054A QUAD PROGRAMMABLE PCM CODEC WITH MPI INTERFACE  
INDUSTRIAL TEMPERATURE  
A = 0, corresponds to the minimum amplitude of 0 V.  
It is a linear relationship between 'A' and the amplitude. That is, if  
A=β ( 0<β<1), the amplitude will be 1.57 ∗ β (V).  
The frequency range is from 25 Hz to 3400 Hz. The frequency  
tolerances are as the following:  
the L/C bit is ‘1’, it means that metering mode is selected. In this mode,  
the linear PCM data will be sent to the level meter and the metering  
result will be output to GREG18 and GREG19. With this result, the  
signal level can be calculated.  
For A-law compressed PCM code or linear PCM code, the signal  
level can be calculated by the following formula:  
25 Hz < f < 40 Hz, tolerance < ±12%  
LM  
× 25 × π  
× 2 × 8192  
40 Hz < f < 60 Hz, tolerance < ±5%  
60 Hz < f < 100 Hz, tolerance < ±2.5%  
100 Hz < f < 3400 Hz, tolerance < ±1%  
Result  
--------------------------------------------------------------  
A(dbm0) = 20 × log  
+ 3.14  
LM  
Countnumber  
The frequency and amplitude coefficients should be converted to  
corresponding hexadecimal values before being written to the Coe-  
RAM. Refer to “9 Appendix: IDT82V1054A Coe-RAM Mapping” for the  
address of the tone coefficients.  
The ring signal is a special signal generated by the dual tone  
generators. When only one tone generator is enabled, or dual tone  
generators produce the same tone signal and frequency of the tone  
meets the ring signal requirement (10 Hz to 100 Hz), a ring signal will be  
generated and output to the VOUT pin.  
For µ-law compressed PCM code, the signal level can be calculated  
by the following formula:  
LM  
× 25 × π  
× 2 × 8192  
Result  
--------------------------------------------------------------  
A(dbm0) = 20 × log  
+ 3.17  
LM  
Countnumber  
LM  
:
the value in the level meter result registers (GREG18  
Result  
& GREG19);  
LM  
:the count number of the level meter (set in GREG20).  
Countnumber  
If the L/C bit is ‘0’, it means that message mode is selected. In this  
mode, the compressed PCM data will be output to GREG19  
transparently without metering.  
2.9  
LEVEL METERING  
The IDT82V1054A integrates a level meter which is shared by all 4  
channels. The level meter is designed to emulate the off-chip PCM test  
equipment so as to facilitate the line-card, subscriber line and users  
telephone set monitoring. The level meter tests the return signal and  
reports the measurement result via the MPI interface. When combined  
with tone generation and loopbacks, it allows the microprocessor to test  
the channel integrity. The signal on the channel selected by the CS[1:0]  
bits in GREG21 will be metered.  
The level meter is enabled by setting the LMO bit in GREG21 to ‘1’. A  
level meter counter register (GREG20) is used to set the value of time  
cycles for sampling the PCM data (8 kHz sampling rate). The output of  
level meter is sent to the level meter result registers GREG18 and  
GREG19. The LVLL[7:0] bits in GREG18 contain the lower 7 bits of the  
result and a data-ready bit (LVLL[0]), while the LVLH[7:0] bits in  
GREG19 contain the higher 8 bits of the result. An internal accumulator  
sums the rectified samples until the value set in GREG20 is reached. By  
then, the LVLL[0] bit is set to ‘1’ and accumulation result is latched into  
GREG18 and GREG19 simultaneously.  
Refer to the Application Note for further details on the level meter.  
2.10 CHANNEL POWER DOWN/STANDBY MODE  
Each individual channel of the IDT82V1054A can be powered down  
independently by setting the PD bit in LREG9 to ‘1’. If one channel is  
powered down and enters the standby mode, the PCM data transfer and  
the D/A, A/D converters of this channel will be disabled. In this way, the  
power consumption of the device can be reduced.  
When the IDT82V1054A is powered up or reset, all four channels will  
be powered down. All circuits that contain programmed information  
retain their data after power down. The microprocessor interface is  
always active so that new commands can be received and executed.  
2.11 POWER DOWN/SUSPEND MODE  
A suspend mode is provided for the whole chip to save power. The  
suspend mode saves much more power consumption than the standby  
mode. In this mode, the PLL block is turned off and the DSP operation is  
disabled. Only global and local commands can be executed, the RAM  
operation is disabled as the internal clock has been turned off. The PLL  
block is powered down by setting the PPD bit in GREG22 to ‘1’. Once  
the PLL and all four channels are powered down, the IDT82V1054A will  
enter the suspend mode.  
Once the higher byte of result (GREG19) is read, the LVLL[0] bit in  
GREG18 will be reset. It will be set to ‘1’ again by a new data available.  
The contents of GREG18 and GREG19 will be overwritten by the  
following metering result if they have not been read out yet. To read the  
level meter result registers, it is recommended to read GREG18 (lower  
byte of result) first.  
The L/C bit in GREG21 determines the level meter operation mode. If  
14  
IDT82V1054A QUAD PROGRAMMABLE PCM CODEC WITH MPI INTERFACE  
INDUSTRIAL TEMPERATURE  
registers to be addressed automatically, with the highest order first. For  
example, if the address specified in a Local Command ends with ‘11’  
(b1b0 = 11), 4 adjacent registers will be addressed by this command; if  
b1b0 = 10, 3 adjacent registers will be addressed. See Table - 1 for  
details.  
3
OPERATING THE IDT82V1054A  
3.1  
PROGRAMMING DESCRIPTION  
The IDT82V1054A is programmed by writing commands to registers  
and coefficient RAM. A Channel Program Enable register (GREG6) is  
provided for addressing individual or multiple channels. The CE[3:0] bits  
in this register are assigned to Channel 4 to Channel 1 respectively. The  
channels are enabled to be programmed by setting their respective CE  
bits to ‘1’. If two or more channels are enabled, the successive write  
commands will be effective to all enabled channels. A broadcast mode  
can be implemented by simply enabling all four channels before  
performing other write-operation. The broadcast mode is very useful for  
configuring the coefficient RAM of the IDT82V1054A in a large system.  
But for read operations, multiple addressing is not allowed.  
Table - 1 Consecutive Adjacent Addressing  
Address Specified in a Local In/Out Data  
Address of the Local  
Command  
Bytes  
Registers to be accessed  
byte 1  
byte 2  
byte 3  
byte 4  
byte 1  
byte 2  
byte 3  
byte 1  
XXX11  
XXX10  
XXX01  
XXX00  
XXX10  
XXX01  
XXX00  
XXX01  
b[4:0] = XXX11  
(b1b0 = 11, four bytes of data)  
b[4:0] = XXX10  
(b1b0 = 10, three bytes of data)  
The IDT82V1054A uses an Identification Code to distinguish itself  
from other devices in the system. When being read, the IDT82V1054A  
will output an Identification Code of 81H first to indicate that the following  
data bytes are from the IDT82V1054A.  
b[4:0] = XXX01  
(b1b0 = 01, two bytes of data)  
byte 2  
XXX00  
b[4:0] = XXX00  
(b1b0 = 00, one byte of data)  
byte 1  
XXX00  
3.1.1  
COMMAND TYPE AND FORMAT  
The IDT82V1054A provides three types of commands as follows:  
Local Command (LC), which is used to address the local registers of  
the specified channel(s).  
Global Command (GC), which is used to address the global registers  
of all four channels.  
When addressing local registers, the procedure of consecutive  
adjacent addressing can be stopped by the CS signal at any time. If CS  
is changed from low to high, the operation to the current register and the  
next adjacent registers will be aborted. However, the previous operation  
results will not be affected.  
RAM Command (RC), which is used to address the coefficient RAM  
(Coe-RAM).  
3.1.3  
ADDRESSING THE GLOBAL REGISTERS  
The format of the command is as the following:  
For global registers are shared by all four channels, it is no need to  
specify the channel(s) before addressing a global register. Except for  
this, the global registers are addressed in a similar way as local  
registers. The procedure of consecutive adjacent addressing can be  
stopped by the CS signal at any time.  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
R/W  
CT  
Address  
R/W:  
Read/Write Command bit  
b7 = 0:  
b7 = 1:  
Read Command  
Write Command  
3.1.4  
ADDRESSING THE COE-RAM  
CT:  
Command Type  
There are totally 40 words of Coe-RAM. They are divided to 5  
blocks. Each block consists of 8 words. Each word is 14-bit wide.  
The 5 blocks of the Coe-RAM are assigned for different filter  
coefficients as shown below (refer to “9 Appendix: IDT82V1054A Coe-  
RAM Mapping” for the address of the Coe-RAM):  
b6 b5 = 00: LC - Local Command  
b6 b5 = 01: GC - Global Command  
b6 b5 = 10: Not Allowed  
b6 b5 = 11: RC - RAM Command  
Address: b[4:0], specify one or more local/global registers or a block  
of Coe-RAM to be addressed.  
Block 1: IMF RAM (Word 0 - Word 7), containing the Impedance  
Matching Filter coefficient.  
For Local Command and Global Command, the b[4:0] bits are used  
to specify the address of the local registers and global registers  
respectively.  
For RAM Command, b[4:0] bits are used to specify the block of the  
Coe-RAM.  
Block 2: ECF RAM (Word 8 - Word 15), containing the Echo  
Cancellation Filter coefficient.  
Block 3: GIS RAM (Word 16 - Word 19) and Tone Generator RAM  
(Word 20 - Word 23), containing the Gain of Impedance Scaling and  
dual tone coefficients.  
Block 4: FRX RAM (Word 24 - Word 30) and GTX RAM (Word 31),  
containing the coefficient of the Frequency Response Correction in  
Transmit Path and the Gain in Transmit Path;  
Block 5: FRR RAM (Word 32 - Word 38) and GRX RAM (Word 39),  
containing the coefficient of the Frequency Response Correction in  
Receive Path and the Gain in Receive Path.  
3.1.2  
ADDRESSING THE LOCAL REGISTERS  
When addressing the local registers, users must specify which  
channel(s) will be addressed first. If two or more channels are specified  
via GREG6, the corresponding local registers of the specified channels  
will be addressed by a Local Command at the same time.  
The Coe-RAM blocks used for containing the IMF, ECF, GIS, FRX,  
GTX, FRR and GRX coefficients are shared by all four channels. When  
coefficients are written to these blocks, they will be used by all four  
channels. But the four words (word 20 to 23), which contain the dual  
The IDT82V1054A provides a consecutive adjacent addressing  
method for accessing the local registers. According to the address  
specified in a Local Command, there will be 1 to 4 adjacent local  
15  
 
 
 
IDT82V1054A QUAD PROGRAMMABLE PCM CODEC WITH MPI INTERFACE  
INDUSTRIAL TEMPERATURE  
tone coefficients, can only be addressed on a per-channel basis.  
Therefore, users should specify a channel (by setting the corresponding  
CE bit in GREG6 to ‘1’) before writing/reading tone coefficients to/from  
the Coe-RAM.  
Coe-RAM to be accessed. When a Coe-RAM command is executed, the  
CODEC automatically counts down from the highest address to the  
lowest address of the specified block. So all 8 words of the block will be  
addressed by one Coe-RAM command.  
To write a Coe-RAM word, 16 bits (b[15:0]) or two 8-bit bytes are  
needed to fulfill with MSB first, but the lowest two bits (b[1:0]) will be  
ignored. When read, each word will output 16 bits with MSB first, but the  
lowest two bits (b[1:0]) are meaningless.  
When addressing the Coe-RAM, the procedure of consecutive  
adjacent addressing can be stopped by the CS signal at any time. If the  
CS signal is changed from low to high, the operation to the current word  
and the next adjacent words will be aborted. However, the previous  
operation results will not be affected.  
The address in a Coe-RAM command (b[4:0]) specifies a block of  
3.1.5  
PROGRAMMING EXAMPLES  
3.1.5.1 Example of Programming Local Registers  
• Writing to LREG2 and LREG1 of Channel 1:  
1010, 0101  
0001, 0010  
1000, 0001  
xxxx, xxxx  
xxxx, xxxx  
Channel Enable command  
Data for GREG6 (Channel 1 is enabled for programming)  
Local register write command (The address is '00001', which means that data will be written to LREG2 and LREG1.)  
Data for LREG2  
Data for LREG1  
• Reading from LREG2 and LREG1 of Channel 1:  
1010, 0101  
0001, 0010  
0000, 0001  
Channel Enable command  
Data for GREG6 (Channel 1 is enabled for programming)  
Local register read command (The address is '00001', which means that LREG2 and LREG1 will be read.)  
After the preceding commands are executed, data will be sent out as follows:  
1000, 0001  
xxxx, xxxx  
xxxx, xxxx  
Identification code  
Data read out from LREG2  
Data read out from LREG1  
3.1.5.2 Example of Programming Global Registers  
• Writing to GREG1:  
1010, 0000  
1111, 1111  
Global register write command (The address is '00000', which means that data will be written to GREG1.)  
Data for GREG1  
• Reading from GREG1:  
0010, 0000  
Global register read command (The address is '00000', which means that GREG1 will be read.)  
After the preceding command is executed, data will be sent out as follows:  
1000, 0001  
0000, 0001  
Identification code  
Data read out from GREG1  
3.1.5.3 Example of Programming the Coefficient-RAM  
As described in “3.1.4 Addressing the Coe-RAM”, the Coe-RAM blocks used for containing the IMF, ECF, GIS, FRX, GTX, FRR and GRX  
coefficients are shared by all four channels. When coefficients are written to these blocks, they will be used by all four channels. But the four words  
(word 20 to 23), which contain the tone coefficients, can only be addressed on a per-channel basis. Therefore, users should specify a channel before  
writing/reading tone coefficients to/from the Coe-RAM.  
• Writing to the Coe-RAM  
Examples for Coe-RAM blocks shared by all four channels:  
1110,0000  
data byte 1  
data byte 2  
data byte 3  
data byte 4  
data byte 5  
data byte 6  
data byte 7  
data byte 8  
data byte 9  
Coe-RAM write command (The address of '00000' is located in block 1, which means that data will be written to block 1.)  
high byte of word 8 of block 1  
low byte of word 8 of block 1  
high byte of word 7 of block 1  
low byte of word 7 of block 1  
high byte of word 6 of block 1  
low byte of word 6 of block 1  
high byte of word 5 of block 1  
low byte of word 5 of block 1  
high byte of word 4 of block 1  
data byte 10 low byte of word 4 of block 1  
data byte 11 high byte of word 3 of block 1  
data byte 12 low byte of word 3 of block 1  
data byte 13 high byte of word 2 of block 1  
16  
IDT82V1054A QUAD PROGRAMMABLE PCM CODEC WITH MPI INTERFACE  
INDUSTRIAL TEMPERATURE  
data byte 14 low byte of word 2 of block 1  
data byte 15 high byte of word 1 of block 1  
data byte 16 low byte of word 1 of block 1  
Examples for the Coe-RAM used for tone coefficients:  
1010,0101  
0001,0010  
1110,0010  
data byte 1  
data byte 2  
data byte 3  
data byte 4  
data byte 5  
data byte 6  
data byte 7  
data byte 8  
data byte 9  
Channel Enable command  
Data for GREG6 (Channel 1 is enabled for programming)  
Coe-RAM write command (The address of '00010' is located in block 3, which means that data will be written to block 3.)  
high byte of word 8 of block 3  
low byte of word 8 of block 3  
high byte of word 7 of block 3  
low byte of word 7 of block 3  
high byte of word 6 of block 3  
low byte of word 6 of block 3  
high byte of word 5 of block 3  
low byte of word 5 of block 3  
high byte of word 4 of block 3 (see Note 1)  
data byte 10 low byte of word 4 of block 3  
data byte 11 high byte of word 3 of block 3  
data byte 12 low byte of word 3 of block 3  
data byte 13 high byte of word 2 of block 3  
data byte 14 low byte of word 2 of block 3  
data byte 15 high byte of word 1 of block 3  
data byte 16 low byte of word 1 of block 3  
Note 1: In block 3 of the Coe-RAM, word 5 to word 8 are used for tone coefficients while word 1 to word 4 are used for GIS coefficients. If users do not want to change the GIS coefficient  
while writing tone coefficients to the Coe-RAM, they can stop the procedure of consecutive adjacent addressing (after writing data to word 5) by pulling the CS signal to high, or they can  
rewrite word 1 to word 4 with the original GIS coefficients.  
• Reading from the Coe-RAM  
Examples for Coe-RAM blocks shared by all four channels:  
0110,0000  
Coe-RAM read command (The address of '00000' is located in block 1, which means that block 1 will be read.)  
After the preceding command is executed, data will be sent out as follows:  
1000,0001  
data byte 1  
data byte 2  
data byte 3  
data byte 4  
data byte 5  
data byte 6  
data byte 7  
data byte 8  
data byte 9  
Identification code  
data read out from high byte of word 8 of block 1  
data read out from low byte of word 8 of block 1  
data read out from high byte of word 7 of block 1  
data read out from low byte of word 7 of block 1  
data read out from high byte of word 6 of block 1  
data read out from low byte of word 6 of block 1  
data read out from high byte of word 5 of block 1  
data read out from low byte of word 5 of block 1  
data read out from high byte of word 4 of block 1  
data byte 10 data read out from low byte of word 4 of block 1  
data byte 11 data read out from high byte of word 3 of block 1  
data byte 12 data read out from low byte of word 3 of block 1  
data byte 13 data read out from high byte of word 2 of block 1  
data byte 14 data read out from low byte of word 2 of block 1  
data byte 15 data read out from high byte of word 1 of block 1  
data byte 16 data read out from low byte of word 1 of block 1  
Examples for the Coe-RAM used for tone coefficients:  
1010,0011  
0001,0010  
0110,0010  
Channel Enable command  
Data for GREG6 (Channel 1 is enabled for programming)  
Coe-RAM read command (The address of '00010' is located in block 3, which means that block 3 will be read.)  
After the preceding commands are executed, data will be sent out as follows:  
1000,0001  
data byte 1  
data byte 2  
data byte 3  
Identification code  
data read out from high byte of word 8 of block 3  
data read out from low byte of word 8 of block 3  
data read out from high byte of word 7 of block 3  
17  
IDT82V1054A QUAD PROGRAMMABLE PCM CODEC WITH MPI INTERFACE  
INDUSTRIAL TEMPERATURE  
data byte 4  
data byte 5  
data byte 6  
data byte 7  
data byte 8  
data byte 9  
data read out from low byte of word 7 of block 3  
data read out from high byte of word 6 of block 3  
data read out from low byte of word 6 of block 3  
data read out from high byte of word 5 of block 3  
data read out from low byte of word 5 of block 3  
data read out from high byte of word 4 of block 3  
data byte 10 data read out from low byte of word 4 of block 3  
data byte 11 data read out from high byte of word 3 of block 3  
data byte 12 data read out from low byte of word 3 of block 3  
data byte 13 data read out from high byte of word 2 of block 3  
data byte 14 data read out from low byte of word 2 of block 3  
data byte 15 data read out from high byte of word 1 of block 3  
data byte 16 data read out from low byte of word 1 of block 3  
18  
IDT82V1054A QUAD PROGRAMMABLE PCM CODEC WITH MPI INTERFACE  
INDUSTRIAL TEMPERATURE  
4. The master clock frequency is 2.048 MHz.  
3.2  
POWER-ON SEQUENCE  
5. Transmit and receive time slots are set to be 0-3 respectively for  
Channel 1-4. The PCM data rate is as same as the BCLK frequency.  
The PCM data is transmitted on rising edges of the BCLK signal and  
received on falling edges of it.  
To power on the IDT82V1054A, users should follow the sequence  
below:  
1. Apply ground first;  
2. Apply VCC, finish signal connections and set the RESET pin to logic  
low. The device then goes into the default state;  
3. Set the RESET pin to logic high;  
6. A-Law is selected.  
7. The digital filters including GRX, FRR, GTX, FRX, GIS, ECF and IMF  
are disabled. The high-pass filters (HPF) are enabled. Refer to  
Figure - 4 and descriptions on LREG1 for details.  
8. The SB1, SB2 and SB3 pins are configured as inputs.  
9. The SI1 and SI2 pins are configured as no debounce.  
10.All interrupts are disabled and all pending interrupts are cleared.  
11.All feature function blocks including dual tone generators, hardware  
ring trip and level meter are disabled.  
4. Select master clock frequency;  
5. Program filter coefficients and other parameters as required;  
3.3  
DEFAULT STATE AFTER RESET  
When the IDT82V1054A is powered on, or reset either by command  
or by setting the RESET pin to logic low for at least 50 µs, the device will  
enter the default state as follows:  
12.The outputs of CHCLK1 and CHCLK2 are set to high.  
1. All four channels are powered down and in standby mode.  
2. All loopbacks and cutoff are disabled.  
3. The DX1 pin is selected for all channels to transmit data and the DR1  
pin is selected for all channels to receive data.  
The data stored in the RAM will not be changed by any kind of reset  
operations. So the RAM data will not be lost unless the device is  
powered down physically.  
19  
 
IDT82V1054A QUAD PROGRAMMABLE PCM CODEC WITH MPI INTERFACE  
INDUSTRIAL TEMPERATURE  
3.4  
REGISTERS DESCRIPTION  
3.4.1  
REGISTERS OVERVIEW  
Table - 2 Global Registers (GREG) Mapping  
Register Byte  
b4 b3  
Read  
Write  
Default  
Name  
Function  
Command Command Value  
b7  
b6  
b5  
b2  
b1  
b0  
Version number (read)/  
no operation (write)  
GREG1  
20H  
A0H  
01H  
GREG2 Interrupt clear  
GREG3 Software reset  
GREG4 Hardware reset  
A1H  
A2H  
A3H  
Chopper clock  
GREG5  
Reserved  
CHclk2[1] CHclk2[0] CHclk1[3] CHclk1[2] CHclk1[1] CHclk1[0]  
24H  
A4H  
A5H  
00H  
selection  
MCLK selection and  
GREG6 channel program  
enable  
CE[3]  
A-µ  
CE[2]  
VDS  
CE[1]  
CS[2]  
CE[0]  
CS[1]  
Sel[3]  
CS[0]  
Sel[2]  
OC[2]  
Sel[1]  
OC[1]  
Sel[0]  
OC[0]  
25H  
02H  
Data format,  
companding law, clock  
slope and PCM delay  
GREG7  
26H  
A6H  
00H  
time selection  
SLIC ring trip setting  
and control  
Debounced data on  
SI1 and SI2 pins  
SB1 direction control  
and SB1 data  
SB2 direction control  
and SB2 data  
GREG8  
OPI  
Reserved  
SIB[2]  
IPI  
IS  
RTE  
OS[2]  
SIA[2]  
SB1[2]  
SB2[2]  
SB3[2]  
OS[1]  
SIA[1]  
SB1[1]  
SB2[1]  
SB3[1]  
OS[0]  
SIA[0]  
SB1[0]  
SB2[0]  
SB3[0]  
27H  
28H  
29H  
2AH  
2BH  
A7H  
00H  
00H  
00H  
00H  
00H  
GREG9  
SIB[3]  
SIB[1]  
SIB[0]  
SIA[3]  
SB1[3]  
SB2[3]  
SB3[3]  
GREG10  
SB1C[3] SB1C[2] SB1C[1] SB1C[0]  
SB2C[3] SB2C[2] SB2C[1] SB2C[0]  
SB3C[3] SB3C[2] SB3C[1] SB3C[0]  
A9H  
AAH  
ABH  
GREG11  
SB3 direction control  
and SB3 data  
GREG12  
GREG13 Reserved for future use  
GREG14 Reserved for future use  
GREG15 Reserved for future use  
GREG16 Reserved for future use  
GREG17 Reserved for future use  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Level meter result low  
byte  
Level meter result high  
byte  
Level meter count  
number  
GREG18  
LVLL[7]  
LVLL[6]  
LVLL[5]  
LVLL[4]  
LVLL[3]  
LVLL[2]  
LVLL[1]  
LVLL[0]  
31H  
32H  
33H  
00H  
00H  
00H  
GREG19  
LVLH[7] LVLH[6] LVLH[5] LVLH[4] LVLH[3] LVLH[2] LVLH[1] LVLH[0]  
GREG20  
CN[7]  
CN[6]  
CN[5]  
CN[4]  
CN[3]  
LMO  
CN[2]  
L/C  
CN[1]  
CS[1]  
CN[0]  
CS[0]  
B3H  
level meter mode and  
GREG21 channel selection, level  
meter enable  
Reserved  
34H  
35H  
B4H  
B5H  
00H  
00H  
Loopback control and  
PLL power down  
GREG22  
Reserved  
PPD  
DLB_ANA ALB_8k DLB_8k DLB_DI ALB_DI  
20  
IDT82V1054A QUAD PROGRAMMABLE PCM CODEC WITH MPI INTERFACE  
INDUSTRIAL TEMPERATURE  
Table - 3 Local Registers (LREG) Mapping  
Register Byte  
Read  
Comman Comman  
Write  
Default  
Value  
Name  
Function  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
d
d
LREG1 Coefficient selection  
CS[7]  
CS[6]  
CS[5]  
CS[4]  
CS[3]  
CS[2]  
CS[1]  
CS[0]  
00H  
80H  
08H  
00H  
Local loopbacks  
LREG2 control and SLIC input  
interrupt enable  
IE[4]  
IE[3]  
IE[2]  
IE[1]  
IE[0]  
DLB_PCM ALB_1BIT DLB_1BIT  
01H  
81H  
DSH and GK  
LREG3 debounce filters  
configuration  
GK[3]  
GK[2]  
SO2  
GK[1]  
SO1  
GK[0]  
SB3  
DSH[3]  
SB2  
DSH[2]  
SB1  
DSH[1]  
SI2  
DSH[0]  
SI1  
02H  
03H  
82H  
83H  
00H  
SLIC IO status/control  
LREG4  
Reserved  
data  
00H for CH1  
01H for CH2  
02H for CH3  
03H for CH4  
00H for CH1  
01H for CH2  
02H for CH3  
03H for CH4  
Transmit highway and  
LREG5  
THS  
TT[6]  
TT[5]  
TT[4]  
TT[3]  
TT[2]  
TT[1]  
TT[0]  
RT[0]  
04H  
05H  
84H  
85H  
time slot selection  
Receive highway and  
LREG6  
RHS  
RT[6]  
RT[5]  
RT[4]  
RT[3]  
RT[2]  
RT[1]  
time slot selection  
LREG7 PCM data low byte  
LREG8 PCM data high byte  
PCM[7]  
PCM[6]  
PCM[5]  
PCM[4]  
PCM[3]  
PCM[2]  
PCM[1]  
PCM[0]  
PCM[8]  
06H  
07H  
00H  
00H  
PCM[15] PCM[14] PCM[13] PCM[12] PCM[11] PCM[10] PCM[9]  
Channel power down,  
LREG9 A/D and D/A gains,  
PCM cutoff  
PD  
PCMCT  
GAD  
GDA  
0
0
0
0
08H  
09H  
88H  
89H  
80H  
00H  
Tone generator  
enable and tone  
0
LREG1  
Reserved  
TPROG1 TPROG0  
TEN1  
TEN0  
program enable  
21  
IDT82V1054A QUAD PROGRAMMABLE PCM CODEC WITH MPI INTERFACE  
INDUSTRIAL TEMPERATURE  
For the global and local registers described below, it should be noted that:  
1. R/W = 0, Read command. R/W = 1, Write command.  
2. The reserved bit(s) in the registers must be filled in ‘0’ in write operation and be ignored in read operation.  
3.4.2  
GLOBAL REGISTERS LIST  
GREG1: No Operation, Write (A0H); Version Number, Read (20H)  
b7  
b6  
0
b5  
1
b4  
0
b3  
0
b2  
0
b1  
0
b0  
0
Command  
R/W  
By applying a read operation (20H) to this register, users can read out the version number of the IDT82V1054A. The default value is 01H.  
To write to this register (no operation), a data byte of FFH must follow the write command (A0H) to ensure proper operation.  
GREG2: Interrupt Clear, Write Only (A1H)  
b7  
1
b6  
0
b5  
1
b4  
0
b3  
0
b2  
0
b1  
0
b0  
1
Command  
All interrupts on SLIC I/O will be cleared by applying a write operation to this register. Note that a data byte of FFH must follow the write  
command (A1H) to ensure proper operation.  
GREG3: Software Reset, Write Only (A2H)  
b7  
1
b6  
0
b5  
1
b4  
0
b3  
0
b2  
0
b1  
1
b0  
0
Command  
A write operation to this register resets all local registers, but does not reset global registers and the Coe-RAM. Note that when writing to  
this register, a data byte of FFH must follow the write command (A2H) to ensure proper operation.  
GREG4: Hardware Reset, Write Only (A3)  
b7  
1
b6  
0
b5  
1
b4  
0
b3  
0
b2  
0
b1  
1
b0  
1
Command  
A write operation to this register is equivalent to setting the RESET pin to logic low (Refer to “3.3 Default State After Reset” on page 19  
for details). Note that when applying this write command, a data byte of FFH must follow to ensure proper operation.  
GREG5: Chopper Clock Selection, Read/Write (24H/A4H)  
b7  
b6  
0
b5  
1
b4  
0
b3  
0
b2  
1
b1  
0
b0  
0
Command  
I/O data  
R/W  
Reserved  
Chclk2[1]  
Chclk2[0]  
Chclk1[3]  
Chclk1[2]  
Chclk1[1]  
Chclk1[0]  
This register is used to select the frequency of the CHclk2 and CHclk1 output signals.  
CHclk2[1:0] = 00:  
CHclk2[1:0] = 01:  
CHclk2[1:0] = 10:  
CHclk2[1:0] = 11:  
the output of chclk2 is set to high permanently (default);  
chclk2 outputs a digital signal with the frequency of 512 kHz;  
chclk2 outputs a digital signal with the frequency of 256 kHz;  
chclk2 outputs a digital signal with the frequency of 16384 kHz;  
CHclk1[3:0] = 0000:  
CHclk1[3:0] = 0001:  
CHclk1[3:0] = 0010:  
CHclk1[3:0] = 0011:  
CHclk1[3:0] = 0100:  
CHclk1[3:0] = 0101:  
CHclk1[3:0] = 0110:  
CHclk1[3:0] = 0111:  
CHclk1[3:0] = 1000:  
the output of chclk1 is set to high permanently (default);  
chclk1 outputs a digital signal with the frequency of 1000/2 Hz;  
chclk1 outputs a digital signal with the frequency of 1000/4 Hz;  
chclk1 outputs a digital signal with the frequency of 1000/6 Hz;  
chclk1 outputs a digital signal with the frequency of 1000/8 Hz;  
chclk1 outputs a digital signal with the frequency of 1000/10 Hz;  
chclk1 outputs a digital signal with the frequency of 1000/12 Hz;  
chclk1 outputs a digital signal with the frequency of 1000/14 Hz;  
chclk1 outputs a digital signal with the frequency of 1000/16 Hz;  
22  
IDT82V1054A QUAD PROGRAMMABLE PCM CODEC WITH MPI INTERFACE  
INDUSTRIAL TEMPERATURE  
CHclk1[3:0] = 1001:  
CHclk1[3:0] = 1010:  
CHclk1[3:0] = 1011:  
CHclk1[3:0] = 1100:  
CHclk1[3:0] = 1101:  
CHclk1[3:0] = 1110:  
CHclk1[3:0] = 1111:  
chclk1 outputs a digital signal with the frequency of 1000/18 Hz;  
chclk1 outputs a digital signal with the frequency of 1000/20 Hz;  
chclk1 outputs a digital signal with the frequency of 1000/22 Hz;  
chclk1 outputs a digital signal with the frequency of 1000/24 Hz;  
chclk1 outputs a digital signal with the frequency of 1000/26 Hz;  
chclk1 outputs a digital signal with the frequency of 1000/28 Hz;  
the output of chclk1 is set to low permanently.  
GREG6: MCLK Selection and Channel Program Enable, Read/Write (25H/A5H)  
b7  
b6  
0
b5  
1
b4  
0
b3  
0
b2  
1
b1  
0
b0  
1
Command  
I/O data  
R/W  
CE[3]  
CE[2]  
CE[1]  
CE[0]  
Sel[3]  
Sel[2]  
Sel[1]  
Sel[0]  
The higher 4 bits (CE[3:0]) in this register are used to specify the desired channel(s) before addressing local registers or Coe-RAM used  
for tone coefficients. The CE[0] to CE[3] bits indicate the program enable state for Channel 1 to Channel 4 respectively.  
CE[0] = 0:  
CE[0] = 1:  
CE[1] = 0:  
CE[1] = 1:  
CE[2] = 0:  
CE[2] = 1:  
CE[3] = 0:  
CE[3] = 1:  
Disabled, Channel 1 can not receive programming commands (default);  
Enabled, Channel 1 can receive programming commands;  
Disabled, Channel 2 can not receive programming commands (default);  
Enabled, Channel 2 can receive programming commands;  
Disabled, Channel 3 can not receive programming commands (default);  
Enabled, Channel 3 can receive programming commands;  
Disabled, Channel 4 can not receive programming commands (default);  
Enabled, Channel 4 can receive programming commands.  
The lower 4 bits (Sel[3:0]) in this register are used to select the Master Clock frequency.  
Sel[3:0] = 0000:  
Sel[3:0] = 0001:  
Sel[3:0] = 0010:  
Sel[3:0] = 0110:  
Sel[3:0] = 1110:  
Sel[3:0] = 0101:  
Sel[3:0] = 1101:  
Sel[3:0] = 0100:  
Sel[3:0] = 1100:  
8.192 MHz  
4.096 MHz  
2.048 MHz (default)  
1.536 MHz  
1.544 MHz  
3.072 MHz  
3.088 MHz  
6.144 MHz  
6.176 MHz  
GREG7: A/µ-law, Linear/Compressed Code, Clock Slope and Delay Time Selection, Read/Write (26H/A6H)  
b7  
b6  
0
b5  
1
b4  
0
b3  
0
b2  
1
b1  
1
b0  
0
Command  
I/O data  
R/W  
A-µ  
VDS  
CS[2]  
CS[1]  
CS[0]  
OC[2]  
OC[1]  
OC[0]  
The A/µ-law select bit (A-µ) selects the companding law:  
A-µ = 0:  
A-µ = 1:  
A-law is selected (default)  
µ-law is selected.  
The Voice Data Select bit (VDS) defines the format of the voice data:  
VDS = 0:  
VDS = 1:  
Compressed code (default)  
Linear code  
The Clock Slope bits (CS[2:0]) select single or double clock and clock edges of transmitting and receiving data.  
CS[2] = 0:  
CS[2] = 1:  
Single clock (default)  
Double clock  
CS[1:0] = 00:  
CS[1:0] = 01:  
CS[1:0] = 10:  
CS[1:0] = 11:  
transmits data on rising edges of BCLK, receives data on falling edges of BCLK (default).  
transmits data on rising edges of BCLK, receives data on rising edges of BCLK.  
transmits data on falling edges of BCLK, receives data on falling edges of BCLK.  
transmits data on falling edges of BCLK, receives data on rising edges of BCLK.  
23  
IDT82V1054A QUAD PROGRAMMABLE PCM CODEC WITH MPI INTERFACE  
INDUSTRIAL TEMPERATURE  
The PCM data Offset Configuration bits (OC[2:0]) determine that the transmit and receive time slots of PCM data offset from the FS  
signal by how many periods of BCLK:  
OC[2:0] = 000:  
OC[2:0] = 001:  
OC[2:0] = 010:  
OC[2:0] = 011:  
OC[2:0] = 100:  
OC[2:0] = 101:  
OC[2:0] = 110:  
OC[2:0] = 111:  
0 period of BCLK (default);  
1 period of BCLK;  
2 periods of BCLK;  
3 periods of BCLK;  
4 periods of BCLK;  
5 periods of BCLK;  
6 periods of BCLK;  
7 periods of BCLK.  
GREG8: SLIC Ring Trip Setting and Control, Read/Write (27H/A7H)  
b7  
b6  
0
b5  
1
b4  
0
b3  
0
b2  
1
b1  
1
b0  
1
Command  
I/O data  
R/W  
OPI  
Reserved  
IPI  
IS  
RTE  
OS[2]  
OS[1]  
OS[0]  
The Output Polarity Indicator bit (OPI) indicates the valid polarity of output:  
OPI = 0:  
OPI = 1:  
the selected output pin changes from high to low to activate the ring (default);  
the selected output pin changes from low to high to activate the ring.  
The Input Polarity Indicator bit (IPI) indicates the valid polarity of input:  
IPI = 0:  
IPI = 1:  
active low (default);  
active high.  
The Input Selection bit (IS) determines which input will be selected as the off-hook indication signal source.  
IS = 0:  
IS = 1:  
SI1 is selected (default);  
SI2 is selected.  
The Ring Trip Enable bit (RTE) enables or disables the ring trip function block:  
RTE = 0:  
RTE = 1:  
the ring trip function block is disabled (default);  
the ring trip function block is enabled.  
The Output Selection bits (OS[2:0]) determine which output will be selected as the ring control signal source.  
OS[2:0] = 000 - 010:  
OS[2:0] = 011:  
OS[2:0] = 100:  
OS[2:0] = 101:  
OS[2:0] = 110:  
OS[2:0] = 111:  
not defined;  
SB1 is selected (when SB1 is configured as an output);  
SB2 is selected (when SB2 is configured as an output);  
SB3 is selected (when SB3 is configured as an output);  
SO1 is selected;  
SO2 is selected.  
GREG9: SI Data, Read Only (28H)  
b7  
b6  
0
b5  
1
b4  
0
b3  
1
b2  
0
b1  
0
b0  
0
Command  
I/O data  
0
SIB[3]  
SIB[2]  
SIB[1]  
SIB[0]  
SIA[3]  
SIA[2]  
SIA[1]  
SIA[0]  
The SIA[3:0] bits contain the debounced data (off-hook status) on the SI1 pins of Channel 4 to Channel 1 respectively.  
The SIB[3:0] bits contain the debounced data (ground key status) on the SI2 pins of Channel 4 to Channel 1 respectively.  
24  
IDT82V1054A QUAD PROGRAMMABLE PCM CODEC WITH MPI INTERFACE  
INDUSTRIAL TEMPERATURE  
GREG10: SB1 Direction Control and SB1 Status/Control Data, Read/Write (29H/A9H)  
b7  
b6  
0
b5  
1
b4  
0
b3  
1
b2  
0
b1  
0
b0  
1
Command  
I/O data  
R/W  
SB1C[3]  
SB1C[2]  
SB1C[1]  
SB1C[0]  
SB1[3]  
SB1[2]  
SB1[1]  
SB1[0]  
The SB1 direction control bits SB1C[3:0] in this register determine the directions of the SB1 pins of Channel 4 to Channel 1 respectively.  
SB1C[0] = 0:  
SB1C[0] = 1:  
SB1C[1] = 0:  
SB1C[1] = 1:  
SB1C[2] = 0:  
SB1C[2] = 1:  
SB1C[3] = 0:  
SB1C[3] = 1:  
the SB1 pin of Channel 1 is configured as input (default);  
the SB1 pin of Channel 1 is configured as output;  
the SB1 pin of Channel 2 is configured as input (default);  
the SB1 pin of Channel 2 is configured as output;  
the SB1 pin of Channel 3 is configured as input (default);  
the SB1 pin of Channel 3 is configured as output;  
the SB1 pin of Channel 4 is configured as input (default);  
the SB1 pin of Channel 4 is configured as output.  
When the SB1 pins of Channel 1 to Channel 4 are configured as inputs, the SB1[0] to SB1[3] bits contain the status of these four SB1  
pins respectively. When the SB1 pins of Channel 1 to Channel 4 are configured as outputs, the control data is written to these four SB1  
pins via the SB1[0] to SB1[3] bits respectively.  
GREG11: SB2 Direction Control and SB2 Status/Control Data, Read/Write (2AH/AAH)  
b7  
b6  
0
b5  
1
b4  
0
b3  
1
b2  
0
b1  
1
b0  
0
Command  
I/O data  
R/W  
SB2C[3]  
SB2C[2]  
SB2C[1]  
SB2C[0]  
SB2[3]  
SB2[2]  
SB2[1]  
SB2[0]  
The SB2 direction control bits SB2C[3:0] in this register determine the directions of the SB2 pins of Channel 4 to Channel 1 respectively.  
SB2C[0] = 0:  
SB2C[0] = 1:  
SB2C[1] = 0:  
SB2C[1] = 1:  
SB2C[2] = 0:  
SB2C[2] = 1:  
SB2C[3] = 0:  
SB2C[3] = 1:  
the SB2 pin of Channel 1 is configured as input (default);  
the SB2 pin of Channel 1 is configured as output;  
the SB2 pin of Channel 2 is configured as input (default);  
the SB2 pin of Channel 2 is configured as output;  
the SB2 pin of Channel 3 is configured as input (default);  
the SB2 pin of Channel 3 is configured as output;  
the SB2 pin of Channel 4 is configured as input (default);  
the SB2 pin of Channel 4 is configured as output.  
When the SB2 pins of Channel 1 to Channel 4 are configured as inputs, the SB2[0] to SB2[3] bits contain the status of these four SB2  
pins respectively. When the SB2 pins of Channel 1 to Channel 4 are configured as outputs, the control data is written to these four SB2  
pins via the SB2[0] to SB2[3] bits respectively.  
GREG12: SB3 Direction Control and SB3 Status/Control Data, Read/Write (2BH/ABH)  
b7  
b6  
0
b5  
1
b4  
0
b3  
1
b2  
0
b1  
1
b0  
1
Command  
I/O data  
R/W  
SB3C[3]  
SB3C[2]  
SB3C[1]  
SB3C[0]  
SB3[3]  
SB3[2]  
SB3[1]  
SB3[0]  
The SB3 direction control bits SB3C[3:0] in this register determine the directions of the SB3 pins of Channel 4 to Channel 1 respectively.  
SB3C[0] = 0:  
SB3C[0] = 1:  
SB3C[1] = 0:  
SB3C[1] = 1:  
SB3C[2] = 0:  
SB3C[2] = 1:  
SB3C[3] = 0:  
SB3C[3] = 1:  
the SB3 pin of Channel 1 is configured as input (default);  
the SB3 pin of Channel 1 is configured as output;  
the SB3 pin of Channel 2 is configured as input (default);  
the SB3 pin of Channel 2 is configured as output;  
the SB3 pin of Channel 3 is configured as input (default);  
the SB3 pin of Channel 3 is configured as output;  
the SB3 pin of Channel 4 is configured as input (default);  
the SB3 pin of Channel 4 is configured as output.  
When the SB3 pins of Channel 1 to Channel 4 are configured as inputs, the SB3[0] to SB3[3] bits contain the status of these four SB3  
25  
IDT82V1054A QUAD PROGRAMMABLE PCM CODEC WITH MPI INTERFACE  
INDUSTRIAL TEMPERATURE  
pins respectively. When the SB3 pins of Channel 1 to Channel 4 are configured as outputs, the control data is written to these four SB3  
pins via the SB3[0] to SB3[3] bits respectively.  
GREG13: Reserved for future use.  
GREG14: Reserved for future use.  
GREG15: Reserved for future use.  
GREG16: Reserved for future use.  
GREG17: Reserved for future use.  
GREG18: Level Meter Result Low Byte, Read Only (31H)  
b7  
0
b6  
0
b5  
1
b4  
1
b3  
0
b2  
0
b1  
0
b0  
1
Command  
I/O data  
LVLL[7]  
LVLL[6]  
LVLL[5]  
LVLL[4]  
LVLL[3]  
LVLL[2]  
LVLL[1]  
LVLL[0]  
This register contains the low byte of the level meter result. The default value is 00H.  
The LVLL[0] bit in this register will be set to ‘1’ when the level meter result (both high and low bytes) is ready, and it will be reset to ‘0’  
immediately after the high byte of result is read. To read the level meter result, it is recommended to the low byte first, then read the high  
byte (LVLH[7:0] in GREG19).  
GREG19: Level Meter Result High Byte, Read Only (32H)  
b7  
0
b6  
0
b5  
1
b4  
1
b3  
0
b2  
0
b1  
1
b0  
0
Command  
I/O data  
LVLH[7]  
LVLH[6]  
LVLH[5]  
LVLH[4]  
LVLH[3]  
LVLH[2]  
LVLH[1]  
LVLH[0]  
This register contains the high byte of the level meter result. The default value is 00H.  
GREG20: Level Meter Count Number, Read/Write (33H/B3H)  
b7  
b6  
0
b5  
1
b4  
1
b3  
0
b2  
0
b1  
1
b0  
1
Command  
I/O data  
R/W  
CN[7]  
CN[6]  
CN[5]  
CN[4]  
CN[3]  
CN[2]  
CN[1]  
CN[0]  
The CN[7:0] bits are used to set the number of time cycles for sampling the PCM data.  
CN[7:0] = 0 (d):  
CN[7:0] = N (d):  
the PCM data is output to the result registers GREG18 and GREG19 directly;  
the PCM data is sampled for N × 125 µs (N is from 1 to 255).  
GREG21: Level Meter Channel and Linear/Compressed Mode Selection, Level Meter On/Off, Read/Write (34H/B4H)  
b7  
b6  
0
b5  
1
b4  
1
b3  
0
b2  
1
b1  
0
b0  
0
Command  
I/O data  
R/W  
Reserved  
LMO  
L/C  
CS[1]  
CS[0]  
The Level Meter On/Off bit (LMO) enables/disables the level meter.  
LMO = 0:  
LMO = 1:  
The level meter is disabled (default);  
The level meter is enabled.  
The Linear/Compressed bit (L/C) determines the mode of level meter operation.  
L/C = 0:  
L/C = 1:  
Message mode is selected. The compressed PCM data will be output to GREG19 transparently (default).  
Metering mode is selected. The linear PCM data will be metered and the result will be output to the registers  
GREG18 and GREG19.  
26  
IDT82V1054A QUAD PROGRAMMABLE PCM CODEC WITH MPI INTERFACE  
INDUSTRIAL TEMPERATURE  
The Level Meter Channel Select bits (CS[1:0]) select a channel, data on which will be level metered.  
CS[1:0] = 00:  
CS[1:0] = 01:  
CS[1:0] = 10:  
CS[1:0] = 11:  
Channel 1 is selected (default);  
Channel 2 is selected;  
Channel 3 is selected;  
Channel 4 is selected.  
GREG22: Global Loopback Control and PLL Power Down, Read/Write (35H/B5H)  
b7  
b6  
0
b5  
1
b4  
1
b3  
0
b2  
1
b1  
0
b0  
1
Command  
I/O data  
R/W  
Reserved  
PPD  
DLB_ANA  
ALB_8k  
DLB_8k  
DLB_DI  
ALB_DI  
The PLL Power Down bit (PPD) controls the operation state of the PLL block.  
PPD = 0:  
PPD = 1:  
The PLL is disabled. The device is in normal operation state (default);  
The PLL is powered down. The device works in power-saving mode. All clocks stop running.  
The Loop Control bits determine the loopback status. Refer to Figure - 4 on page 11 for detailed information.  
DLB_ANA = 0:  
DLB_ANA = 1:  
The Digital Loopback via Analog Interface is disabled (default);  
The Digital Loopback via Analog Interface is enabled.  
ALB_8k = 0:  
ALB_8k = 1:  
The Analog Loopback via 8 kHz Interface is disabled (default);  
The Analog Loopback via 8 kHz Interface is enabled.  
DLB_8k = 0:  
DLB_8k = 1:  
The Digital Loopback via 8 kHz Interface is disabled (default);  
The Digital Loopback via 8 kHz Interface is enabled.  
DLB_DI = 0:  
DLB_DI = 1:  
The Digital Loopback from DR to DX is disabled (default);  
The Digital Loopback from DR to DX is enabled.  
ALB_DI = 0:  
ALB_DI = 1:  
The Analog Loopback from DX to DR is disabled (default);  
The Analog Loopback from DX to DR is enabled.  
27  
IDT82V1054A QUAD PROGRAMMABLE PCM CODEC WITH MPI INTERFACE  
3.4.3 LOCAL REGISTERS LIST  
LREG1: Coefficient Selection, Read/Write (00H/80H)  
INDUSTRIAL TEMPERATURE  
b7  
b6  
0
b5  
0
b4  
0
b3  
0
b2  
0
b1  
0
b0  
0
Command  
I/O data  
R/W  
CS[7]  
CS[6]  
CS[5]  
CS[4]  
CS[3]  
CS[2]  
CS[1]  
CS[0]  
The Coefficient Select bits (CS[7:0]) are used to control digital filters and function blocks on each channel. The digital filters include  
Impedance Matching Filter, Echo Cancellation Filter, High-Pass Filter, Gain for Impedance Scaling, Gain in the Transmit/Receive Path  
and Frequency Response Correction in the Transmit/Receive Path. See Figure - 4 on page 11 for details. It should be noted that the  
Impedance Matching Filter and Gain for Impedance Scaling are working together to adjust the impedance. So the CS[0] and CS[2] bits  
should be set to the same value to ensure proper operation.  
CS[7] = 0: The Digital Gain Filter in the Receive path (GRX) is disabled (default);  
CS[7] = 1: The Digital Gain in the Receive path (GRX) is programmed by the Coe-RAM.  
CS[6] = 0: The Frequency Response Correction filter in the Receive path (FRR) is disabled (default);  
CS[6] = 1: The coefficient of the Frequency Response Correction filter in the Receive path (FRR) is programmed by the Coe-RAM.  
CS[5] = 0: The Digital Gain Filter in the Transmit path (GTX) is disabled (default);  
CS[5] = 1: The Digital Gain in the Transmit path (GTX) is set by the Coe-RAM.  
CS[4] = 0: The Frequency Response Correction filter in the Transmit path (FRX) is disabled (default);  
CS[4] = 1: The coefficient of the Frequency Response Correction filter in the Transmit path (FRX) is programmed by the Coe-RAM.  
CS[3] = 0: The High-Pass Filter (HPF) is bypassed/disabled;  
CS[3] = 1: The High-Pass Filter (HPF) is enabled (default).  
CS[2] = 0: The Gain for Impedance Scaling filter (GIS) is disabled (default);  
CS[2] = 1: The coefficient of the Gain for Impedance Scaling filter (GIS) is programmed by the Coe-RAM.  
CS[1] = 0: The Echo Cancellation Filter (ECF) is disabled (default);  
CS[1] = 1: The coefficient of the Echo Cancellation Filter (ECF) is programmed by the Coe-RAM.  
CS[0] = 0: The Impedance Matching Filter (IMF) is disabled (default);  
CS[0] = 1: The coefficient of the Impedance Matching Filter (IMF) is programmed by the Coe-RAM.  
LREG2: Local Loopback Control and SLIC Input Interrupt Enable, Read/Write (01H/81H)  
b7  
b6  
0
b5  
0
b4  
0
b3  
0
b2  
0
b1  
0
b0  
1
Command  
I/O data  
R/W  
IE[4]  
IE[3]  
IE[2]  
IE[1]  
IE[0]  
DLB_PCM  
ALB_1BIT  
DLB_1BIT  
The SLIC Input Interrupt Enable bits IE[4:0] enable or disable the interrupt signal on each channel.  
IE[4] = 0: Interrupt disabled. The interrupt generated by changes of SB3 (when SB3 is selected as an input) will be ignored (default);  
IE[4] = 1: Interrupt enabled. The interrupt generated by changes of SB3 (when SB3 is selected as an input) will be recognized.  
IE[3] = 0: Interrupt disabled. The interrupt generated by changes of SB2 (when SB2 is selected as an input) will be ignored (default);  
IE[3] = 1: Interrupt enabled. The interrupt generated by changes of SB2 (when SB2 is selected as an input) will be recognized.  
IE[2] = 0: Interrupt disabled. The interrupt generated by changes of SB1 (when SB1 is selected as an input) will be ignored (default);  
IE[2] = 1: Interrupt enabled. The interrupt generated by changes of SB1 (when SB1 is selected as an input) will be recognized.  
IE[1] = 0: Interrupt disabled. The interrupt generated by changes of SI2 will be ignored (default);  
IE[1] = 1: Interrupt enabled. The interrupt generated by changes of SI2 will be recognized.  
IE[0] = 0: Interrupt disabled. The interrupt generated by changes of SI1 will be ignored (default);  
IE[0] = 1: Interrupt enabled. The interrupt generated by changes of SI1 will be recognized.  
28  
IDT82V1054A QUAD PROGRAMMABLE PCM CODEC WITH MPI INTERFACE  
INDUSTRIAL TEMPERATURE  
The Loopback Control Bits (DLB_PCM, ALB_1BIT and DLB_1BIT) determine the loopback status on the corresponding channel. Refer  
to Figure - 4 on page 11 for details.  
DLB_PCM = 0: Digital Loopback via Time Slots on the corresponding channel is disabled (default);  
DLB_PCM = 1: Digital Loopback via Time Slots on the corresponding channel is enabled.  
ALB_1BIT = 0: Analog Loopback via Onebit on the corresponding channel is disabled (default);  
ALB_1BIT = 1: Analog Loopback via Onebit on the corresponding channel is enabled;  
DLB_1BIT = 0: Digital Loopback via Onebit on the corresponding channel is disabled (default);  
DLB_1BIT = 1: Digital loopback via Onebit on the corresponding channel is enabled;  
LREG3: DSH and GK Debounce Filters Configuration, Read/Write (02H/82H)  
b7  
b6  
0
b5  
0
b4  
0
b3  
0
b2  
0
b1  
1
b0  
0
Command  
I/O data  
R/W  
GK[3]  
GK[2]  
GK[1]  
GK[0]  
DSH[3]  
DSH[2]  
DSH[1]  
DSH[0]  
The DSH Debounce bits DSH[3:0] are used to set the debounce time of SI1 input of the corresponding channel.  
DSH[3:0] = 0000: The debounce time is 0 ms (default);  
DSH[3:0] = 0001: The debounce time is 2 ms;  
DSH[3:0] = 0010: The debounce time is 4 ms;  
DSH[3:0] = 0011: The debounce time is 6 ms;  
DSH[3:0] = 0100: The debounce time is 8 ms;  
DSH[3:0] = 0101: The debounce time is 10 ms;  
DSH[3:0] = 0110: The debounce time is 12 ms;  
DSH[3:0] = 0111: The debounce time is 14 ms;  
DSH[3:0] = 1000: The debounce time is 16 ms;  
DSH[3:0] = 1001: The debounce time is 18 ms;  
DSH[3:0] = 1010: The debounce time is 20 ms;  
DSH[3:0] = 1011: The debounce time is 22 ms;  
DSH[3:0] = 1100: The debounce time is 24 ms;  
DSH[3:0] = 1101: The debounce time is 26 ms;  
DSH[3:0] = 1110: The debounce time is 28 ms;  
DSH[3:0] = 1111: The debounce time is 30 ms.  
The GK Debounce bits GK[3:0] are used to set the debounce interval of SI2 input of the corresponding channel. The debounce interval is  
programmable from 0 to 30 ms, corresponding to the minimal debounce time of 0 to 180 ms.  
GK[3:0] = 0000: The debounce interval is 0 ms (default);  
GK[3:0] = 0001: The debounce interval is 2 ms;  
GK[3:0] = 0010: The debounce interval is 4 ms;  
GK[3:0] = 0011: The debounce interval is 6 ms;  
GK[3:0] = 0100: The debounce interval is 8 ms;  
GK[3:0] = 0101: The debounce interval is 10 ms;  
GK[3:0] = 0110: The debounce interval is 12 ms;  
GK[3:0] = 0111: The debounce interval is 14 ms;  
GK[3:0] = 1000: The debounce interval is 16 ms;  
GK[3:0] = 1001: The debounce interval is 18 ms;  
GK[3:0] = 1010: The debounce interval is 20 ms;  
GK[3:0] = 1011: The debounce interval is 22 ms;  
GK[3:0] = 1100: The debounce interval is 24 ms;  
GK[3:0] = 1101: The debounce interval is 26 ms;  
GK[3:0] = 1110: The debounce interval is 28 ms;  
GK[3:0] = 1111: The debounce interval is 30 ms;  
29  
IDT82V1054A QUAD PROGRAMMABLE PCM CODEC WITH MPI INTERFACE  
INDUSTRIAL TEMPERATURE  
LREG4: Channel I/O Data, Read/Write (03H/83H)  
b7  
b6  
0
b5  
0
b4  
0
b3  
0
b2  
0
b1  
1
b0  
1
Command  
I/O data  
R/W  
Reserved  
SO2  
SO1  
SB3  
SB2  
SB1  
SI2  
SI1  
The Channel I/O Data bits contain the information of the SLIC I/O pins (SI1, SI2, SB1, SB2, SB3, SO1 and SO2) of the corresponding  
channel.  
If SB1, SB2 and SB3 are configured as outputs, data can only be written to them by global registers GREG10, GREG11 and GREG12  
respectively, and not by this register.  
LREG5: Transmit Timeslot and Transmit Highway Selection, Read/Write (04H/84H)  
b7  
b6  
0
b5  
0
b4  
0
b3  
0
b2  
1
b1  
0
b0  
0
Command  
I/O data  
R/W  
THS  
TT[6]  
TT[5]  
TT[4]  
TT[3]  
TT[2]  
TT[1]  
TT[0]  
The Transmit Time Slot Bits TT[6:0] select a time slot (compressed code) or a time slot group (linear code) for the corresponding channel  
to transmit the PCM data. The valid value is from 0 to 127(d), corresponding to TS0 to TS127. The default value of TT[6:0] is N for  
Channel N+1 (N = 0 to 3).  
The Transmit Highway Selection bit THS selects a PCM highway for the corresponding channel to transmit the PCM data.  
THS = 0:  
THS = 1:  
DX1 is selected (default);  
DX2 is selected.  
LREG6: Receive Timeslot and Receive PCM Highway Selection, Read/Write (05H/85H)  
b7  
b6  
0
b5  
0
b4  
0
b3  
0
b2  
1
b1  
0
b0  
1
Command  
I/O data  
R/W  
RHS  
RT[6]  
RT[5]  
RT[4]  
RT[3]  
RT[2]  
RT[1]  
RT[0]  
The Receive Time Slot Bits RT[6:0] select a time slot (compressed code) or a time slot group (linear code) for the corresponding channel  
to receive the PCM data. The valid value is from 0 to 127(d), corresponding to TS0 to TS127. The default value of RT[6:0] is N for  
Channel N+1 (N = 0 to 3).  
The Receive Highway Selection bit RHS selects a PCM highway for the corresponding channel to receive the PCM data.  
RHS = 0:  
RHS = 1:  
DR1 is selected (default);  
DR2 is selected.  
LREG7: PCM Data Low Byte, Read Only (06H)  
b7  
0
b6  
0
b5  
0
b4  
0
b3  
0
b2  
1
b1  
1
b0  
0
Command  
I/O data  
PCM[7]  
PCM[6]  
PCM[5]  
PCM[4]  
PCM[3]  
PCM[2]  
PCM[1]  
PCM[0]  
This register is used for MCU to monitor the transmit (A to D) PCM data. For linear code, this register contains the low byte of the  
transmit PCM data and LREG8 contains the high byte of the transmit PCM data. For compressed code (A/µ-Law), this register contains  
total 8 bits of the transmit PCM data.  
The low byte or total 8 bits of transmit PCM data will be read out by applying a read command to this register, and at the same time, it will  
be transmitted to the PCM highway without any interference.  
LREG8: PCM Data High Byte, Read Only (07H)  
b7  
0
b6  
0
b5  
0
b4  
0
b3  
0
b2  
1
b1  
1
b0  
1
Command  
I/O data  
PCM[15]  
PCM[14]  
PCM[13]  
PCM[12]  
PCM[11]  
PCM[10]  
PCM[9]  
PCM[8]  
30  
IDT82V1054A QUAD PROGRAMMABLE PCM CODEC WITH MPI INTERFACE  
INDUSTRIAL TEMPERATURE  
This register is used for MCU to monitor the transmit (A to D) PCM data. For linear code, this register contains the high byte of the  
transmit PCM data. For compressed code (A/µ-Law), this register is not used (when being read, it will output a data byte of 00H).  
The high byte of transmit PCM data will be read out by applying a read command to this register, and at the same time, it will be  
transmitted to the PCM highway without any interference.  
LREG9: A/D Gain, D/A Gain, Channel Power Down and PCM Receive Path Cutoff, Read/Write (08H/88H)  
b7  
R/W  
PD  
b6  
0
b5  
0
b4  
0
b3  
1
b2  
0
b1  
0
b0  
0
Command  
I/O data  
PCMCT  
GAD  
GDA  
0
0
0
0
The Channel Power Down bit (PD) selects the operation mode for the corresponding channel:  
PD = 0:  
PD = 1:  
The corresponding channel is in normal operation state;  
The corresponding channel is powered down (default).  
The PCMCT bit determines the operation of PCM Receive Path of the corresponding channel:  
PCMCT = 0: The PCM Receive Path of the corresponding channel is in normal operation state (default);  
PCMCT = 1: The PCM Receive Path of the corresponding channel is cut off.  
The A/D Gain bit (GAD) sets the gain of analog A/D for the corresponding channel:  
GAD = 0:  
GAD = 1:  
0 dB (default);  
+6 dB.  
The D/A Gain bit (GDA) sets the gain of analog D/A for the corresponding channel:  
GDA = 0:  
GDA = 1:  
0 dB (default);  
-6 dB.  
Attention: To ensure proper operation, the lower 4 bits of the I/O data byte following the write command (88H) must be '0000'.  
LREG10: Tone Generator Enable and Tone Program Enable, Read/Write (09H/89H)  
b7  
b6  
0
b5  
0
b4  
0
b3  
1
b2  
0
b1  
0
b0  
1
Command  
I/O data  
R/W  
Reserved  
TPROG1  
TPROG0  
TEN1  
TEN0  
TPROG1 = 0: The default amplitude and frequency coefficients are selected for tone generator 1 (default);  
TPROG1 = 1: The amplitude and frequency coefficients for tone generator 1 are programmed by the Coe-RAM.  
TPROG0 = 0: The default amplitude and frequency coefficients are selected for tone generator 0 (default);  
TPROG0 = 1: The amplitude and frequency coefficients for tone generator 0 are programmed by the Coe-RAM.  
TEN1 = 0:  
TEN1 = 1:  
Tone generator 1 is disabled (default);  
Tone generator 1 is enabled.  
TEN0 = 0:  
TEN0 = 1:  
Tone generator 0 is disabled (default);  
Tone generator 0 is enabled.  
31  
IDT82V1054A QUAD PROGRAMMABLE PCM CODEC WITH MPI INTERFACE  
INDUSTRIAL TEMPERATURE  
4
ABSOLUTE MAXIMUM RATINGS  
Ratings  
Min.  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
Max.  
4.5  
Unit  
V
Power supply voltage  
Voltage on digital input pins with respect to the ground (including SB1-3 if SB1-3 are configured as inputs)  
Voltage on analog input pins with respect to the ground  
Voltage on output pins CO, DX1, DX2 and SB1-3 (if SB1-3 are configured as outputs) with respect to the ground  
Voltage on output pins except CO, DX1, DX2, and SB1-3 with respect to the ground  
Package power dissipation  
5.25  
4.5  
V
V
5.25  
4.5  
V
V
1
W
°C  
Storage temperature  
-65  
+150  
Note: Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended  
periods may affect reliability.  
5
RECOMMENDED DC OPERATING CONDITIONS  
Parameter  
Min.  
40  
Max.  
+85  
Unit  
°C  
V
Operating temperature  
Power supply voltage  
3.135  
3.465  
Note: MCLK: 1.536 MHz, 1.544 MHz, 2.048 MHz, 3.072 MHz, 3.088 MHz, 4.096 MHz, 6.144 MHz, 6.176 MHz or 8.192 MHz with tolerance of ± 50 ppm.  
6
ELECTRICAL CHARACTERISTICS  
6.1  
DIGITAL INTERFACE  
Parameter  
Description  
Min.  
Typ.  
Max.  
Units  
Test Conditions  
VIL  
VIH  
Input low voltage  
0.8  
V
V
All digital inputs  
Input high voltage  
Output low voltage  
2.0  
All digital inputs  
DX, IL = 8 mA,  
All other digital outputs, IL = 4 mA  
VOL  
VOH  
0.8  
V
V
DX, IL = 8 mA,  
All other digital outputs, IL = 4 mA  
Output high voltage  
VDD 0.6  
II  
Input current  
10  
10  
10  
10  
5
µA  
µA  
pF  
All digital inputs, GND<VIN<VDD  
DX  
IOZ  
CI  
Output current in high-impedance state  
Input capacitance  
6.2  
POWER DISSIPATION  
Parameter  
IDD1  
Description  
Operating current  
Min.  
Typ.  
Max.  
Units  
Test Conditions  
50  
mA  
All channels are active.  
All channels are powered down, with  
MCLK present.  
IDD0  
Standby current  
6
mA  
Note: Power measurements are made at MCLK = 2.048MHz, outputs unloaded.  
32  
IDT82V1054A QUAD PROGRAMMABLE PCM CODEC WITH MPI INTERFACE  
INDUSTRIAL TEMPERATURE  
6.3  
ANALOG INTERFACE  
Parameter  
Description  
Min.  
Typ.  
Max.  
Units  
Test Conditions  
Alternating ±zero, µ-law PCM code  
applied to DR  
VOUT1  
Output voltage, VOUT  
1.35  
1.5  
1.65  
V
VOUT2  
RI  
RL = 300 Ω  
Output voltage swing, VOUT  
Input resistance, VIN  
2.2  
30  
Vp-p  
40  
60  
20  
kΩ  
0.165 V < VIN < 3.135 V  
0 dBm0, 1020 Hz PCM code applied to  
DR  
RO  
Output resistance, VOUT  
RL  
CL  
Load resistance, VOUT  
Load capacitance, VOUT  
300  
External loading  
External loading  
100  
pF  
33  
IDT82V1054A QUAD PROGRAMMABLE PCM CODEC WITH MPI INTERFACE  
INDUSTRIAL TEMPERATURE  
7
TRANSMISSION CHARACTERISTICS  
0 dBm0 is defined as 0.5026 Vrms for A-law and 0.49885 Vrms for µ-law, both for 600 load. Unless otherwise noted, the analog input is a 0  
dBm0, 1020 Hz sine wave; the input amplifier is set for unity gain. The digital input is a PCM bit stream equivalent to that obtained by passing a 0  
dBm0, 1020 Hz sine wave through an ideal encoder. The output level is sin(x)/x-corrected. Typical values are for V = +3.3 V and T = 25°C.  
DD  
A
7.1  
ABSOLUTE GAIN  
Parameter  
Description  
Min.  
Typ.  
Max.  
Units  
Test Conditions  
Transmit gain, absolute  
0°C to 85°C  
40°C  
GXA  
0.25  
0.30  
0.25  
0.30  
dB  
dB  
Signal output of 0 dBm0, 1020 Hz, µ-law or A-law  
Receive gain, absolute  
0°C to 85°C  
40°C  
Measured relative to 0 dBm0, µ-law or A-law, PCM  
input of 0 dBm0, 1020 Hz. RL = 10 k.  
GRA  
0.25  
0.30  
0.25  
0.30  
dB  
dB  
7.2  
GAIN TRACKING  
Parameter  
Description  
Min.  
Typ.  
Max.  
Units  
Test Conditions  
Transmit gain tracking  
+3 dBm0 to 37 dBm0 (exclude 37 dBm0)  
37 dBm0 to 50 dBm0 (exclude 50 dBm0)  
50 dBm0 to 55 dBm0  
0.25  
0.50  
1.40  
0.25  
0.50  
1.40  
dB  
dB  
dB  
GTX  
Tested by sinusoidal method, A-law or µ-law.  
Receive gain tracking  
+3 dBm0 to 40 dBm0 (exclude 40 dBm0)  
40 dBm0 to 50 dBm0 (exclude 50 dBm0)  
50 dBm0 to 55 dBm0  
0.10  
0.25  
0.50  
0.10  
0.50  
0.50  
dB  
dB  
dB  
GTR  
Tested by sinusoidal method, A-law or µ-law.  
7.3  
FREQUENCY RESPONSE  
Parameter  
Description  
Min.  
Typ.  
Max.  
Units  
Test Conditions  
Transmit gain, relative to GXA  
30  
30  
0.20  
0.15  
0.15  
0.10  
35  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
f = 50 Hz  
f = 60 Hz  
f = 300 Hz  
f = 300 to 3000 Hz (exclude 3000 Hz)  
f = 3000 Hz to 3400 Hz  
f = 3600 Hz  
0.10  
0.15  
0.60  
GXR  
The high-pass filter is enabled.  
f 4600 Hz  
Receive gain, relative to GRA  
0
dB  
dB  
dB  
dB  
dB  
f < 300 Hz  
0.15  
0.60  
0.15  
0.15  
0.20  
35  
f = 300 to 3000 Hz (exclude 3000 Hz)  
f = 3000 Hz to 3400 Hz  
f = 3600 Hz  
GRR  
f 4600 Hz  
34  
IDT82V1054A QUAD PROGRAMMABLE PCM CODEC WITH MPI INTERFACE  
INDUSTRIAL TEMPERATURE  
7.4  
GROUP DELAY  
Parameter  
Description  
Min.  
Typ.  
Max.  
Units  
Test Conditions  
Transmit delay, relative to 1800 Hz  
f = 500 to 600 Hz  
f = 600 to 1000 Hz  
f = 1000 to 2600 Hz  
f = 2600 to 2800 Hz  
280  
150  
80  
µs  
µs  
µs  
µs  
DXR  
280  
Receive delay, relative to 1800 Hz  
f = 500 to 600 Hz  
f = 600 to 1000 Hz  
f = 1000 to 2600 Hz  
f = 2600 to 2800 Hz  
50  
80  
120  
150  
µs  
µs  
µs  
µs  
DRR  
7.5  
DISTORTION  
Parameter  
Description  
Min.  
Typ.  
Max.  
Units  
Test Conditions  
Transmit signal to total distortion ratio  
A-law:  
input level = 0 dBm0  
input level = 30 dBm0  
input level = 40 dBm0  
input level = 45 dBm0  
36  
36  
30  
24  
dB  
dB  
dB  
dB  
ITU-T O.132  
Sine wave method, psophometrically weighted  
for A-law and C-message weighted for µ-law.  
STDX  
µ-law:  
input level = 0 dBm0  
input level = 30 dBm0  
input level = 40 dBm0  
input level = 45 dBm0  
36  
36  
31  
27  
dB  
dB  
dB  
dB  
Receive signal to total distortion ratio  
A-law:  
input level = 0 dBm0  
input level = 30 dBm0  
input level = 40 dBm0  
input level = 45 dBm0  
36  
36  
30  
24  
dB  
dB  
dB  
dB  
ITU-T O.132  
Sine wave method, psophometrically weighted  
for A-law and C-message weighted for µ-law.  
STDR  
µ-law:  
input level = 0 dBm0  
input level = 30 dBm0  
input level = 40 dBm0  
input level = 45 dBm0  
36  
36  
31  
27  
dB  
dB  
dB  
dB  
200 to 3400 Hz, 0 dBm0 input, output any other  
single frequency 3400 Hz  
200 to 3400 Hz, 0 dBm0 input, output any other  
single frequency 3400 Hz  
Transmit or receive, two frequencies in the range  
of 300 to 3400 Hz at 6 dBm0  
SFDX  
SFDR  
IMD  
Single frequency distortion, transmit  
Single frequency distortion, receive  
Intermodulation distortion  
42  
42  
42  
dBm0  
dBm0  
dBm0  
35  
IDT82V1054A QUAD PROGRAMMABLE PCM CODEC WITH MPI INTERFACE  
INDUSTRIAL TEMPERATURE  
7.6  
NOISE  
Parameter  
Description  
Min.  
Typ.  
Max.  
16  
Units  
dBrnC0  
dBm0p  
dBrnC0  
dBm0p  
Test Conditions  
NXC  
NXP  
NRC  
NRP  
Transmit noise, C-message weighted for µ-law  
Transmit noise, psophometrically weighted for A-law  
Receive noise, C-message weighted for µ-law  
Receive noise, psophometrically weighted for A-law  
70  
10  
78  
Noise, single frequency  
f = 0 kHz to 100 kHz  
NRS  
53  
dBm0  
VIN = 0 Vrms, tested at VOUT  
VDD = 3.3 VDC+100 mVrms  
Power supply rejection, transmit  
f = 300 Hz to 3.4 kHz  
PSRX  
40  
25  
dB  
dB  
f = 3.4 kHz to 20 kHz  
Power supply rejection, receive  
f = 300 Hz to 3.4 kHz  
VDD = 3.3 VDC+100 mVrms, PCM code is  
positive one LSB  
PSRR  
SOS  
40  
25  
dB  
dB  
f = 3.4 kHz to 20 kHz  
Spurious out-of-band signals at VOUT, relative to  
input PCM code applied:  
0 dBm0, 300 Hz to 3400 Hz input  
f = 4.6 kHz to 20 kHz  
f = 20 kHz to 50 kHz  
40  
30  
dB  
dB  
7.7  
INTERCHANNEL CROSSTALK  
Parameter  
XTX-R  
Description  
Min.  
Typ.  
Max.  
Units  
Test Conditions  
300 Hz to 3400 Hz, 0 dBm0 signal into VIN of the interfering  
channel. Idle PCM code into the channel under test.  
Transmit to receive crosstalk  
85  
78  
80  
78  
80  
dB  
dB  
dB  
dB  
300 Hz to 3400 Hz, 0 dBm0 PCM code into the interfering channel.  
VIN = 0 Vrms for the channel under test.  
XTR-X  
XTX-X  
XTR-R  
Receive to transmit crosstalk  
Transmit to transmit crosstalk  
Receive to receive crosstalk  
85  
85  
85  
300 Hz to 3400 Hz, 0 dBm0 signal into VIN of the interfering  
channel. VIN = 0 Vrms for the channel under test.  
300 Hz to 3400 Hz, 0 dBm0 PCM code into the interfering channel.  
Idle PCM code into the channel under test.  
7.8  
INTRACHANNEL CROSSTALK  
Parameter  
Description  
Min.  
Typ.  
80  
80  
Max.  
70  
70  
Units  
dB  
Test Conditions  
300 Hz to 3400 Hz, 0 dBm0 signal into VIN. Idle PCM code into  
DR.  
XTX-R  
XTR-X  
Transmit to receive crosstalk  
Receive to transmit crosstalk  
dB  
300 Hz to 3400 Hz, 0 dBm0 PCM code into DR. VIN = 0 Vrms.  
Note: Crosstalk into transmit channels (VIN) can be significantly affected by parasitic capacitive coupling from VOUT outputs. PCB layouts should be arranged to minimize the parasitics.  
36  
IDT82V1054A QUAD PROGRAMMABLE PCM CODEC WITH MPI INTERFACE  
INDUSTRIAL TEMPERATURE  
8
TIMING CHARACTERISTICS  
8.1  
CLOCK TIMING  
Symbol  
Description  
Min.  
Typ.  
Max.  
Units  
ns  
Test Conditions  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
CCLK period  
122  
48  
100k  
CCLK pulse width  
ns  
CCLK rise and fall time  
BCLK period  
25  
ns  
122  
48  
ns  
BCLK pulse width  
ns  
BCLK rise and fall time  
MCLK pulse width  
MCLK rise and fall time  
15  
15  
ns  
48  
ns  
ns  
t2  
t5  
t7  
t1  
t4  
CCLK  
BCLK  
MCLK  
t3  
t3  
t6  
t8  
t2  
t5  
t7  
t6  
t8  
Figure - 6 Clock Timing  
37  
IDT82V1054A QUAD PROGRAMMABLE PCM CODEC WITH MPI INTERFACE  
INDUSTRIAL TEMPERATURE  
8.2  
MICROPROCESSOR INTERFACE TIMING  
Symbol  
Description  
Min.  
Typ.  
Max.  
Units  
Test Conditions  
t11  
t12  
CS setup time  
CS pulse width  
CS off time  
15  
ns  
8 n t1  
(n 2)  
ns  
t13  
t14  
t15  
t16  
t17  
t18  
t19  
t20  
250  
30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Input data setup time  
Input data hold time  
SLIC output latch valid  
Output data turn on delay  
Output data hold time  
Output data turn off delay  
output data valid  
30  
1000  
50  
0
0
50  
50  
CCLK  
t11  
t13  
t12  
CS  
t14  
t15  
CI  
t16  
SLIC Output  
Figure - 7 MPI Input Timing  
CCLK  
t12  
t13  
t11  
CS  
t20  
t18  
t17  
t19  
CO  
Figure - 8 MPI Output Timing  
38  
IDT82V1054A QUAD PROGRAMMABLE PCM CODEC WITH MPI INTERFACE  
INDUSTRIAL TEMPERATURE  
8.3  
PCM INTERFACE TIMING  
Symbol  
Description  
Data enable delay time  
Min.  
5
Typ.  
Max.  
70  
Units  
ns  
Test Conditions  
t21  
t22  
t23  
t24  
t25  
t26  
t27  
t28  
t29  
Data delay time from BCLK  
Data float delay time  
5
70  
ns  
5
70  
ns  
Frame sync setup time  
25  
50  
5
t4 50  
ns  
Frame sync hold time  
ns  
TSX1 or TSX2 enable delay time  
TSX1 or TSX2 disable delay time  
Receive data setup time  
Receive data hold time  
80  
80  
ns  
5
ns  
25  
5
ns  
ns  
Time Slot  
BCLK  
1
2
3
4
5
6
7
8
1
t24  
t25  
FS  
t23  
t22  
t21  
BIT 1  
DX1/  
DX2  
BIT 2  
t28  
BIT 3  
BIT 4  
BIT 5  
BIT 6  
BIT 7  
BIT 8  
t29  
DR1/  
DR2  
BIT  
1
BIT  
2
BIT  
3
BIT  
4
BIT  
5
BIT  
6
BIT  
7
BIT  
8
t26  
t27  
TSX1 /  
TSX2  
Note: This timing diagram only applies to the situation of receiving data on falling edges and transmitting data on rising edges.  
Figure - 9 Transmit and Receive Timing  
Time Slot  
27 28 29 30 31  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26  
FS  
DX1/DX2  
X0  
X1  
X2  
X3  
DR1/DR2  
R0  
R1  
R2  
R3  
TSX1 / TSX2  
Figure - 10 Typical Frame Sync Timing (2 MHz Operation)  
39  
IDT82V1054A QUAD PROGRAMMABLE PCM CODEC WITH MPI INTERFACE  
INDUSTRIAL TEMPERATURE  
9
APPENDIX: IDT82V1054A COE-RAM MAPPING  
b[2:0] of a Coe-RAM  
Command  
Block #  
Word #  
39  
GRX RAM  
FRR RAM  
5
4
3
2
1
100  
011  
010  
001  
000  
32  
31  
GTX RAM  
FRX RAM  
24  
23  
TONE RAM  
GIS RAM  
16  
15  
ECF RAM  
IMF RAM  
8
7
0
Figure - 11 Coe-RAM Mapping  
Generally, 6 bits of address are needed to locate each word of the 40 Coe-RAM words. In the IDT82V1054A, the 40 words of Coe-RAM are divided  
into 5 blocks with 8 words per block, so, only 3 address bits are needed to locate each of the block. When the address of a Coe-RAM block (b[2:0]) is  
specified in a Coe-RAM command, all 8 words of this block will be addressed automatically, with the highest order word first (The IDT82V1054A will  
count down from '111' to '000' so that it accesses the 8 words successively). Refer to “3.1.4 Addressing the Coe-RAM” for details.  
The address assignment for the 40 words of Coe-RAM is as shown in Table - 4. The number in the “Address” column is the actual address of each  
Coe-RAM word. As the IDT82V1054A handles the lower 3 bits of address automatically, only the higher 3 bits of address (in bold style) are needed for  
a Coe-RAM Command. It should be noted that, when addressing the GRX RAM, the FRR RAM will be addressed at the same time.  
Table - 4 Coe-RAM Address Allocation  
Block # Word # Address  
Function  
Block # Word # Address  
Function  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
100,111  
100,110  
100,101  
100,100  
100,011  
100,010  
100,001  
100,000  
011,111  
011,110  
011,101  
011,100  
011,011  
011,010  
011,001  
011,000  
GRX RAM  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
010,011  
010,010  
010,001  
010,000  
001,111  
001,110  
001,101  
001,100  
001,011  
001,010  
001,001  
001,000  
000,111  
000,110  
000,101  
000,100  
000,011  
000,010  
000,001  
000,000  
3
2
GIS RAM  
5
FRR RAM  
GTX RAM  
FRX RAM  
ECF RAM  
8
4
3
7
6
5
4
1
IMF RAM  
010,111 Amplitude Coefficient of Tone Generator 1  
010,110 Frequency Coefficient of Tone Generator 1  
010,101 Amplitude Coefficient of Tone Generator 0  
010,100 Frequency Coefficient of Tone Generator 0  
3
2
1
0
40  
 
IDT82V1054A QUAD PROGRAMMABLE PCM CODEC WITH MPI INTERFACE  
INDUSTRIAL TEMPERATURE  
10 ORDERING INFORMATION  
XXXXXXXX  
XX  
X
IDT  
Process/  
Temperature  
Range  
Dev ice Ty pe  
Package  
Blank  
PF  
Industrial (-40 °C to +85 °C)  
Thin Quad Flat Pack (TQFP, PN64)  
82V1054A Quad Programmable PCM CODEC  
41  
IDT82V1054A QUAD PROGRAMMABLE PCM CODEC WITH MPI INTERFACE  
INDUSTRIAL TEMPERATURE  
DATA SHEET DOCUMENT HISTORY  
01/10/2003  
07/28/2003  
12/08/2003  
07/19/2004  
pgs. 1, 2, 10, 19, 28, 33, 35, 36, 41  
pgs. 13, 24, 30, 32, 34  
pgs. 1, 11, 34  
pg. 32  
CORPORATE HEADQUARTERS  
for SALES:  
for Tech Support:  
2975 Stender Way  
Santa Clara, CA 95054  
800-345-7015 or 408-727-6116  
fax: 408-492-8674  
www.idt.com  
email: telecomhelp@idt.com  
phone: 408-330-1552  
42  

相关型号:

IDT82V1054APFG

PCM Codec, A/MU-Law, 1-Func, PQFP64, GREEN, TQFP-64
IDT

IDT82V1054APFG8

PCM Codec, A/MU-Law, 1-Func, PQFP64, GREEN, TQFP-64
IDT

IDT82V1068

OCTAL PROGRAMMABLE PCM CODEC
IDT

IDT82V1068PF

OCTAL PROGRAMMABLE PCM CODEC
IDT

IDT82V1074

CHIPSET OF RINGING SUBSCRIBER LINE INTERFACE CIRCUIT (RSLIC) & QUAD PROGRAMMABLE PCM CODEC
IDT

IDT82V1074PF

CHIPSET OF RINGING SUBSCRIBER LINE INTERFACE CIRCUIT (RSLIC) & QUAD PROGRAMMABLE PCM CODEC
IDT

IDT82V1671

CHIPSET OF RINGING SUBSCRIBER LINE INTERFACE CIRCUIT (RSLIC) & QUAD PROGRAMMABLE PCM CODEC
IDT

IDT82V1671J

CHIPSET OF RINGING SUBSCRIBER LINE INTERFACE CIRCUIT (RSLIC) & QUAD PROGRAMMABLE PCM CODEC
IDT

IDT82V1671J8

SLIC, 2-4 Conversion, Hybrid, PQCC28
IDT

IDT82V2041E

SINGLE CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT
IDT

IDT82V2041EPP

SINGLE CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT
IDT

IDT82V2041EPP8

PCM Transceiver, 1-Func, PQFP44, TQFP-44
IDT