QS5V991-5JRI [IDT]

PLL Based Clock Driver, QS5 Series, 8 True Output(s), 0 Inverted Output(s), CMOS, PQCC32, PLASTIC, LCC-32;
QS5V991-5JRI
型号: QS5V991-5JRI
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

PLL Based Clock Driver, QS5 Series, 8 True Output(s), 0 Inverted Output(s), CMOS, PQCC32, PLASTIC, LCC-32

驱动 逻辑集成电路
文件: 总7页 (文件大小:101K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
APPLICATION  
NOTE  
PROGRAMMING TURBOCLOCK™  
QS5991, QS5992, QS5993,  
QS5V991, AND QS5V993  
AN-226  
INTRODUCTION  
PROGRAMMING THE OUTPUT SKEW  
Asnewtechnologydemandshigh-performancedesign,thedistribution  
The outputs of TurboClock™ are organized in four banks of 2 outputs  
ofhigh-speedclockhas become a difficulttaskforthe systemdesigners. each(nQ1,nQ0).Eachoutputpairis programmedwiththe corresponding  
TurboClock™ provides the design engineers with the opportunities to Function/SkewSelect(nF1,nF0)inputs.Theinputs canbetiedHigh,Low,  
overcome the manychallengingissues ofclockskew,andclockmultipli- or left unconnected to Mid level (an internal resistor network will bias the  
cationanddivision.Thefamilyoffers5Vand3.3Vproductsin32-pinPLCC signallevelto0.5VCC).These 3-levelinputs allowa totalofnine different  
and28-pinQSOP packages:  
outputselections.Inthedatasheet,theSkewSelectionTableforOutputPairs  
(reproducedinthe ControlSummaryTable)shows the listofoutputs from  
eachpairwhenanyzeroskewoutputisusedasfeedback.Notethatoutput  
pair#1and#2sharethesameoutputcharacteristics,andskewadjustment  
for pair #4 is not available for QS5993 and QS5V993.  
– QS5991 (5V, TTL outputs in PLCC)  
– QS5992 (5V, CMOS outputs in PLCC)  
– QS5993 (5V, TTL outputs in QSOP)  
– QS5V991 (3.3V, LVTTL outputs in PLCC)  
– QS5V993 (3.3V, LVTTL outputs in QSOP)  
ThefirststepinprogrammingistodeterminetheVCOfrequency(FNOM)  
basedonthe REFinputfrequency,andthe designedoutputfrequencies.  
The outputpair1Qand2Qwillalways be equaltoVCOfrequency.When  
anundividedoutputis usedas feedback, the VCOoperates atthe same  
BothQS5991andQS5992arepin-compatibletoCypressCY7B991and  
CY7B992,respectively.Figure 1shows the TurboClockblockdiagrams  
fordifferentproductvariants.  
FIGURE1:TURBOCLOCKBLOCKDIAGRAMS  
sOE  
sOE  
QS5991  
QS5992  
QS5V991  
QS5993  
QS5V993  
1Q0  
1Q1  
1Q0  
1Q1  
SKEW  
SKEW  
SELECT  
SELECT  
3
3
3
3
1F  
1F  
0:1  
0:1  
2Q0  
2Q1  
2Q  
2Q  
0
1
SKEW  
SELECT  
SKEW  
SELECT  
3
3
3
3
REF  
FB  
REF  
FB  
PLL  
3
PLL  
3
2F0:1  
2F0:1  
3Q  
0
3Q0  
3Q1  
SKEW  
SELECT  
SKEW  
SELECT  
FS  
FS  
3
3
3
3
3Q1  
3F0:1  
3F0:1  
4Q0  
4Q1  
4Q  
4Q  
0
1
SKEW  
SELECT  
3
3
4F  
0:1  
1
c /-  
1999 Integrated Device Technology, Inc.  
DSC-5838/-  
PROGRAMMINGTURBOCLOCKQS5991,QS5992,QS5993,QS5V991,ANDQS5V993  
APPLICATIONNOTEAN-226  
TheflexibilityofTurboClockisfurtherenhancedbyusingaskewedoutput  
as feedback.Forinstance,iffeedbackis 3Qand3F1:0=ML(–2tU),the 2Q  
outputwillhave zeroskewwhen2F1:0 =LH(–2tU)since the actualoutput  
skewat2Qiscalculatedfromtheprogrammed2Qoutputskew(–2tU)minus  
the feedbackskew(–2tU).If2F1:0 =LL,thenthe actualoutputskewat2Q  
is2tU[–4tU(–2tU)].TheOutputConfigurationtablesshowallthepossible  
outputconfigurations(skewadjustment,frequencymultiplication/division)  
with different feedbacks. Tables 1 through 3 hold true for 1Q output  
configurations ifFBis 2Q.Thefirstcolumninthetables settheskewofthe  
feedback.Eachoutputpairhasninepossibleoutputcombinationsforagiven  
FB(listed immediately on the right-hand side of the FB skew) by setting  
differentlevels toFunctionSelectpairs (nF1:0).  
frequency as REF (or FB). If a divide-by-2 or divide-by-4 output is used  
as feedback,the VCOwilloperate attwoorfourtimes the REFfrequency  
since the PLL will always try to align the frequency and phase of FB with  
REF.(Whenthedivide-by-2ordivide-by-4outputis usedas feedback,the  
FB is running at one-half or one-fourth the frequency of other outputs.  
Therefore, the other outputs are actually two or four times the REF  
frequency.)  
The secondstepis todecide the settingforFSandnF1:0 controlinputs  
basedontheVCOfrequencyanddesiredoutputskew.Thedesiredoutput  
skew will be a multiple of the Time Unit (tU) calculated from the PLL  
Programmable SkewRange andResolutionTable.  
CONTROL SUMMARY TABLE FOR FEEDBACK SIGNALS  
nF1:0  
Skew (Pair #1, #2)  
Skew (Pair #3)  
Divide by 2  
–6tU  
Skew (Pair #4) (1)  
Divide by 2  
–6tU  
LL  
–4tU  
–3tU  
LM  
LH  
–2tU  
–4tU  
–4tU  
ML  
MM  
MH  
HL  
–1tU  
–2tU  
–2tU  
Zero Skew  
1tU  
Zero Skew  
2tU  
Zero Skew  
2tU  
2tU  
4tU  
4tU  
HM  
HH  
3tU  
6tU  
6tU  
4tU  
Divide by 4  
Inverted  
NOTE:  
1. Skew (pair #4) is not applicable for QS5993 and QS5V993.  
PLL PROGRAMMABLE SKEW RANGE AND RESOLUTION TABLE  
FS = LOW  
1/(44 x FNOM)  
25 to 35MHz  
25 to 35MHz  
FS = MID  
1/(26 x FNOM)  
35 to 60MHz  
35 to 60MHz  
FS = HIGH  
1/(16 x FNOM)  
60 to 100 MHz  
60 to 85 MHz  
Time Unit (tU)  
VCO Frequency (FNOM)  
QS5991, QS5992, and QS5993  
QS5V991 and QS5V993  
2
PROGRAMMINGTURBOCLOCKQS5991,QS5992,QS5993,QS5V991,ANDQS5V993  
APPLICATIONNOTEAN-226  
OBTAININGMAXIMUMVCOFREQUENCYOPERATION  
FORQS5991,QS5992,ANDQS5993  
REF  
REF  
50 MHz  
25 MHz  
FB  
FB  
50 MHz  
25 MHz  
REF  
REF  
4Q0  
4Q1  
4Q0  
4Q1  
100 MHz  
50 MHz  
100 MHz  
25 MHz  
FS  
FS  
4F0  
4F1  
3F0  
3F1  
4F0  
4F1  
3F0  
3F1  
3Q0  
3Q1  
QS5991 3Q0  
QS5991  
QS5992  
QS5993  
3Q1  
QS5992  
QS5993  
2Q0  
2Q1  
2Q0  
2Q1  
100 MHz  
100 MHz  
100 MHz  
100 MHz  
2F0  
2F1  
1F0  
2F0  
2F1  
1F0  
1Q0  
1Q1  
1Q0  
1Q1  
1F1  
1F1  
TEST  
TEST  
Figure 2. Wiring Diagram and Frequency Multiply by two with  
3F[1:0] = LL.  
Figure 3. Wiring Diagram and Frequency Multiply by four with  
3F[1:0] = HH.  
Figure2demonstratestheQS5991,QS5992,andQS5993configuredfor  
Figure3showstheQS5991,QS5992andQS5993configuredforgettingmax  
gettingmaxoutputat100MHz. The 3Q0outputis programmedtodivide by outputat100MHz. The3Q0outputisprogrammedtodividebyfourandisfed  
twoandisfedbacktoFB. ThiscausesthePLLtoincreaseitsfrequencyuntil backtoFB. ThiscausesthePLLtoincreaseitsfrequencyuntil3Q0and3Q1  
3Q0and3Q1outputsarelockedat50MHzwhile1Qx,2Qxand3Qxoutputs outputsarelockedat25MHzwhile1Qx,2Qxand4Qxoutputsrunat100MHz.  
runat100MHz.The1Qx,2Qxand4Qxoutputsareskewedbyprogramming The1Qx,2Qxand3Qxoutputsareskewedbyprogrammingtheirselectinputs  
theirselectinputsaccordingly(RefertoTable4formoredetails.)NotethatFS accordingly(RefertoTable5formoredetails.)NotethatFSpinisconnected  
pinisconnectedtoHighforfastestfrequencyoutputrange.  
toHighforfastestfrequencyoutputrange.  
REF  
50 MHz  
FB  
50 MHz  
REF  
FS  
4Q0  
4Q1  
50 MHz  
4F0  
4F1  
100 MHz  
3Q0  
3Q1  
QS5991  
QS5992  
3F0  
3F1  
2Q0  
2Q1  
100 MHz  
100 MHz  
2F0  
2F1  
1F0  
1Q0  
1Q1  
1F1  
TEST  
Figure 4. Wiring Diagram and Frequency Multiply by two with  
4F[1:0] = LL.  
Figure4illustratestheQS5991andQS5992configuredforgettingmaxoutput  
at100MHz. The 4Q0outputis programmedtodivide bytwoandis fedback  
toFB. ThiscausesthePLLtoincreaseitsfrequencyuntil4Q0and4Q1outputs  
are locked at 50 MHz while 1Qx, 2Qx and 3Qx outputs run at 100 MHz. The  
1Qx, 2Qx and 3Qx outputs are skewed by programming their select inputs  
accordingly(RefertoTable6formoredetails.)NotethatFSpinisconnected  
toHighforfastestfrequencyoutputrange.  
3
PROGRAMMINGTURBOCLOCKQS5991,QS5992,QS5993,QS5V991,ANDQS5V993  
APPLICATIONNOTEAN-226  
OBTAININGMAXIMUMVCOFREQUENCYOPERATION  
FORQS5V991ANDQS5V993  
REF  
REF  
42.5 MHz  
21.25 MHz  
FB  
FB  
42.5 MHz  
21.25 MHz  
REF  
REF  
4Q0  
4Q1  
4Q0  
4Q1  
85 MHz  
85 MHz  
FS  
FS  
4F0  
4F1  
3F0  
3F1  
4F0  
4F1  
3F0  
3F1  
42.5 MHz  
3Q0  
QS5V991 3Q1  
QS5V993  
21.25 MHz  
3Q0  
3Q1  
QS5V991  
QS5V993  
2Q0  
2Q1  
2Q0  
2Q1  
85 MHz  
85 MHz  
85 MHz  
85 MHz  
2F0  
2F1  
1F0  
2F0  
2F1  
1F0  
1Q0  
1Q1  
1Q0  
1Q1  
1F1  
1F1  
TEST  
TEST  
Figure 5. Wiring Diagram and Frequency Multiply by two with  
3F[1:0] = LL.  
Figure 6. Wiring Diagram and Frequency Multiply by four with  
3F[1:0] = HH.  
Figure6showstheQS5V991andQS5V993configuredforgettingmaxoutput  
at 85 MHz. The 3Q0 output is programmed to divide by four and is fed back  
toFB. ThiscausesthePLLtoincreaseitsfrequencyuntil3Q0and3Q1outputs  
arelockedat21.25MHzwhile1Qx,2Qxand4Qxoutputsrunat85MHz.The  
1Qx, 2Qx and 3Qx outputs are skewed by programming their select inputs  
accordingly(RefertoTable5formoredetails.)NotethatFSpinisconnected  
toHighforfastestfrequencyoutputrange.  
Figure5demonstratestheQS5V991andQS5V993configuredforgetting  
max output at 85 MHz. The 3Q0 output is programmed to divide by two and  
isfedbacktoFB. ThiscausesthePLLtoincreaseitsfrequencyuntil3Q0and  
3Q1 outputs are locked at 42.5 MHz while 1Qx, 2Qx and 3Qx outputs run at  
85MHz. The 1Qx, 2Qx and 4Qx outputs are skewed by programming their  
selectinputsaccordingly(RefertoTable4formoredetails.)NotethatFSpin  
isconnectedtoHighforfastestfrequencyoutputrange.  
REF  
42.5 MHz  
FB  
42.5 MHz  
REF  
42.5 MHz  
85 MHz  
4Q0  
FS  
4Q1  
4F0  
4F1  
3Q0  
3Q1  
QS5V991  
3F0  
3F1  
2Q0  
85 MHz  
85 MHz  
2F0  
2Q1  
2F1  
1Q0  
1Q1  
1F0  
1F1  
TEST  
Figure 7. Wiring Diagram and Frequency Multiply by two with  
4F[1:0] = LL.  
Figure7illustratestheQS5V991configuredforgettingmaxoutputat85MHz.  
The 4Q0 output is programmed to divide by two and is fed back to FB. This  
causesthePLLtoincreaseitsfrequencyuntil4Q0and4Q1outputsarelocked  
at 42.5 MHz while 1Qx, 2Qx and 3Qx outputs run at 85 MHz. The 1Qx, 2Qx  
and3Qxoutputsareskewedbyprogrammingtheirselectinputsaccordingly  
(RefertoTable8formoredetails.)NotethatFSpinisconnectedtoHighforfastest  
frequencyoutputrange.  
4
PROGRAMMINGTURBOCLOCKQS5991,QS5992,QS5993,QS5V991,ANDQS5V993  
APPLICATIONNOTEAN-226  
OBTAINING MINIMUM VCO FREQUENCY OPERATION FOR QS5991, QS5992,  
QS5993, QS5V991, AND QS5V993  
25MHz with 25MHz REF input if there is no divider in the feedback loop.  
However,ifthe divided-by-fouris usedas a feedback,the inputfrequency  
is limitedbythe minimumREFinputat10MHzandthe VCOwilloperate at  
fourtimes the frequency(40MHz).  
The VCO can operate at 25MHz minimum frequency with less than a  
25MHzREFinputwithdivided-by-twomode. Ifthedivided-by-twois used  
as a feedback,the REFinputcanbe as lowas 12.5MHZandthe VCOwill  
operate at twice the REF frequency (25MHz). The VCO will operate at  
OUTPUT CONFIGURATION TABLES  
TABLE 1. FB = 1Q. 2Q OUTPUT CONFIGURATIONS WITH DIFFERENT 2F(1:0)  
FB  
1F(1:0)  
LL  
Output at 2F(1:0)  
LL  
LM  
1tU  
LH  
2tU  
ML  
3tU  
MM  
4tU  
MH  
5tU  
HL  
6tU  
5tU  
4tU  
3tU  
2tU  
1tU  
0tU  
–1tU  
–2tU  
HM  
7tU  
6tU  
5tU  
4tU  
3tU  
2tU  
1tU  
0tU  
–1tU  
HH  
8tU  
7tU  
6tU  
5tU  
4tU  
3tU  
2tU  
1tU  
0tU  
0tU  
LM  
LH  
–1tU  
–2tU  
–3tU  
–4tU  
–5tU  
–6tU  
–7tU  
–8tU  
0tU  
1tU  
2tU  
3tU  
4tU  
–1tU  
–2tU  
–3tU  
–4tU  
–5tU  
–6tU  
–7tU  
0tU  
1tU  
2tU  
3tU  
ML  
–1tU  
–2tU  
–3tU  
–4tU  
–5tU  
–6tU  
0tU  
1tU  
2tU  
MM  
MH  
HL  
–1tU  
–2tU  
–3tU  
–4tU  
–5tU  
0tU  
1tU  
–1tU  
–2tU  
–3tU  
–4tU  
0tU  
–1tU  
–2tU  
–3tU  
HM  
HH  
TABLE 2. FB = 1Q. 3Q OUTPUT CONFIGURATIONS WITH DIFFERENT 3F(1:0)  
FB  
1F(1:0)  
LL  
Output at 3F(1:0)  
LL  
LM  
–2tU  
–3tU  
–4tU  
–5tU  
–6tU  
–7tU  
–8tU  
–9tU  
–10tU  
LH  
0tU  
ML  
2tU  
MM  
4tU  
MH  
6tU  
5tU  
4tU  
3tU  
2tU  
1tU  
0tU  
–1tU  
–2tU  
HL  
8tU  
7tU  
6tU  
5tU  
4tU  
3tU  
2tU  
1tU  
0tU  
HM  
10tU  
9tU  
8tU  
7tU  
6tU  
5tU  
4tU  
3tU  
2tU  
HH  
f/2+4tU  
f/2+3tU  
f/2+2tU  
f/2+1tU  
f/2+0tU  
f/2–1tU  
f/2–2tU  
f/2–3tU  
f/2–4tU  
f/4+4tU  
f/4+3tU  
f/4+2tU  
f/4+1tU  
f/4+0tU  
f/4–1tU  
f/4–2tU  
f/4–3tU  
f/4–4tU  
LM  
LH  
–1tU  
–2tU  
–3tU  
–4tU  
–5tU  
–6tU  
–7tU  
–8tU  
1tU  
3tU  
0tU  
2tU  
ML  
–1tU  
–2tU  
–3tU  
–4tU  
–5tU  
–6tU  
1tU  
MM  
MH  
HL  
0tU  
–1tU  
–2tU  
–3tU  
–4tU  
HM  
HH  
5
PROGRAMMINGTURBOCLOCKQS5991,QS5992,QS5993,QS5V991,ANDQS5V993  
APPLICATIONNOTEAN-226  
TABLE 3. FB = 1Q. 4Q OUTPUT CONFIGURATIONS WITH DIFFERENT 4F(1:0)  
FB  
1F(1:0)  
LL  
Output at 4F(1:0)  
LL  
LM  
–2tU  
–3tU  
–4tU  
–5tU  
–6tU  
–7tU  
–8tU  
–9tU  
–10tU  
LH  
0tU  
ML  
2tU  
MM  
4tU  
MH  
6tU  
5tU  
4tU  
3tU  
2tU  
1tU  
0tU  
–1tU  
–2tU  
HL  
8tU  
7tU  
6tU  
5tU  
4tU  
3tU  
2tU  
1tU  
0tU  
HM  
10tU  
9tU  
8tU  
7tU  
6tU  
5tU  
4tU  
3tU  
2tU  
HH  
f/2+4tU  
f/2+3tU  
f/2+2tU  
f/2+1tU  
f/2+0tU  
f/2–1tU  
f/2–2tU  
f/2–3tU  
f/2–4tU  
–f+4tU  
–f+3tU  
–f+2tU  
–f+1tU  
–f+0tU  
–f–1tU  
–f–2tU  
–f–3tU  
–f–4tU  
LM  
LH  
–1tU  
–2tU  
–3tU  
–4tU  
–5tU  
–6tU  
–7tU  
–8tU  
1tU  
3tU  
0tU  
2tU  
ML  
–1tU  
–2tU  
–3tU  
–4tU  
–5tU  
–6tU  
1tU  
MM  
MH  
HL  
0tU  
–1tU  
–2tU  
–3tU  
–4tU  
HM  
HH  
TABLE 4. FB = 3Q. 1Q/2Q OUTPUT CONFIGURATIONS WITH DIFFERENT 1F(1:0)/2F(1:0)  
FB  
3F(1:0)  
LL  
Output at 1F(1:0)/2F(1:0)  
LL  
2*f4tU  
2tU  
LM  
2*f3tU  
3tU  
LH  
2*f2tU  
4tU  
ML  
2*f1tU  
5tU  
MM  
2*f+0tU  
6tU  
MH  
HL  
2*f+2tU  
8tU  
HM  
2*f+3tU  
9tU  
HH  
2*f+4tU  
10tU  
8tU  
2*f+1tU  
7tU  
LM  
LH  
0tU  
1tU  
2tU  
3tU  
4tU  
5tU  
6tU  
7tU  
ML  
–2tU  
–1tU  
–3tU  
–5tU  
–7tU  
–9tU  
4*f3tU  
0tU  
1tU  
2tU  
3tU  
4tU  
5tU  
6tU  
MM  
MH  
HL  
–4tU  
–2tU  
–4tU  
–6tU  
–8tU  
4*f2tU  
–1tU  
–3tU  
–5tU  
–7tU  
4*f1tU  
0tU  
1tU  
2tU  
3tU  
4tU  
–6tU  
–2tU  
–4tU  
–6tU  
4*f+0tU  
–1tU  
–3tU  
–5tU  
4*f+1tU  
0tU  
1tU  
2tU  
–8tU  
–2tU  
–4tU  
4*f+2tU  
–1tU  
–3tU  
4*f+3tU  
0tU  
HM  
HH  
–10tU  
4*f4tU  
–2tU  
4*f+4tU  
TABLE 5. FB = 3Q. 4Q OUTPUT CONFIGURATIONS WITH DIFFERENT 4F(1:0)  
FB  
3F(1:0)  
LL  
Output at 4F(1:0)  
LL  
LM  
2*f6tU  
0tU  
LH  
2*f4tU  
2tU  
ML  
2*f2tU  
4tU  
MM  
2*f+0tU  
6tU  
MH  
2*f+2tU  
8tU  
HL  
2*f+4tU  
10tU  
8tU  
HM  
2*f+6tU  
12tU  
10tU  
8tU  
HH  
0tU  
–2*f  
LM  
LH  
f/2+6tU  
f/2+4tU  
f/2+2tU  
f/2+0tU  
f/2–2tU  
f/2–4tU  
f/2–6tU  
2*f  
–f+6tU  
–f+4tU  
–f+2tU  
–f+0tU  
–f–2tU  
–f–4tU  
–f–6tU  
–4*f  
–2tU  
0tU  
2tU  
4tU  
6tU  
ML  
–4tU  
–2tU  
0tU  
2tU  
4tU  
6tU  
MM  
MH  
HL  
–6tU  
–4tU  
–2tU  
–4tU  
–6tU  
–8tU  
4*f2tU  
0tU  
2tU  
4tU  
6tU  
–8tU  
–6tU  
–2tU  
–4tU  
–6tU  
4*f+0tU  
0tU  
2tU  
4tU  
–10tU  
–12tU  
4*f6tU  
–8tU  
–2tU  
–4tU  
4*f+2tU  
0tU  
2tU  
HM  
HH  
–10tU  
4*f4tU  
–2tU  
4*f+4tU  
0tU  
4*f+6tU  
6
PROGRAMMINGTURBOCLOCKQS5991,QS5992,QS5993,QS5V991,ANDQS5V993  
APPLICATIONNOTEAN-226  
TABLE 6. FB = 4Q. 1Q/2Q OUTPUT CONFIGURATIONS WITH DIFFERENT 1F(1:0)/2F(1:0)(1)  
FB  
4F(1:0)  
LL  
Output at 1F(1:0)/2F(1:0)  
LL  
–2*f4tU  
2tU  
LM  
2*f3tU  
3tU  
LH  
2*f2tU  
4tU  
ML  
2*f1tU  
5tU  
MM  
2*f+0tU  
6tU  
MH  
HL  
2*f+2tU  
8tU  
HM  
2*f+3tU  
9tU  
HH  
2*f+4tU  
10tU  
8tU  
2*f+1tU  
7tU  
LM  
LH  
0tU  
1tU  
2tU  
3tU  
4tU  
5tU  
6tU  
7tU  
ML  
–2tU  
–1tU  
–3tU  
–5tU  
–7tU  
–9tU  
–f–3tU  
0tU  
1tU  
2tU  
3tU  
4tU  
5tU  
6tU  
MM  
MH  
HL  
–4tU  
–2tU  
–4tU  
–6tU  
–8tU  
–f–2tU  
–1tU  
–3tU  
–5tU  
–7tU  
–f–1tU  
0tU  
1tU  
2tU  
3tU  
4tU  
–6tU  
–2tU  
–4tU  
–6tU  
–f+0tU  
–1tU  
–3tU  
–5tU  
–f+1tU  
0tU  
1tU  
2tU  
–8tU  
–2tU  
–4tU  
–f+2tU  
–1tU  
–3tU  
–f+3tU  
0tU  
HM  
HH  
–10tU  
–f–4tU  
–2tU  
–f+4tU  
NOTE:  
1. Table 6 is not applicable for QS5993 and QS5V993.  
TABLE 7. FB = 4Q. 3Q OUTPUT CONFIGURATIONS WITH DIFFERENT 3F(1:0) (1)  
FB  
4F(1:0)  
LL  
Output at 3F(1:0)  
LL  
LM  
2*f6tU  
0tU  
LH  
2*f4tU  
2tU  
ML  
2*f2tU  
4tU  
MM  
2*f+0tU  
6tU  
MH  
2*f+2tU  
8tU  
HL  
2*f+4tU  
10tU  
8tU  
HM  
2*f+6tU  
12tU  
10tU  
8tU  
HH  
0tU  
f/2+0tU  
f/4+6tU  
f/4+4tU  
f/4+2tU  
f/4+0tU  
f/4–2tU  
f/4–4tU  
f/4–6tU  
–f/4  
LM  
LH  
f/2+6tU  
f/2+4tU  
f/2+2tU  
f/2+0tU  
f/2–2tU  
f/2–4tU  
f/2–6tU  
–f/2  
–2tU  
0tU  
2tU  
4tU  
6tU  
ML  
–4tU  
–2tU  
–4tU  
–6tU  
–8tU  
–10tU  
–f–4tU  
0tU  
2tU  
4tU  
6tU  
MM  
MH  
HL  
–6tU  
–2tU  
–4tU  
–6tU  
–8tU  
–f–2tU  
0tU  
2tU  
4tU  
6tU  
–8tU  
–2tU  
–4tU  
–6tU  
–f+0tU  
0tU  
2tU  
4tU  
–10tU  
–12tU  
–f–6tU  
–2tU  
–4tU  
–f+2tU  
0tU  
2tU  
HM  
HH  
–2tU  
–f+4tU  
0tU  
–f+6tU  
NOTE:  
1. Table 7 is not applicable for QS5993 and QS5V993.  
CONCLUSION  
Withits flexible,programmable skewcapability,TurboClockis ideally possible solutions for a given set of inputs at the press of a key. The  
suited for a variety of applications. IDT offers several tools to assist the designers canthenselectthesolutionthatbestmeets theirrequirements.  
designers with designs incorporating TurboClock. One of these tools is In addition, IBIS models are available at no cost for system simulation  
TurboKit, a powerful software tool that provides the designers with all purposes.  
CORPORATE HEADQUARTERS  
2975StenderWay  
Santa Clara, CA 95054  
for SALES:  
800-345-7015 or 408-727-6116  
fax: 408-492-8674  
www.idt.com*  
*To search for sales office near you, please click the sales button found on our home page or dial the 800# above and press 2.  
The IDT logo is a registered trademark of Integrated Device Technology, Inc.  
7

相关型号:

QS5V991-7JRC

Clock Driver, CMOS, PQCC32
IDT

QS5V991-7JRI

PLL Based Clock Driver, QS5 Series, 8 True Output(s), 0 Inverted Output(s), CMOS, PQCC32, PLASTIC, LCC-32
IDT

QS5V9910-2SOC

PLL Based Clock Driver, QS5 Series, 8 True Output(s), 0 Inverted Output(s), CMOS, PDSO24, 0.300 INCH, SOIC-24
IDT

QS5V9910-2SOI

Clock Driver, CMOS, PDSO24
IDT

QS5V9910-5SOC

Clock Driver, CMOS, PDSO24
IDT

QS5V9910-5SOI

PLL Based Clock Driver, QS5 Series, 8 True Output(s), 0 Inverted Output(s), CMOS, PDSO24, 0.300 INCH, SOIC-24
IDT

QS5V9910-7Q

Clock Driver, CMOS, PDSO24
IDT

QS5V9910-7SOI

PLL Based Clock Driver, QS5 Series, 8 True Output(s), 0 Inverted Output(s), CMOS, PDSO24, 0.300 INCH, SOIC-24
IDT

QS5V993-2Q

Clock Driver, CMOS, PDSO28
IDT

QS5V993-2QC

PLL Based Clock Driver, QS5 Series, 8 True Output(s), 0 Inverted Output(s), PDSO28, QSOP-28
IDT

QS5V993-5Q

Clock Driver, CMOS, PDSO28
IDT

QS5V993-5QI

PLL Based Clock Driver, QS5 Series, 8 True Output(s), 0 Inverted Output(s), PDSO28, QSOP-28
IDT