AUIRFS4310Z [INFINEON]

暂无描述;
AUIRFS4310Z
型号: AUIRFS4310Z
厂家: Infineon    Infineon
描述:

暂无描述

晶体 晶体管 功率场效应晶体管 开关 脉冲 局域网
文件: 总13页 (文件大小:340K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 96324  
AUIRFS4310  
AUTOMOTIVE GRADE  
AUIRFSL4310  
HEXFET® Power MOSFET  
Features  
l
l
l
l
l
l
l
Advanced Process Technology  
V(BR)DSS  
100V  
Ultra Low On-Resistance  
175°C Operating Temperature  
Fast Switching  
Repetitive Avalanche Allowed up to Tjmax  
Lead-Free, RoHS Compliant  
Automotive Qualified *  
D
S
RDS(on) typ.  
max.  
5.6m  
7.0m  
130A  
75A  
G
ID (Silicon Limited)  
ID (Package Limited)  
Description  
Specifically designed for Automotive applications, this HEXFET®  
Power MOSFET utilizes the latest processing techniques to achieve  
extremely low on-resistance per silicon area. Additional features of  
this design are a 175°C junction operating temperature, fast  
switching speed and improved repetitive avalanche rating . These  
features combine to make this design an extremely efficient and  
reliable device for use in Automotive applications and a wide variety  
of other applications.  
S
S
D
D
G
G
D2Pak  
AUIRFS4310  
TO-262  
AUIRFSL4310  
G
D
S
Gate  
Drain  
Source  
Absolute Maximum Ratings  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings  
only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not  
implied.Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and  
power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless  
otherwise specified.  
Parameter  
Max.  
Units  
ID @ TC = 25°C  
ID @ TC = 100°C  
ID @ TC = 25°C  
IDM  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Package Limited)  
Pulsed Drain Current  
130  
92  
A
75  
550  
PD @TC = 25°C  
300  
Maximum Power Dissipation  
W
W/°C  
V
2.0  
Linear Derating Factor  
VGS  
EAS  
IAR  
± 20  
980  
Gate-to-Source Voltage  
Single Pulse Avalanche Energy (Thermally limited)  
Avalanche Current  
mJ  
A
See Fig. 14, 15, 22a, 22b,  
EAR  
dV/dt  
TJ  
Repetitive Avalanche Energy  
mJ  
V/ns  
14  
Peak Diode Recovery  
-55 to + 175  
Operating Junction and  
TSTG  
Storage Temperature Range  
°C  
300 (1.6mm from case)  
10lb in (1.1N m)  
Soldering Temperature, for 10 seconds  
Mounting torque, 6-32 or M3 screw  
Thermal Resistance  
Parameter  
Typ.  
–––  
Max.  
0.50  
40  
Units  
RθJC  
Junction-to-Case  
°C/W  
RθJA  
–––  
Junction-to-Ambient (PCB Mount)  
HEXFET® is a registered trademark of International Rectifier.  
*Qualification standards can be found at http://www.irf.com/  
www.irf.com  
1
07/20/10  
AUIRFS/SL4310  
Static Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
Min. Typ. Max. Units  
100 ––– –––  
––– 0.064 ––– V/°C Reference to 25°C, ID = 1mA  
Conditions  
VGS = 0V, ID = 250µA  
V(BR)DSS  
V(BR)DSS/TJ  
RDS(on)  
VGS(th)  
gfs  
V
–––  
2.0  
5.6  
7.0  
4.0  
VGS = 10V, ID = 75A  
VDS = VGS, ID = 250µA  
VDS = 50V, ID = 75A  
f = 1MHz, open drain  
VDS = 100V, VGS = 0V  
mΩ  
V
–––  
Forward Transconductance  
160 ––– –––  
S
RG  
Gate Input Resistance  
–––  
1.4  
–––  
20  
IDSS  
Drain-to-Source Leakage Current  
––– –––  
µA  
nA  
––– ––– 250  
––– ––– 200  
––– ––– -200  
V
V
V
DS = 100V, VGS = 0V, TJ = 125°C  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
GS = 20V  
GS = -20V  
Dynamic Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Total Gate Charge  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Turn-On Delay Time  
Min. Typ. Max. Units  
––– 170 250  
Conditions  
Qg  
ID = 75A  
DS = 80V  
Qgs  
–––  
–––  
–––  
46  
62  
26  
–––  
–––  
–––  
V
nC  
ns  
Qgd  
VGS = 10V  
VDD = 65V  
ID = 75A  
td(on)  
tr  
Rise Time  
––– 110 –––  
td(off)  
Turn-Off Delay Time  
–––  
–––  
68  
78  
–––  
–––  
RG = 2.6Ω  
VGS = 10V  
VGS = 0V  
tf  
Fall Time  
Ciss  
Input Capacitance  
––– 7670 –––  
––– 540 –––  
––– 280 –––  
––– 650 –––  
––– 720.1 –––  
Coss  
Output Capacitance  
VDS = 50V  
Crss  
Reverse Transfer Capacitance  
Effective Output Capacitance (Energy Related)  
Effective Output Capacitance (Time Related)  
ƒ = 1.0MHz  
pF  
Coss eff. (ER)  
Coss eff. (TR)  
V
GS = 0V, VDS = 0V to 80V , See Fig.11  
GS = 0V, VDS = 0V to 80V , See Fig. 5  
V
Diode Characteristics  
Parameter  
Continuous Source Current  
Min. Typ. Max. Units  
Conditions  
MOSFET symbol  
IS  
D
S
––– ––– 130  
A
(Body Diode)  
showing the  
ISM  
G
Pulsed Source Current  
(Body Diode)  
integral reverse  
––– ––– 550  
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
––– –––  
1.3  
68  
V
TJ = 25°C, IS = 75A, VGS = 0V  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
VR = 85V,  
–––  
–––  
–––  
45  
55  
82  
ns  
IF = 75A  
di/dt = 100A/µs  
83  
Qrr  
Reverse Recovery Charge  
120  
nC  
A
––– 120 180  
––– 3.3 –––  
IRRM  
ton  
Reverse Recovery Current  
Forward Turn-On Time  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
Notes:  
† Coss eff. (TR) is a fixed capacitance that gives the same charging time  
 Calculated continuous current based on maximum allowable  
junction temperature. Package limitation current is 75A  
‚ Repetitive rating; pulse width limited by max. junction  
temperature.  
as Coss while VDS is rising from 0 to 80% VDSS  
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as  
Coss while VDS is rising from 0 to 80% VDSS  
.
.
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.35mH  
RG = 25, IAS = 75A, VGS =10V. Part not recommended for use  
above this value.  
„ ISD 75A, di/dt 550A/µs, VDD V(BR)DSS, TJ 175°C.  
Pulse width 400µs; duty cycle 2%.  
ˆ When mounted on 1" square PCB (FR-4 or G-10 Material).  
For recommended footprint and soldering techniques refer to  
application note #AN-994.  
‰ Rθ is measured at TJ approximately 90°C.  
2
www.irf.com  
AUIRFS/SL4310  
Qualification Information†  
Automotive  
††  
(per AEC-Q101)  
Comments:  
This part number(s) passed  
Qualification Level  
Automotive qualification. IR’s Industrial and  
Consumer qualification level is granted by  
extension of the higher Automotive level.  
TO-262  
D2 PAK  
N/A  
Moisture Sensitivity Level  
MSL1  
Machine Model  
Class M4(425V)  
(per AEC-Q101-002)  
Class H2(4000V)  
(per AEC-Q101-001)  
Class C4 (1000V)  
(per AEC-Q101-005)  
Yes  
Human Body Model  
ESD  
Charged Device  
Model  
RoHS Compliant  
†
Qualification standards can be found at International Rectifier’s web site: http//www.irf.com/  
†† Exceptions to AEC-Q101 requirements are noted in the qualification report.  
www.irf.com  
3
AUIRFS/SL4310  
1000  
100  
10  
1000  
VGS  
15V  
10V  
8.0V  
6.0V  
5.5V  
5.0V  
4.8V  
4.5V  
VGS  
TOP  
TOP  
15V  
10V  
8.0V  
6.0V  
5.5V  
5.0V  
4.8V  
4.5V  
100  
10  
1
BOTTOM  
BOTTOM  
4.5V  
60µs PULSE WIDTH  
Tj = 175°C  
60µs PULSE WIDTH  
Tj = 25°C  
4.5V  
1
0.1  
1
10  
100  
0.1  
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
1000  
100  
10  
I
= 75A  
D
V
= 10V  
GS  
T
= 175°C  
J
T
= 25°C  
= 50V  
J
V
DS  
60µs PULSE WIDTH  
1
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
-60 -40 -20  
0
20 40 60 80 100 120 140 160 180  
V
, Gate-to-Source Voltage (V)  
GS  
T
, Junction Temperature (°C)  
J
Fig 4. Normalized On-Resistance vs. Temperature  
Fig 3. Typical Transfer Characteristics  
12000  
10000  
8000  
6000  
4000  
2000  
0
20  
V
C
= 0V,  
f = 1 MHZ  
GS  
I = 75A  
D
= C + C , C SHORTED  
iss  
gs  
gd ds  
V
= 80V  
DS  
C
= C  
rss  
gd  
16  
12  
8
VDS= 50V  
VDS= 20V  
C
= C + C  
ds  
oss  
gd  
Ciss  
4
Coss  
Crss  
0
0
40  
80  
120 160 200 240 280  
1
10  
100  
Q
Total Gate Charge (nC)  
G
V
, Drain-to-Source Voltage (V)  
DS  
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage  
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage  
4
www.irf.com  
AUIRFS/SL4310  
1000.0  
100.0  
10.0  
1.0  
10000  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
T
= 175°C  
J
100µsec  
T
= 25°C  
J
1
1msec  
Tc = 25°C  
Tj = 175°C  
Single Pulse  
10msec  
DC  
V
= 0V  
GS  
0.1  
0.1  
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
, Source-to-Drain Voltage (V)  
1
10  
100  
1000  
V
V
DS  
, Drain-toSource Voltage (V)  
SD  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
120  
115  
110  
105  
100  
140  
120  
100  
80  
Limited By Package  
60  
40  
20  
0
-60 -40 -20  
0
20 40 60 80 100 120 140 160 180  
25  
50  
75  
100  
125  
150  
175  
T
, Junction Temperature (°C)  
J
T
, Case Temperature (°C)  
C
Fig 9. Maximum Drain Current vs.  
Fig 10. Drain-to-Source Breakdown Voltage  
Case Temperature  
2400  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
I
D
TOP  
12A  
17A  
75A  
2000  
1600  
1200  
800  
400  
0
BOTTOM  
0
20  
V
40  
60  
80  
100  
120  
25  
50  
75  
100  
125  
150  
175  
Drain-to-Source Voltage (V)  
Starting T , Junction Temperature (°C)  
DS,  
J
Fig 11. Typical COSS Stored Energy  
Fig 12. Maximum Avalanche Energy Vs. DrainCurrent  
www.irf.com  
5
AUIRFS/SL4310  
1
D = 0.50  
0.1  
0.01  
0.20  
0.10  
0.05  
R1  
R2  
R2  
R1  
Ri (°C/W) τi (sec)  
0.1962 0.00117  
τ
0.02  
0.01  
J τJ  
τ
τ
Cτ  
1τ1  
Ci= τi/Ri  
τ
2τ2  
0.2542 0.016569  
0.001  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
SINGLE PULSE  
( THERMAL RESPONSE )  
0.0001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
100  
10  
1
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming Tj = 150°C  
and Tstart =25°C (Single Pulse)  
Duty Cycle = Single Pulse  
0.01  
0.05  
0.10  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming∆Τ j = 25°C and  
Tstart = 150°C.  
0.1  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 14. Typical Avalanche Current vs.Pulsewidth  
1000  
800  
600  
400  
200  
0
Notes on Repetitive Avalanche Curves , Figures 14, 15:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a temperature far in  
excess of Tjmax. This is validated for every part type.  
2. Safe operation in Avalanche is allowed as long as neither Tjmax nor Iav (max)  
is exceeded.  
3. Equation below based on circuit and waveforms shown in Figures 22a, 22b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as  
25°C in Figure 14, 15).  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
TOP  
BOTTOM 1% Duty Cycle  
= 75A  
Single Pulse  
I
D
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)  
25  
50  
75  
100  
125  
150  
175  
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
Starting T , Junction Temperature (°C)  
J
Iav = 2DT/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·tav  
Fig 15. Maximum Avalanche Energy vs. Temperature  
6
www.irf.com  
AUIRFS/SL4310  
20  
16  
12  
8
5.0  
4.0  
3.0  
2.0  
1.0  
I
I
I
= 1.0A  
D
D
D
= 1.0mA  
= 250µA  
I
= 30A  
= 85V  
F
V
T
R
4
= 125°C  
= 25°C  
J
T
J
0
-75 -50 -25  
0
J
25 50 75 100 125 150 175  
, Temperature ( °C )  
100 200 300 400 500 600 700 800 900 1000  
T
di / dt - (A / µs)  
f
Fig. 17 - Typical Recovery Current vs. dif/dt  
Fig 16. Threshold Voltage Vs. Temperature  
500  
20  
400  
300  
200  
100  
0
16  
12  
8
I
= 30A  
= 85V  
I
= 45A  
= 85V  
F
F
V
T
V
R
R
4
0
= 125°C  
= 25°C  
T
= 125°C  
= 25°C  
J
J
T
T
J
J
100 200 300 400 500 600 700 800 900 1000  
100 200 300 400 500 600 700 800 900 1000  
di / dt - (A / µs)  
f
di / dt - (A / µs)  
f
Fig. 18 - Typical Recovery Current vs. dif/dt  
Fig. 19 - Typical Stored Charge vs. dif/dt  
500  
400  
300  
200  
100  
0
I
= 45A  
= 85V  
F
V
T
R
= 125°C  
= 25°C  
J
T
J
100 200 300 400 500 600 700 800 900 1000  
di / dt - (A / µs)  
f
Fig. 20 - Typical Stored Charge vs. dif/dt  
www.irf.com  
7
AUIRFS/SL4310  
Driver Gate Drive  
P.W.  
P.W.  
Period  
D.U.T  
Period  
D =  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Current  
I
SD  
Ripple  
5%  
* VGS = 5V for Logic Level Devices  
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
2
GS  
0.01  
t
p
I
AS  
Fig 22b. Unclamped Inductive Waveforms  
Fig 22a. Unclamped Inductive Test Circuit  
LD  
VDS  
VDS  
90%  
+
-
VDD  
10%  
VGS  
D.U.T  
VGS  
Pulse Width < 1µs  
Duty Factor < 0.1%  
td(on)  
td(off)  
tr  
tf  
Fig 23a. Switching Time Test Circuit  
Fig 23b. Switching Time Waveforms  
Id  
Vds  
Vgs  
L
VCC  
DUT  
Vgs(th)  
0
1K  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Fig 24a. Gate Charge Test Circuit  
Fig 24b. Gate Charge Waveform  
8
www.irf.com  
AUIRFS/SL4310  
TO-262 Package Outline  
Dimensions are shown in millimeters (inches)  
TO-262 Part Marking Information  
Part Number  
AUIRFSL4310  
Date Code  
Y= Year  
WW= Work Week  
A= Automotive, Lead Free  
IR Logo  
YWWA  
XX or XX  
Lot Code  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
www.irf.com  
9
AUIRFS/SL4310  
D2Pak (TO-263AB) Package Outline  
Dimensions are shown in millimeters (inches)  
D2Pak (TO-263AB) Part Marking Information  
Part Number  
AUIRFS4310  
Date Code  
Y= Year  
WW= Work Week  
A= Automotive, Lead Free  
IR Logo  
YWWA  
XX or XX  
Lot Code  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
10  
www.irf.com  
AUIRFS/SL4310  
D2Pak (TO-263AB) Tape & Reel Information  
TRR  
1.60 (.063)  
1.50 (.059)  
1.60 (.063)  
1.50 (.059)  
4.10 (.161)  
3.90 (.153)  
0.368 (.0145)  
0.342 (.0135)  
FEED DIRECTION  
1.85 (.073)  
11.60 (.457)  
11.40 (.449)  
1.65 (.065)  
24.30 (.957)  
23.90 (.941)  
15.42 (.609)  
15.22 (.601)  
TRL  
1.75 (.069)  
1.25 (.049)  
10.90 (.429)  
10.70 (.421)  
4.72 (.136)  
4.52 (.178)  
16.10 (.634)  
15.90 (.626)  
FEED DIRECTION  
13.50 (.532)  
12.80 (.504)  
27.40 (1.079)  
23.90 (.941)  
4
330.00  
(14.173)  
MAX.  
60.00 (2.362)  
MIN.  
30.40 (1.197)  
MAX.  
NOTES :  
1. COMFORMS TO EIA-418.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION MEASURED @ HUB.  
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.  
26.40 (1.039)  
24.40 (.961)  
4
3
www.irf.com  
11  
AUIRFS/SL4310  
Ordering Information  
Base part number  
Package Type  
Standard Pack  
Form  
Complete Part Number  
Quantity  
50  
AUIRFSL4310  
AUIRFS4310  
TO-262  
D2Pak  
Tube  
Tube  
AUIRFSL4310  
AUIRFS4310  
50  
Tape and Reel Left  
Tape and Reel Right  
800  
800  
AUIRFS4310TRL  
AUIRFS4310TRR  
12  
www.irf.com  
AUIRFS/SL4310  
IMPORTANT NOTICE  
Unless specifically designated for the automotive market, International Rectifier Corporation and its subsidiaries (IR) reserve the right to make  
corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any  
product or services without notice. Part numbers designated with the “AU” prefix follow automotive industry and / or customer specific  
requirementswithregardstoproductdiscontinuanceandprocesschangenotification.AllproductsaresoldsubjecttoIR’stermsandconditions  
of sale supplied at the time of order acknowledgment.  
IRwarrantsperformanceofitshardwareproductstothespecificationsapplicableatthetimeofsaleinaccordancewithIR’sstandardwarranty.  
Testing and other quality control techniques are used to the extent IR deems necessary to support this warranty. Except where mandated  
by government requirements, testing of all parameters of each product is not necessarily performed.  
IR assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications  
using IR components. To minimize the risks with customer products and applications, customers should provide adequate design and  
operating safeguards.  
Reproduction of IR information in IR data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alterations is an unfair and deceptive  
business practice. IR is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of IR products or serviced with statements different from or beyond the parameters stated by IR for that product or service voids all  
express and any implied warranties for the associated IR product or service and is an unfair and deceptive business practice. IR is not  
responsible or liable for any such statements.  
IR products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or in other  
applications intended to support or sustain life, or in any other application in which the failure of the IR product could create a situation where  
personal injury or death may occur. Should Buyer purchase or use IR products for any such unintended or unauthorized application, Buyer  
shall indemnify and hold International Rectifier and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims,  
costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that IR was negligent regarding the design or manufacture  
of the product.  
IRproductsareneitherdesignednorintendedforuseinmilitary/aerospaceapplicationsorenvironmentsunlesstheIRproductsarespecifically  
designatedbyIRasmilitary-gradeorenhancedplastic.” OnlyproductsdesignatedbyIRasmilitary-grademeetmilitaryspecifications. Buyers  
acknowledge and agree that any such use of IR products which IR has not designated as military-grade is solely at the Buyer’s risk, and that  
they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
IR products are neither designed nor intended for use in automotive applications or environments unless the specific IR products are  
designated by IR as compliant with ISO/TS 16949 requirements and bear a part number including the designation “AU”. Buyers acknowledge  
and agree that, if they use any non-designated products in automotive applications, IR will not be responsible for any failure to meet such  
requirements  
For technical support, please contact IR’s Technical Assistance Center  
http://www.irf.com/technical-info/  
WORLD HEADQUARTERS:  
233 Kansas St., El Segundo, California 90245  
Tel: (310) 252-7105  
www.irf.com  
13  

相关型号:

AUIRFS4310ZTRL

暂无描述
INFINEON

AUIRFS4310ZTRR

Power Field-Effect Transistor, 120A I(D), 100V, 0.006ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, ROHS COMPLIANT, PLASTIC, D2PAK-3
INFINEON

AUIRFS4410Z

Power Field-Effect Transistor, 97A I(D), 100V, 0.009ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, ROHS COMPLIANT, PLASTIC, D2PAK-3
INFINEON

AUIRFS4410ZTRL

Power Field-Effect Transistor, 97A I(D), 100V, 0.009ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, ROHS COMPLIANT, PLASTIC, D2PAK-3
INFINEON

AUIRFS4410ZTRR

Power Field-Effect Transistor, 97A I(D), 100V, 0.009ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, ROHS COMPLIANT, PLASTIC, D2PAK-3
INFINEON

AUIRFS4610

AUTOMOTIVE GRADE
INFINEON

AUIRFS4610STRL

AUTOMOTIVE GRADE
INFINEON

AUIRFS4610STRR

AUTOMOTIVE GRADE
INFINEON

AUIRFS6535

Advanced Process Technology Low On-Resistance
INFINEON

AUIRFS6535TRL

Advanced Process Technology Low On-Resistance
INFINEON

AUIRFS6535TRR

Advanced Process Technology Low On-Resistance
INFINEON

AUIRFS8403

Advanced Process Technology New Ultra Low On-Resistance
INFINEON