AUIRFR2307Z [INFINEON]

HEXFET® Power MOSFET; HEXFET㈢功率MOSFET
AUIRFR2307Z
型号: AUIRFR2307Z
厂家: Infineon    Infineon
描述:

HEXFET® Power MOSFET
HEXFET㈢功率MOSFET

晶体 晶体管 功率场效应晶体管 开关 脉冲 局域网
文件: 总13页 (文件大小:299K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 97546  
AUTOMOTIVE GRADE  
AUIRFR2307Z  
Features  
HEXFET® Power MOSFET  
Advanced Process Technology  
UltraLowOn-Resistance  
175°COperatingTemperature  
Fast Switching  
Repetitive Avalanche Allowed up to Tjmax  
Lead-Free,RoHSCompliant  
Automotive Qualified *  
D
V(BR)DSS  
75V  
16m  
RDS(on) max.  
ID (Silicon Limited)  
ID (Package Limited)  
G
53A  
42A  
S
Description  
D
Specifically designed for Automotive applications,  
this HEXFET® Power MOSFET utilizes the latest  
processing techniques to achieve extremely low on-  
resistance per silicon area. Additional features of this  
design are a 175°C junction operating temperature,  
fast switching speed and improved repetitive ava-  
lanche rating . These features combine to make this  
design an extremely efficient and reliable device for  
use in Automotive applications and a wide variety of  
other applications.  
S
G
D-Pak  
AUIRFR2307Z  
G
Gate  
D
Drain  
S
Source  
Absolute Maximum Ratings  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These  
are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in  
the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.  
Ambient temperature (TA) is 25°C, unless otherwise specified.  
Max.  
53  
Parameter  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
Units  
(Silicon Limited)  
I
I
I
I
@ T = 25°C  
C
D
D
D
38  
A
@ T = 100°C  
C
(Package Limited)  
42  
@ T = 25°C  
C
210  
DM  
110  
P
@T = 25°C Power Dissipation  
W
W/°C  
V
D
C
0.70  
Linear Derating Factor  
Gate-to-Source Voltage  
± 20  
V
GS  
EAS  
AS (tested )  
100  
140  
Single Pulse Avalanche Energy (Thermally Limited)  
Single Pulse Avalanche Energy Tested Value  
Avalanche Current  
mJ  
E
IAR  
See Fig.12a, 12b, 15, 16  
A
EAR  
Repetitive Avalanche Energy  
mJ  
-55 to + 175  
300  
T
T
Operating Junction and  
J
Storage Temperature Range  
°C  
STG  
Soldering Temperature, for 10 seconds (1.6mm from case )  
Thermal Resistance  
Parameter  
Typ.  
–––  
–––  
–––  
Max.  
1.42  
50  
Units  
RθJC  
RθJA  
RθJA  
Junction-to-Case  
Junction-to-Ambient (PCB mount)  
Junction-to-Ambient  
°C/W  
110  
HEXFET® is a registered trademark of International Rectifier.  
*Qualification standards can be found at http://www.irf.com/  
www.irf.com  
1
07/23/2010  
AUIRFR2307Z  
Static Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Drain-to-Source Breakdown Voltage  
Min. Typ. Max. Units  
75 ––– –––  
Conditions  
VGS = 0V, ID = 250µA  
V(BR)DSS  
V(BR)DSS/TJ  
RDS(on)  
V
Breakdown Voltage Temp. Coefficient ––– 0.072 ––– V/°C Reference to 25°C, ID = 1mA  
mΩ  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
––– 12.8  
16  
4.0  
–––  
25  
VGS = 10V, ID = 32A  
VGS(th)  
2.0  
30  
–––  
–––  
–––  
–––  
–––  
V
S
VDS = VGS, ID = 100µA  
VDS = 25V, ID = 32A  
gfs  
IDSS  
Forward Transconductance  
Drain-to-Source Leakage Current  
–––  
–––  
–––  
–––  
µA VDS = 75V, VGS = 0V  
250  
200  
V
DS = 75V, VGS = 0V, TJ = 125°C  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
nA VGS = 20V  
VGS = -20V  
––– -200  
Dynamic Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter Min. Typ. Max. Units Conditions  
Total Gate Charge  
Qg  
Qgs  
Qgd  
td(on)  
tr  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
50  
14  
19  
16  
65  
44  
29  
4.5  
75  
I
D = 32A  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Turn-On Delay Time  
Rise Time  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
nC  
VDS = 60V  
VGS = 10V  
VDD = 38V  
ID = 32A  
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
ns  
R
G = 10  
VGS = 10V  
Between lead,  
LD  
D
S
Internal Drain Inductance  
nH 6mm (0.25in.)  
from package  
G
LS  
Internal Source Inductance  
–––  
7.5  
–––  
and center of die contact  
VGS = 0V  
DS = 25V  
pF ƒ = 1.0MHz  
Ciss  
Coss  
Crss  
Coss  
Coss  
Input Capacitance  
––– 2190 –––  
Output Capacitance  
–––  
–––  
280  
150  
–––  
–––  
V
Reverse Transfer Capacitance  
Output Capacitance  
––– 1070 –––  
V
V
V
GS = 0V, VDS = 1.0V, ƒ = 1.0MHz  
GS = 0V, VDS = 60V, ƒ = 1.0MHz  
GS = 0V, VDS = 0V to 60V  
Output Capacitance  
–––  
–––  
190  
400  
–––  
–––  
Coss eff.  
Effective Output Capacitance  
Diode Characteristics  
Parameter  
Min. Typ. Max. Units  
Conditions  
I
I
Continuous Source Current  
–––  
–––  
42  
MOSFET symbol  
S
(Body Diode)  
Pulsed Source Current  
A
showing the  
integral reverse  
–––  
–––  
210  
SM  
(Body Diode)  
p-n junction diode.  
V
t
Diode Forward Voltage  
–––  
–––  
–––  
–––  
31  
1.3  
47  
47  
V
T = 25°C, I = 32A, V = 0V  
SD  
J
S
GS  
Reverse Recovery Time  
Reverse Recovery Charge  
Forward Turn-On Time  
ns T = 25°C, I = 32A, VDD = 38V  
J F  
rr  
di/dt = 100A/µs  
Q
t
31  
nC  
rr  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
on  
Notes:  
Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical  
repetitive avalanche performance.  
 Repetitive rating; pulse width limited by  
max. junction temperature. (See fig. 11).  
† This value determined from sample failure population,  
starting TJ = 25°C, L = 0.197mH, RG = 25, IAS = 32A,  
VGS =10V.  
‚ Limited by TJmax, starting TJ = 25°C, L = 0.197mH  
RG = 25, IAS = 32A, VGS =10V. Part not  
recommended for use above this value.  
‡ When mounted on 1" square PCB (FR-4 or G-10 Material) .  
ƒ Pulse width 1.0ms; duty cycle 2%.  
„ Coss eff. is a fixed capacitance that gives the same  
For recommended footprint and soldering techniques  
refer to application note #AN-994.  
charging time as Coss while VDS is rising from 0 to  
ˆ Rθ is measured at TJ approximately 90°C.  
80% VDSS  
.
2
www.irf.com  
AUIRFR2307Z  
Qualification Information†  
Automotive  
††  
(per AEC-Q101)  
Qualification Level  
Comments: This part number(s) passed Automotive qualification.  
IR’s Industrial and Consumer qualification level is granted by  
extension of the higher Automotive level.  
Moisture Sensitivity Level  
D-PAK  
MSL1  
Class M4 (425V)  
Machine Model  
AEC-Q101-002  
Class H1B (1000V)  
AEC-Q101-001  
Class (C5 (1125V)  
AEC-Q101-005  
Yes  
Human Body Model  
ESD  
Charged Device  
Model  
RoHS Compliant  
†
Qualification standards can be found at International Rectifier’s web site: http//www.irf.com/  
†† Exceptions to AEC-Q101 requirements are noted in the qualification report.  
www.irf.com  
3
AUIRFR2307Z  
1000  
100  
10  
1000  
VGS  
15V  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
4.5V  
TOP  
TOP  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
4.5V  
100  
10  
1
BOTTOM  
BOTTOM  
4.5V  
4.5V  
60µs PULSE WIDTH  
60µs PULSE WIDTH  
Tj = 175°C  
Tj = 25°C  
1
0.1  
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000  
80  
T
= 25°C  
J
100  
10  
1
60  
40  
20  
0
T
= 175°C  
J
T
= 175°C  
J
T
= 25°C  
V
J
V
= 10V  
= 20V  
DS  
380µs PULSE WIDTH  
DS  
60µs PULSE WIDTH  
0.1  
2
4
6
8
10  
0
10  
20  
30  
40  
50  
60  
70  
I ,Drain-to-Source Current (A)  
V
, Gate-to-Source Voltage (V)  
D
GS  
Fig 3. Typical Transfer Characteristics  
Fig 4. Typical Forward Transconductance  
vs. Drain Current  
4
www.irf.com  
AUIRFR2307Z  
4000  
3000  
2000  
1000  
0
20  
16  
12  
8
V
C
= 0V,  
f = 1 MHZ  
GS  
I = 32A  
D
= C + C , C SHORTED  
iss  
gs  
gd ds  
V
= 60V  
DS  
C
= C  
rss  
gd  
VDS= 38V  
VDS= 15V  
C
= C + C  
ds  
oss  
gd  
C
iss  
4
C
oss  
rss  
C
0
0
20  
40  
60  
80  
1
10  
100  
Q
Total Gate Charge (nC)  
G
V
, Drain-to-Source Voltage (V)  
DS  
Fig 6. Typical Gate Charge vs.  
Fig 5. Typical Capacitance vs.  
Gate-to-SourceVoltage  
Drain-to-SourceVoltage  
1000.00  
100.00  
10.00  
1.00  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
100µsec  
T
= 175°C  
J
1msec  
10msec  
1
Tc = 25°C  
Tj = 175°C  
Single Pulse  
T
= 25°C  
1.0  
J
V
= 0V  
DC  
10  
GS  
0.1  
0.10  
1
100  
0.2  
0.4  
V
0.6  
0.8  
1.2  
1.4  
1.6  
V
, Drain-toSource Voltage (V)  
DS  
, Source-to-Drain Voltage (V)  
SD  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
nce  
Forward Voltage  
www.irf.com  
5
AUIRFR2307Z  
60  
2.5  
2.0  
1.5  
1.0  
0.5  
I
= 32A  
LIMITED BY PACKAGE  
D
V
= 10V  
GS  
50  
40  
30  
20  
10  
0
25  
50  
75  
100  
125  
150  
175  
-60 -40 -20  
0
20 40 60 80 100 120 140 160 180  
T
, Case Temperature (°C)  
C
T
, Junction Temperature (°C)  
J
Fig 10. Normalized On-Resistance  
Fig 9. Maximum Drain Current vs.  
vs.Temperature  
CaseTemperature  
10  
1
0.1  
D = 0.50  
0.20  
0.10  
R1  
R1  
R2  
R2  
Ri (°C/W) τi (sec)  
τ
0.05  
J τJ  
τ
0.7938  
0.000499  
τ
Cτ  
1 τ1  
Ci= τi/Ri  
τ
0.02  
0.01  
2τ2  
0.6257  
0.005682  
0.01  
0.001  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
SINGLE PULSE  
( THERMAL RESPONSE )  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
6
www.irf.com  
AUIRFR2307Z  
15V  
500  
400  
300  
200  
100  
0
I
D
TOP  
3.4A  
4.6A  
32A  
DRIVER  
+
L
V
DS  
BOTTOM  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
20V  
GS  
0.01  
t
p
Fig 12a. Unclamped Inductive Test Circuit  
V
(BR)DSS  
t
p
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
I
AS  
Fig 12c. Maximum Avalanche Energy  
Fig 12b. Unclamped Inductive Waveforms  
vs. Drain Current  
Q
G
10 V  
Q
Q
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
GS  
GD  
I
= 1.0A  
D
ID = 1.0mA  
I
= 250µA  
V
D
D
G
I
= 100µA  
Charge  
Fig 13a. Basic Gate Charge Waveform  
L
VCC  
-75 -50 -25  
0
J
25 50 75 100 125 150 175  
, Temperature ( °C )  
DUT  
0
T
1K  
Fig 14. Threshold Voltage vs. Temperature  
Fig 13b. Gate Charge Test Circuit  
www.irf.com  
7
AUIRFR2307Z  
1000  
Duty Cycle = Single Pulse  
100  
Allowed avalanche Current vs  
avalanche pulsewidth, tav  
assuming Tj = 25°C due to  
avalanche losses  
0.01  
10  
0.05  
0.10  
1
0.1  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 15. Typical Avalanche Current vs.Pulsewidth  
120  
Notes on Repetitive Avalanche Curves , Figures 15, 16:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a  
temperature far in excess of Tjmax. This is validated for  
every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is  
not exceeded.  
3. Equation below based on circuit and waveforms shown in  
Figures 12a, 12b.  
4. PD (ave) = Average power dissipation per single  
avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for  
voltage increase during avalanche).  
6. Iav = Allowable avalanche current.  
TOP  
BOTTOM 1% Duty Cycle  
= 32A  
Single Pulse  
100  
80  
60  
40  
20  
0
I
D
7. T = Allowable rise in junction temperature, not to exceed  
Tjmax (assumed as 25°C in Figure 15, 16).  
tav = Average time in avalanche.  
25  
50  
75  
100  
125  
150  
175  
D = Duty cycle in avalanche = tav ·f  
Starting T , Junction Temperature (°C)  
ZthJC(D, tav) = Transient thermal resistance, see figure 11)  
J
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
Iav = 2DT/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·tav  
Fig 16. Maximum Avalanche Energy  
vs.Temperature  
8
www.irf.com  
AUIRFR2307Z  
Driver Gate Drive  
P.W.  
P.W.  
Period  
Period  
D =  
D.U.T  
+
*
=10V  
V
GS  
ƒ
CircuitLayoutConsiderations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dtcontrolledbyRG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Curent  
I
SD  
Ripple  
5%  
* VGS = 5V for Logic Level Devices  
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
RD  
VDS  
VGS  
D.U.T.  
RG  
+VDD  
-
10V  
PulseWidth ≤ 1 µs  
Duty Factor≤ 0.1 %  
Fig 18a. Switching Time Test Circuit  
V
DS  
90%  
10%  
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 18b. Switching Time Waveforms  
www.irf.com  
9
AUIRFR2307Z  
D-Pak (TO-252AA) Package Outline  
Dimensions are shown in millimeters (inches)  
D-Pak Part Marking Information  
PartNumber  
AUFR2307Z  
DateCode  
Y= Year  
WW= Work Week  
A=Automotive,LeadFree  
IRLogo  
YWWA  
XX or XX  
LotCode  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
10  
www.irf.com  
AUIRFR2307Z  
D-Pak (TO-252AA) Tape & Reel Information  
Dimensions are shown in millimeters (inches)  
TR  
TRL  
TRR  
16.3 ( .641 )  
15.7 ( .619 )  
16.3 ( .641 )  
15.7 ( .619 )  
12.1 ( .476 )  
11.9 ( .469 )  
8.1 ( .318 )  
7.9 ( .312 )  
FEED DIRECTION  
FEED DIRECTION  
NOTES :  
1. CONTROLLING DIMENSION : MILLIMETER.  
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ).  
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.  
13 INCH  
16 mm  
NOTES :  
1. OUTLINE CONFORMS TO EIA-481.  
www.irf.com  
11  
AUIRFR2307Z  
Ordering Information  
Base part  
Package Type  
Standard Pack  
Form  
Complete Part Number  
Quantity  
75  
2000  
3000  
3000  
AUIRFR2307Z  
Dpak  
Tube  
AUIRFR2307Z  
AUIRFR2307ZTR  
AUIRFR2307ZTRL  
AUIRFR2307ZTRR  
Tape and Reel  
Tape and Reel Left  
Tape and Reel Right  
12  
www.irf.com  
AUIRFR2307Z  
IMPORTANTNOTICE  
Unless specifically designated for the automotive market, International Rectifier Corporation and its subsidiaries (IR)  
reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products  
and services at any time and to discontinue any product or services without notice. Part numbers designated with the  
“AU” prefix follow automotive industry and / or customer specific requirements with regards to product discontinuance  
and process change notification. All products are sold subject to IR’s terms and conditions of sale supplied at the time  
of order acknowledgment.  
IR warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with  
IR’s standard warranty. Testing and other quality control techniques are used to the extent IR deems necessary to support  
this warranty. Except where mandated by government requirements, testing of all parameters of each product is not  
necessarily performed.  
IR assumes no liability for applications assistance or customer product design. Customers are responsible for their  
products and applications using IR components. To minimize the risks with customer products and applications,  
customers should provide adequate design and operating safeguards.  
Reproduction of IR information in IR data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information  
with alterations is an unfair and deceptive business practice. IR is not responsible or liable for such altered documentation.  
Information of third parties may be subject to additional restrictions.  
Resale of IR products or serviced with statements different from or beyond the parameters stated by IR for that product  
or service voids all express and any implied warranties for the associated IR product or service and is an unfair and  
deceptive business practice. IR is not responsible or liable for any such statements.  
IR products are not designed, intended, or authorized for use as components in systems intended for surgical implant  
into the body, or in other applications intended to support or sustain life, or in any other application in which the failure  
of the IR product could create a situation where personal injury or death may occur. Should Buyer purchase or use IR  
products for any such unintended or unauthorized application, Buyer shall indemnify and hold International Rectifier and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that IR was negligent regarding the design  
or manufacture of the product.  
IR products are neither designed nor intended for use in military/aerospace applications or environments unless the IR  
products are specifically designated by IR as military-grade or “enhanced plastic.” Only products designated by IR as  
military-grade meet military specifications. Buyers acknowledge and agree that any such use of IR products which IR  
has not designated as military-grade is solely at the Buyer’s risk, and that they are solely responsible for compliance  
with all legal and regulatory requirements in connection with such use.  
IR products are neither designed nor intended for use in automotive applications or environments unless the specific  
IR products are designated by IR as compliant with ISO/TS 16949 requirements and bear a part number including the  
designation “AU”. Buyers acknowledge and agree that, if they use any non-designated products in automotive  
applications, IR will not be responsible for any failure to meet such requirements.  
For technical support, please contact IR’s Technical Assistance Center  
http://www.irf.com/technical-info/  
WORLD HEADQUARTERS:  
233 Kansas St., El Segundo, California 90245  
Tel: (310) 252-7105  
www.irf.com  
13  

相关型号:

AUIRFR2307ZTR

HEXFET® Power MOSFET
INFINEON

AUIRFR2307ZTRL

HEXFET® Power MOSFET
INFINEON

AUIRFR2307ZTRR

HEXFET® Power MOSFET
INFINEON

AUIRFR2405

Power Field-Effect Transistor, 30A I(D), 55V, 0.0016ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-252AA, ROHS COMPLIANT, PLASTIC PACKAGE-3
INFINEON

AUIRFR2405TR

Power Field-Effect Transistor, 30A I(D), 55V, 0.0016ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-252AA, ROHS COMPLIANT, PLASTIC PACKAGE-3
INFINEON

AUIRFR2405TRL

Power Field-Effect Transistor, 30A I(D), 55V, 0.0016ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-252AA, ROHS COMPLIANT, PLASTIC PACKAGE-3
INFINEON

AUIRFR2405TRR

Power Field-Effect Transistor, 30A I(D), 55V, 0.0016ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-252AA, ROHS COMPLIANT, PLASTIC PACKAGE-3
INFINEON

AUIRFR2407

Power Field-Effect Transistor, 42A I(D), 75V, 0.026ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-252AA, ROHS COMPLIANT, PLASTIC, DPAK-3
INFINEON

AUIRFR2407TR

HEXFET® Power MOSFET
INFINEON

AUIRFR2407TRL

Power Field-Effect Transistor, 42A I(D), 75V, 0.026ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-252AA, ROHS COMPLIANT, PLASTIC, DPAK-3
INFINEON

AUIRFR2407TRR

HEXFET® Power MOSFET
INFINEON

AUIRFR2607Z

HEXFET® Power MOSFET
INFINEON