AUIRF3004WL [INFINEON]

HEXFETPower MOSFET; ?? HEXFET功率MOSFET
AUIRF3004WL
型号: AUIRF3004WL
厂家: Infineon    Infineon
描述:

HEXFETPower MOSFET
?? HEXFET功率MOSFET

晶体 晶体管 功率场效应晶体管 开关 脉冲 PC 局域网
文件: 总10页 (文件大小:236K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 97677  
AUTOMOTIVE GRADE  
AUIRF3004WL  
HEXFET® Power MOSFET  
Features  
l Advanced Process Technology  
l Ultra Low On-Resistance  
l 50% Lower Lead Resistance  
l 175°C Operating Temperature  
l Fast Switching  
l Repetitive Avalanche Allowed up to Tjmax  
l Lead-Free, RoHS Compliant  
l Automotive Qualified *  
D
S
V(BR)DSS  
40V  
1.27m  
1.40m  
386A  
RDS(on) typ.  
Ω
Ω
max.  
ID (Silicon Limited)  
ID (Package Limited)  
G
240A  
Description  
Specifically design for automotive applications this Widelead TO-  
262 package part has the advantage of having over 50% lower  
lead resistance and delivering over 20% lower Rds(on) when  
compared with a traditional TO-262 package housing the same  
silicondie.Thisgreatlyhelpsinreducingconditionlosses,achieving  
higher current levels or enabling a system to run cooler and have  
improved efficiency. Additional features of this design are a 175°C  
junctionoperatingtemperature,fastswitchingspeedandimproved  
repetitive avalanche rating . These features combine to make this  
design an extremely efficient and reliable device for use in  
S
D
G
TO-262 WideLead  
Automotive and other applications.  
G
D
S
Gate  
Drain  
Source  
Absolute Maximum Ratings  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device.  
These are stress ratings only; and functional operation of the device at these or any other condition beyond those  
indicated in the specifications is not implied.Exposure to absolute-maximum-rated conditions for extended  
periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under  
board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless otherwise specified.  
Parameter  
Max.  
Units  
ID @ TC = 25°C  
ID @ TC = 100°C  
ID @ TC = 25°C  
IDM  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Package Limited)  
Pulsed Drain Current  
386  
273  
A
240  
1544  
PD @TC = 25°C  
W
375  
Maximum Power Dissipation  
2.5  
Linear Derating Factor  
W/°C  
V
VGS  
± 20  
470  
Gate-to-Source Voltage  
Single Pulse Avalanche Energy  
EAS (Thermally limited)  
mJ  
A
Avalanche Current  
IAR  
See Fig. 14, 15, 22a, 22b,  
Repetitive Avalanche Energy  
EAR  
mJ  
6.1  
Peak Diode Recovery  
dv/dt  
TJ  
V/ns  
-55 to + 175  
Operating Junction and  
TSTG  
°C  
Storage Temperature Range  
Soldering Temperature, for 10 seconds  
300 (1.6mm from case)  
Thermal Resistance  
Parameter  
Typ.  
Max.  
Units  
Rθ  
–––  
Junction-to-Case  
0.40  
°C/W  
JC  
HEXFET® is a registered trademark of International Rectifier.  
*Qualification standards can be found at http://www.irf.com/  
www.irf.com  
1
05/13/11  
AUIRF3004WL  
Static Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
Min. Typ. Max. Units  
40 ––– –––  
––– 0.038 ––– V/°C Reference to 25°C, ID = 5mA  
Conditions  
VGS = 0V, ID = 250μA  
V(BR)DSS  
ΔV(BR)DSS/ΔTJ  
RDS(on)  
VGS(th)  
gfs  
V
––– 1.27 1.40  
2.0 ––– 4.0  
330 ––– –––  
VGS = 10V, ID = 195A  
VDS = VGS, ID = 250μA  
VDS = 10V, ID = 195A  
mΩ  
V
Forward Transconductance  
S
RG  
Internal Gate Resistance  
–––  
2.7  
–––  
20  
Ω
IDSS  
Drain-to-Source Leakage Current  
––– –––  
VDS = 40V, VGS = 0V  
μA  
––– ––– 250  
––– ––– 100  
––– ––– -100  
VDS = 32V, VGS = 0V, TJ = 125°C  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
VGS = 20V  
GS = -20V  
nA  
V
Dynamic Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Total Gate Charge  
Gate-to-Source Charge  
Min. Typ. Max. Units  
––– 140 210  
Conditions  
Qg  
ID = 232A  
DS =20V  
VGS = 10V  
Qgs  
–––  
–––  
–––  
–––  
53  
49  
91  
19  
–––  
–––  
–––  
–––  
V
nC  
ns  
Qgd  
Gate-to-Drain ("Miller") Charge  
Total Gate Charge Sync. (Qg - Qgd)  
Qsync  
ID = 232A, VDS =0V, VGS = 10V  
VDD = 26V  
td(on)  
Turn-On Delay Time  
tr  
Rise Time  
––– 220 –––  
––– 90 –––  
ID = 232A  
td(off)  
Turn-Off Delay Time  
R = 2.7  
Ω
G
tf  
Fall Time  
––– 130 –––  
––– 9450 –––  
––– 1930 –––  
––– 975 –––  
––– 2330 –––  
––– 2815 –––  
VGS = 10V  
Ciss  
Input Capacitance  
VGS = 0V  
Coss  
Output Capacitance  
VDS = 32V  
Crss  
Reverse Transfer Capacitance  
Effective Output Capacitance (Energy Related)  
Effective Output Capacitance (Time Related)  
ƒ = 1.0MHz, See Fig.5  
pF  
Coss eff. (ER)  
Coss eff. (TR)  
V
GS = 0V, VDS = 0V to 32V , See Fig.11  
GS = 0V, VDS = 0V to 32V  
V
Diode Characteristics  
Parameter  
Min. Typ. Max. Units  
––– –––  
Conditions  
MOSFET symbol  
D
IS  
Continuous Source Current  
386  
(Body Diode)  
Pulsed Source Current  
(Body Diode)  
showing the  
integral reverse  
A
G
ISM  
––– ––– 1544  
S
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
––– –––  
1.3  
62  
V
TJ = 25°C, IS = 195A, VGS = 0V  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
VR = 34V,  
–––  
–––  
–––  
–––  
–––  
41  
51  
62  
99  
2.3  
ns  
IF = 232A  
di/dt = 100A/μs  
77  
Qrr  
Reverse Recovery Charge  
93  
nC  
A
149  
–––  
IRRM  
ton  
Reverse Recovery Current  
Forward Turn-On Time  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
Notes:  
 Calculated continuous current based on maximum allowable junction  
temperature. Package limitation current is 240A. Note that current  
limitations arising from heating of the device leads may occur with  
some lead mounting arrangements.(Refer to AN-1140  
„ ISD 232A, di/dt 907A/μs, VDD V(BR)DSS, TJ 175°C.  
Pulse width 400μs; duty cycle 2%.  
† Coss eff. (TR) is a fixed capacitance that gives the same charging time  
as Coss while VDS is rising from 0 to 80% VDSS  
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as  
.
http://www.irf.com/technical-info/appnotes/an-1140.pdf  
Coss while VDS is rising from 0 to 80% VDSS  
ˆ Rθ is measured at TJ approximately 90°C.  
.
‚ Repetitive rating; pulse width limited by max. junction  
temperature.  
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.018mH  
RG = 50Ω, IAS = 232A, VGS =10V. Part not recommended for use  
above this value.  
2
www.irf.com  
AUIRF3004WL  
10000  
1000  
100  
10000  
1000  
100  
10  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
4.5V  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
4.5V  
TOP  
TOP  
BOTTOM  
BOTTOM  
4.5V  
4.5V  
60μs PULSE WIDTH  
Tj = 25°C  
60μs PULSE WIDTH  
Tj = 175°C  
1
10  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
V
, Drain-to-Source Voltage (V)  
DS  
V
, Drain-to-Source Voltage (V)  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
10000  
1000  
100  
10  
2.0  
1.5  
1.0  
0.5  
0.0  
I
= 195A  
= 10V  
D
V
GS  
T = 175°C  
J
T
= 25°C  
J
1
V
= 25V  
DS  
60μs PULSE WIDTH  
0.1  
2
3
4
5
6
7
8
-60 -40 -20 0 20 40 60 80 100120140160180  
, Junction Temperature (°C)  
T
J
V
, Gate-to-Source Voltage (V)  
GS  
Fig 4. Normalized On-Resistance vs. Temperature  
Fig 3. Typical Transfer Characteristics  
100000  
10000  
1000  
14.0  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
I = 232A  
D
C
C
C
+ C , C  
SHORTED  
iss  
gs  
gd  
ds  
12.0  
= C  
V
V
= 32V  
= 20V  
rss  
oss  
gd  
= C + C  
DS  
DS  
ds  
gd  
10.0  
8.0  
6.0  
4.0  
2.0  
0.0  
C
iss  
C
oss  
C
rss  
100  
0
20 40 60 80 100 120 140 160 180 200  
1
10  
, Drain-to-Source Voltage (V)  
100  
V
DS  
Q , Total Gate Charge (nC)  
G
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage  
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage  
www.irf.com  
3
AUIRF3004WL  
10000  
10000  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
1000  
100μsec  
T
J
= 175°C  
100  
10  
Limited by package  
1msec  
T = 25°C  
J
10msec  
1
DC  
Tc = 25°C  
Tj = 175°C  
Single Pulse  
V
= 0V  
GS  
1.0  
0.1  
0.1  
1
10  
100  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6  
, Source-to-Drain Voltage (V)  
V
, Drain-toSource Voltage (V)  
V
DS  
SD  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
400  
56  
54  
52  
50  
48  
46  
44  
42  
40  
Id = 5mA  
Limited By Package  
300  
200  
100  
0
25  
50  
75  
100  
125  
150  
175  
-60 -40 -20 0 20 40 60 80 100120140160180  
T
, Case Temperature (°C)  
T
, Temperature ( °C )  
J
C
Fig 10. Drain-to-Source Breakdown Voltage  
Fig 9. Maximum Drain Current vs.  
Case Temperature  
2.0  
2000  
I
D
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1800  
1600  
1400  
1200  
1000  
800  
TOP  
45A  
86A  
BOTTOM 232A  
600  
400  
200  
0
-5  
0
5
10 15 20 25 30 35 40 45  
Drain-to-Source Voltage (V)  
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
V
DS,  
Fig 11. Typical COSS Stored Energy  
Fig 12. Maximum Avalanche Energy vs. DrainCurrent  
4
www.irf.com  
AUIRF3004WL  
1
0.1  
D = 0.50  
0.20  
0.10  
0.05  
R1  
R1  
R2  
R2  
R3  
R3  
Ri (°C/W) τi (sec)  
0.02  
0.01  
0.01  
τ
J τJ  
τ
τ
Cτ  
0.2063 0.017817  
0.0394 0.000116  
0.1534 0.002614  
τ
1τ1  
τ
2 τ2  
3τ3  
Ci= τi/Ri  
0.001  
0.0001  
/
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
t
, Rectangular Pulse Duration (sec)  
1
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
1000  
100  
10  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming ΔTj = 150°C and  
Tstart =25°C (Single Pulse)  
Duty Cycle = Single Pulse  
0.01  
0.05  
0.10  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming ΔΤ j = 25°C and  
Tstart = 150°C.  
1
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 14. Typical Avalanche Current vs. Pulsewidth  
www.irf.com  
5
AUIRF3004WL  
500  
Notes on Repetitive Avalanche Curves , Figures 14, 15:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a temperature far in  
excess of Tjmax. This is validated for every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.  
3. Equation below based on circuit and waveforms shown in Figure 22a, 22b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
during avalanche).  
6. Iav = Allowable avalanche current.  
7. ΔT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as  
25°C in Figure 14, 15).  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
TOP  
BOTTOM 1.0% Duty Cycle  
= 232A  
Single Pulse  
I
400  
300  
200  
100  
0
D
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)  
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
Iav = 2DT/ [1.3·BV·Zth]  
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
EAS (AR) = PD (ave)·tav  
J
Fig 15. Maximum Avalanche Energy vs. Temperature  
4.5  
4.0  
3.5  
3.0  
2.5  
I
I
I
= 250μA  
= 1.0mA  
= 1.0A  
D
D
D
2.0  
1.5  
1.0  
-75 -50 -25  
0
25 50 75 100 125 150 175  
T , Temperature ( °C )  
J
Fig 16. Threshold Voltage vs. Temperature  
6
www.irf.com  
AUIRF3004WL  
Driver Gate Drive  
P.W.  
P.W.  
Period  
D.U.T  
Period  
D =  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Current  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
V
(BR)DSS  
t
p
15V  
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
20V  
0.01  
t
Ω
p
I
AS  
Fig 22b. Unclamped Inductive Waveforms  
Fig 22a. Unclamped Inductive Test Circuit  
LD  
VDS  
VGS  
90%  
+
-
VDD  
D.U.T  
10%  
VDS  
VGS  
Second Pulse Width < 1μs  
Duty Factor < 0.1%  
td(off)  
td(on)  
tf  
tr  
Fig 23a. Switching Time Test Circuit  
Fig 23b. Switching Time Waveforms  
Id  
Vds  
Vgs  
L
VCC  
DUT  
0
Vgs(th)  
20K  
Qgs1  
Qgs2  
Qgodr  
Qgd  
Fig 24a. Gate Charge Test Circuit  
Fig 24b. Gate Charge Waveform  
www.irf.com  
7
AUIRF3004WL  
TO-262 WideLead Package Outline  
Dimensions are shown in millimeters (inches)  
TO-262 WideLead Part Marking Information  
Part Number  
AUIRF3004WL  
Date Code  
Y= Year  
WW= Work Week  
A= Automotive, Lead Free  
IR Logo  
YWWA  
XX or XX  
Lot Code  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
8
www.irf.com  
AUIRF3004WL  
Ordering Information  
Base part number  
Package Type  
Standard Pack  
Form  
Complete Part Number  
AUIRF3004WL  
Quantity  
AUIRF3004WL  
TO-262 WideLead  
Tube  
50  
www.irf.com  
9
AUIRF3004WL  
IMPORTANT NOTICE  
Unless specifically designated for the automotive market, International Rectifier Corporation and its subsidiaries (IR) reserve the right to make  
corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or  
services without notice. Part numbers designated with the “AU” prefix follow automotive industry and / or customer specific requirements with regards  
to product discontinuance and process change notification. All products are sold subject to IR’s terms and conditions of sale supplied at the time of order  
acknowledgment.  
IR warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with IR’s standard warranty. Testing  
and other quality control techniques are used to the extent IR deems necessary to support this warranty. Except where mandated by government  
requirements, testing of all parameters of each product is not necessarily performed.  
IR assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using IR  
components. To minimize the risks with customer products and applications, customers should provide adequate design and operating safeguards.  
Reproduction of IR information in IR data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all  
associatedwarranties, conditions, limitations, andnotices. Reproductionofthisinformationwithalterationsisanunfairanddeceptivebusinesspractice.  
IR is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.  
Resale of IR products or serviced with statements different from or beyond the parameters stated by IR for that product or service voids all express and  
any implied warranties for the associated IR product or service and is an unfair and deceptive business practice. IR is not responsible or liable for any  
such statements.  
IRproductsarenotdesigned, intended, orauthorizedforuseascomponentsinsystemsintendedforsurgicalimplantintothebody, orinotherapplications  
intended to support or sustain life, or in any other application in which the failure of the IR product could create a situation where personal injury or  
death may occur. Should Buyer purchase or use IR products for any such unintended or unauthorized application, Buyer shall indemnify and hold  
International Rectifier and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses,  
and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized  
use, even if such claim alleges that IR was negligent regarding the design or manufacture of the product.  
Only products certified as military grade by the Defense Logistics Agency (DLA) of the US Department of Defense, are designed and manufactured  
to meet DLA military specifications required by certain military, aerospace or other applications. Buyers acknowledge and agree that any use of IR  
products not certified by DLA as military-grade, in applications requiring military grade products, is solely at the Buyer’s own risk and that they are  
solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
IR products are neither designed nor intended for use in automotive applications or environments unless the specific IR products are designated by IR  
as compliant with ISO/TS 16949 requirements and bear a part number including the designation “AU”. Buyers acknowledge and agree that, if they use  
any non-designated products in automotive applications, IR will not be responsible for any failure to meet such requirements.  
For technical support, please contact IR’s Technical Assistance Center  
http://www.irf.com/technical-info/  
WORLD HEADQUARTERS:  
101 N. Sepulveda Blvd., El Segundo, California 90245  
Tel: (310) 252-7105  
10  
www.irf.com  

相关型号:

AUIRF3007

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET,
INFINEON

AUIRF3205

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET
INFINEON

AUIRF3205Z

HEXFET? Power MOSFET
INFINEON

AUIRF3205ZS

HEXFET? Power MOSFET
INFINEON

AUIRF3205ZSTRL

HEXFET? Power MOSFET
INFINEON

AUIRF3205ZSTRR

HEXFET? Power MOSFET
INFINEON

AUIRF3305

Advanced Planar Technology
INFINEON

AUIRF3315S

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET
INFINEON

AUIRF3315STRL

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET
INFINEON

AUIRF3315STRR

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET
INFINEON

AUIRF3415

ADVANCED PLANAR TECHNOLOGY, LOW ON-RESISTANCE
INFINEON

AUIRF3504

Power Field-Effect Transistor, 87A I(D), 40V, 0.0092ohm, 1-Element, N-Channel, Silicon, Metal-Oxide Semiconductor FET, TO-220AB, ROHS COMPLIANT, PLASTIC PACKAGE-3
INFINEON