AUIRFS4610STRL [INFINEON]

AUTOMOTIVE GRADE; 汽车级
AUIRFS4610STRL
型号: AUIRFS4610STRL
厂家: Infineon    Infineon
描述:

AUTOMOTIVE GRADE
汽车级

晶体 晶体管 功率场效应晶体管 开关 脉冲 局域网
文件: 总13页 (文件大小:346K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 96325  
AUTOMOTIVE GRADE  
AUIRFB4610  
AUIRFS4610  
HEXFET® Power MOSFET  
Features  
Advanced Process Technology  
Ultra Low On-Resistance  
D
S
V(BR)DSS  
RDS(on) typ.  
max.  
100V  
11m  
14m  
73A  
Enhanced dV/dT and dI/dT capability  
175°C Operating Temperature  
Fast Switching  
Repetitive Avalanche Allowed up to Tjmax  
Lead-Free, RoHS Compliant  
Automotive Qualified *  
G
ID  
D
Description  
D
Specifically designed for Automotive applications, this HEXFET®  
Power MOSFET utilizes the latest processing techniques to achieve  
extremely low on-resistance per silicon area. Additional features of  
this design are a 175°C junction operating temperature, fast  
switching speed and improved repetitive avalanche rating . These  
features combine to make this design an extremely efficient and  
reliable device for use in Automotive applications and a wide variety  
of other applications.  
S
S
D
D
G
G
D2Pak  
AUIRFS4610  
TO-220AB  
AUIRFB4610  
G
D
S
Gate  
Drain  
Source  
Absolute Maximum Ratings  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only; and  
functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied.Exposure to absolute-  
maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under  
board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless otherwise specified.  
Max.  
Parameter  
Units  
ID @ TC = 25°C  
ID @ TC = 100°C  
IDM  
Continuous Drain Current, VGS @ 10V  
73  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
52  
A
290  
PD @TC = 25°C  
190  
Maximum Power Dissipation  
Linear Derating Factor  
W
W/°C  
V
1.3  
VGS  
EAS  
IAR  
± 20  
370  
Gate-to-Source Voltage  
Single Pulse Avalanche Energy (Thermally limited)  
Avalanche Current  
mJ  
A
See Fig. 14, 15, 16a, 16b,  
EAR  
dV/dt  
TJ  
Repetitive Avalanche Energy  
Peak Diode Recovery  
mJ  
V/ns  
7.6  
-55 to + 175  
Operating Junction and  
TSTG  
°C  
Storage Temperature Range  
Soldering Temperature, for 10 seconds (1.6mm from case)  
Mounting torque, 6-32 or M3 screw  
300  
10lbf in (1.1N m)  
Thermal Resistance  
Parameter  
Typ.  
–––  
Max.  
0.77  
–––  
62  
Units  
RθJC  
RθCS  
RθJA  
RθJA  
Junction-to-Case  
Case-to-Sink, Flat Greased Surface , TO-220  
0.50  
–––  
°C/W  
Junction-to-Ambient, TO-220  
Junction-to-Ambient (PCB Mount) , D2Pak  
–––  
40  
HEXFET® is a registered trademark of International Rectifier.  
*Qualification standards can be found at http://www.irf.com/  
www.irf.com  
1
07/20/10  
AUIRF/B/S4610  
Static Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
Min. Typ. Max. Units  
100 ––– –––  
––– 0.085 ––– V/°C Reference to 25°C, ID = 1mA  
Conditions  
VGS = 0V, ID = 250µA  
V(BR)DSS  
V(BR)DSS/TJ  
RDS(on)  
VGS(th)  
gfs  
V
–––  
2.0  
73  
11  
14  
VGS = 10V, ID = 44A  
VDS = VGS, ID = 100µA  
VDS = 50V, ID = 44A  
f = 1MHz, open drain  
mΩ  
V
–––  
4.0  
Forward Transconductance  
––– –––  
S
RG  
Gate Input Resistance  
–––  
1.5  
–––  
20  
IDSS  
Drain-to-Source Leakage Current  
––– –––  
VDS = 100V, VGS = 0V  
VDS = 100V, VGS = 0V, TJ = 125°C  
VGS = 20V  
V
µA  
nA  
––– ––– 250  
––– ––– 200  
––– ––– -200  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
GS = -20V  
Dynamic Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter Min. Typ. Max. Units  
Total Gate Charge  
Conditions  
Qg  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
90  
20  
36  
18  
87  
53  
70  
140  
–––  
–––  
–––  
–––  
–––  
–––  
ID = 44A  
Qgs  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Turn-On Delay Time  
VDS = 80V  
nC  
Qgd  
VGS = 10V  
td(on)  
VDD = 65V  
ID = 44A  
tr  
Rise Time  
ns  
td(off)  
Turn-Off Delay Time  
RG = 5.6Ω  
VGS = 10V  
VGS = 0V  
tf  
Fall Time  
Ciss  
Input Capacitance  
––– 3550 –––  
––– 260 –––  
––– 150 –––  
––– 330 –––  
––– 380 –––  
Coss  
Output Capacitance  
VDS = 50V  
Crss  
Reverse Transfer Capacitance  
Effective Output Capacitance (Energy Related)  
oss eff. (TR)  
Effective Output Capacitance (Time Related)  
ƒ = 1.0MHz, See Fig. 5  
pF  
Coss eff. (ER)  
V
GS = 0V, VDS = 0V to 80V , See Fig.11  
GS = 0V, VDS = 0V to 80V  
C
V
Diode Characteristics  
Parameter  
Continuous Source Current  
Min. Typ. Max. Units  
Conditions  
MOSFET symbol  
D
S
IS  
––– –––  
73  
(Body Diode)  
showing the  
A
G
ISM  
Pulsed Source Current  
(Body Diode)  
integral reverse  
––– ––– 290  
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
––– –––  
1.3  
53  
V
TJ = 25°C, IS = 44A, VGS = 0V  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
VR = 85V,  
–––  
–––  
–––  
–––  
–––  
35  
42  
44  
65  
2.1  
ns  
IF = 44A  
di/dt = 100A/µs  
63  
Qrr  
Reverse Recovery Charge  
66  
nC  
A
98  
IRRM  
ton  
Reverse Recovery Current  
Forward Turn-On Time  
–––  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
Notes:  
 Repetitive rating; pulse width limited by max. junction  
temperature.  
‚ Limited by TJmax, starting TJ = 25°C, L = 0.39mH  
RG = 25, IAS = 44A, VGS =10V. Part not recommended for use  
above this value.  
Coss eff. (TR) is a fixed capacitance that gives the same charging time  
as Coss while VDS is rising from 0 to 80% VDSS  
† Coss eff. (ER) is a fixed capacitance that gives the same energy as  
Coss while VDS is rising from 0 to 80% VDSS  
‡ When mounted on 1" square PCB (FR-4 or G-10 Material). For recom  
.
.
ƒ ISD 44A, di/dt 660A/µs, VDD V(BR)DSS, TJ 175°C.  
„ Pulse width 400µs; duty cycle 2%.  
mended footprint and soldering techniques refer to application note #AN-994.  
ˆ Rθ is measured at TJ approximately 90°C  
2
www.irf.com  
AUIRF/B/S4610  
Qualification Information†  
Automotive  
††  
(per AEC-Q101)  
Comments:  
This part number(s) passed  
Qualification Level  
Automotive qualification. IR’s Industrial and  
Consumer qualification level is granted by  
extension of the higher Automotive level.  
TO-220AB  
D2 PAK  
N/A  
Moisture Sensitivity Level  
MSL1  
Machine Model  
Class M4(400V)  
(per AEC-Q101-002)  
Class H1C(2000V)  
(per AEC-Q101-001)  
Class C3 (750V)  
(per AEC-Q101-005)  
Yes  
Human Body Model  
ESD  
Charged Device  
Model  
RoHS Compliant  
†
Qualification standards can be found at International Rectifier’s web site: http//www.irf.com/  
†† Exceptions to AEC-Q101 requirements are noted in the qualification report.  
www.irf.com  
3
AUIRF/B/S4610  
1000  
1000  
100  
10  
VGS  
VGS  
15V  
TOP  
15V  
TOP  
10V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
4.5V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
4.5V  
100  
10  
1
BOTTOM  
BOTTOM  
4.5V  
4.5V  
60µs PULSE WIDTH  
60µs PULSE WIDTH  
Tj = 25°C  
Tj = 25°C  
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000.0  
100.0  
10.0  
1.0  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
I
= 73A  
D
V
= 10V  
GS  
T
= 175°C  
J
T
= 25°C  
= 25V  
J
V
DS  
60µs PULSE WIDTH  
0.1  
2.0  
3.0  
V
4.0  
5.0  
6.0  
7.0  
8.0  
-60 -40 -20  
0
20 40 60 80 100 120 140 160 180  
, Gate-to-Source Voltage (V)  
GS  
T
, Junction Temperature (°C)  
J
Fig 4. Normalized On-Resistance vs. Temperature  
Fig 3. Typical Transfer Characteristics  
6000  
5000  
4000  
3000  
2000  
1000  
0
20  
V
C
= 0V,  
f = 1 MHZ  
GS  
I = 44A  
D
= C + C , C SHORTED  
iss  
gs  
gd ds  
V
= 80V  
DS  
C
= C  
rss  
gd  
16  
12  
8
VDS= 50V  
VDS= 20V  
C
= C + C  
oss  
ds  
gd  
Ciss  
4
Coss  
Crss  
0
0
20  
40  
60  
80  
100 120 140  
1
10  
100  
Q
Total Gate Charge (nC)  
G
V
, Drain-to-Source Voltage (V)  
DS  
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage  
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage  
4
www.irf.com  
AUIRF/B/S4610  
1000.0  
100.0  
10.0  
1.0  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
100µsec  
T
= 175°C  
J
1msec  
T
= 25°C  
J
10msec  
1
Tc = 25°C  
Tj = 175°C  
Single Pulse  
V
= 0V  
GS  
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
, Source-to-Drain Voltage (V)  
DC  
0.1  
0.1  
1
10  
100  
1000  
V
, Drain-toSource Voltage (V)  
V
DS  
SD  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
80  
60  
40  
20  
0
125  
120  
115  
110  
105  
100  
25  
50  
75  
100  
125  
150  
175  
-60 -40 -20  
0
20 40 60 80 100 120 140 160 180  
T
, Junction Temperature (°C)  
T
, Junction Temperature (°C)  
J
J
Fig 9. Maximum Drain Current vs.  
Fig 10. Drain-to-Source Breakdown Voltage  
Case Temperature  
1600  
2.0  
1.5  
1.0  
0.5  
0.0  
I
D
TOP  
4.6A  
6.3A  
44A  
1200  
800  
400  
0
BOTTOM  
25  
50  
75  
100  
125  
150  
175  
0
20  
40  
60  
80  
100  
Starting T , Junction Temperature (°C)  
V
Drain-to-Source Voltage (V)  
J
DS,  
Fig 11. Typical COSS Stored Energy  
Fig 12. Maximum Avalanche Energy Vs. DrainCurrent  
www.irf.com  
5
AUIRF/B/S4610  
1
D = 0.50  
0.20  
0.10  
0.1  
0.01  
0.05  
0.02  
0.01  
R1  
R1  
R2  
R2  
Ri (°C/W) τi (sec)  
0.4367 0.001016  
τ
J τJ  
τ
Cτ  
τ
τ
1τ1  
Ci= τi/Ri  
2τ2  
0.3337 0.009383  
0.001  
0.0001  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
100  
10  
1
Allowed avalanche Current vs avalanche  
Duty Cycle = Single Pulse  
pulsewidth, tav, assuming Tj = 150°C and  
Tstart =25°C (Single Pulse)  
0.01  
0.05  
0.10  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming Τj = 25°C and  
Tstart = 150°C.  
0.1  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 14. Typical Avalanche Current vs.Pulsewidth  
400  
300  
200  
100  
0
Notes on Repetitive Avalanche Curves , Figures 14, 15:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a temperature far in  
excess of Tjmax. This is validated for every part type.  
2. Safe operation in Avalanche is allowed as long as neither Tjmax nor Iav (max)  
is exceeded.  
3. Equation below based on circuit and waveforms shown in Figures 22a, 22b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as  
25°C in Figure 14, 15).  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
TOP  
BOTTOM 1% Duty Cycle  
= 44A  
Single Pulse  
I
D
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)  
25  
50  
75  
100  
125  
150  
175  
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
Starting T , Junction Temperature (°C)  
J
Iav = 2DT/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·tav  
Fig 15. Maximum Avalanche Energy vs. Temperature  
6
www.irf.com  
AUIRF/B/S4610  
16  
12  
8
5.0  
4.0  
3.0  
2.0  
1.0  
I
I
I
= 1.0A  
D
D
D
= 1.0mA  
= 250µA  
ID = 100µA  
I
= 29A  
F
4
V
= 85V  
R
T
= 125°C  
= 25°C  
J
J
T
0
100 200 300 400 500 600 700 800 900 1000  
-75 -50 -25  
0
J
25 50 75 100 125 150 175  
, Temperature ( °C )  
di / dt - (A / µs)  
f
T
Fig. 17 - Typical Recovery Current vs. dif/dt  
Fig 16. Threshold Voltage Vs. Temperature  
16  
300  
12  
8
200  
100  
I
= 29A  
= 85V  
I
= 44A  
= 85V  
F
F
4
0
V
V
R
R
T
= 125°C  
= 25°C  
T
= 125°C  
= 25°C  
J
J
T
T
J
J
0
100 200 300 400 500 600 700 800 900 1000  
100 200 300 400 500 600 700 800 900 1000  
di / dt - (A / µs)  
f
di / dt - (A / µs)  
f
Fig. 18 - Typical Recovery Current vs. dif/dt  
Fig. 19 - Typical Stored Charge vs. dif/dt  
300  
200  
100  
0
I
= 44A  
= 85V  
F
V
T
R
= 125°C  
= 25°C  
J
T
J
100 200 300 400 500 600 700 800 900 1000  
di / dt - (A / µs)  
f
Fig. 20 - Typical Stored Charge vs. dif/dt  
www.irf.com  
7
AUIRF/B/S4610  
Driver Gate Drive  
P.W.  
P.W.  
Period  
D.U.T  
Period  
D =  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Current  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
2
GS  
0.01  
t
p
I
AS  
Fig 22b. Unclamped Inductive Waveforms  
Fig 22a. Unclamped Inductive Test Circuit  
LD  
VDS  
VDS  
90%  
+
-
VDD  
10%  
VGS  
D.U.T  
VGS  
Pulse Width < 1µs  
Duty Factor < 0.1%  
td(on)  
td(off)  
tr  
tf  
Fig 23a. Switching Time Test Circuit  
Fig 23b. Switching Time Waveforms  
Id  
Vds  
Vgs  
L
VCC  
DUT  
Vgs(th)  
0
1K  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Fig 24a. Gate Charge Test Circuit  
Fig 24b. Gate Charge Waveform  
8
www.irf.com  
AUIRF/B/S4610  
TO-220AB Package Outline  
Dimensions are shown in millimeters (inches)  
TO-220AB Part Marking Information  
Part Number  
AUIRFB4610  
Date Code  
Y= Year  
WW= Work Week  
IR Logo  
YWWA  
A= Automotive, Lead Free  
XX or XX  
Lot Code  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
www.irf.com  
9
AUIRF/B/S4610  
D2Pak Package Outline (Dimensions are shown in millimeters (inches))  
D2Pak Part Marking Information  
Part Number  
AUIRFS4610  
Date Code  
Y= Year  
WW= Work Week  
A= Automotive, Lead Free  
IR Logo  
YWWA  
XX or XX  
Lot Code  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
10  
www.irf.com  
AUIRF/B/S4610  
D2Pak (TO-263AB) Tape & Reel Information  
TRR  
1.60 (.063)  
1.50 (.059)  
1.60 (.063)  
1.50 (.059)  
4.10 (.161)  
3.90 (.153)  
0.368 (.0145)  
0.342 (.0135)  
FEED DIRECTION  
1.85 (.073)  
11.60 (.457)  
11.40 (.449)  
1.65 (.065)  
24.30 (.957)  
23.90 (.941)  
15.42 (.609)  
15.22 (.601)  
TRL  
1.75 (.069)  
1.25 (.049)  
10.90 (.429)  
10.70 (.421)  
4.72 (.136)  
4.52 (.178)  
16.10 (.634)  
15.90 (.626)  
FEED DIRECTION  
13.50 (.532)  
12.80 (.504)  
27.40 (1.079)  
23.90 (.941)  
4
330.00  
(14.173)  
MAX.  
60.00 (2.362)  
MIN.  
30.40 (1.197)  
MAX.  
NOTES :  
1. COMFORMS TO EIA-418.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION MEASURED @ HUB.  
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.  
26.40 (1.039)  
24.40 (.961)  
4
3
www.irf.com  
11  
AUIRF/B/S4610  
Ordering Information  
Base part  
Package Type  
Standard Pack  
Form  
Complete Part Number  
Quantity  
50  
AUIRFB4610  
AUIRFS4610  
TO-220  
D2Pak  
Tube  
AUIRFB4610  
AUIRFS4610  
Tube  
50  
Tape and Reel Left  
Tape and Reel Right  
800  
800  
AUIRFS4610STRL  
AUIRFS4610STRR  
12  
www.irf.com  
AUIRF/B/S4610  
IMPORTANT NOTICE  
Unless specifically designated for the automotive market, International Rectifier Corporation and its subsidiaries (IR) reserve the  
righttomakecorrections,modifications,enhancements,improvements,andotherchangestoitsproductsandservicesatanytime  
and to discontinue any product or services without notice. Part numbers designated with the “AU” prefix follow automotive industry  
and / or customer specific requirements with regards to product discontinuance and process change notification. All products are  
sold subject to IR’s terms and conditions of sale supplied at the time of order acknowledgment.  
IRwarrantsperformanceofitshardwareproductstothespecificationsapplicableatthetimeofsaleinaccordancewithIR’sstandard  
warranty. Testing and other quality control techniques are used to the extent IR deems necessary to support this warranty. Except  
where mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
IR assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using IR components. To minimize the risks with customer products and applications, customers should provide  
adequate design and operating safeguards.  
Reproduction of IR information in IR data books or data sheets is permissible only if reproduction is without alteration and is  
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alterations is  
anunfairanddeceptivebusinesspractice. IRisnotresponsibleorliableforsuchaltereddocumentation. Informationofthirdparties  
may be subject to additional restrictions.  
Resale of IR products or serviced with statements different from or beyond the parameters stated by IR for that product or service  
voidsallexpressandanyimpliedwarrantiesfortheassociatedIRproductorserviceandisanunfairanddeceptivebusinesspractice.  
IR is not responsible or liable for any such statements.  
IRproductsarenotdesigned,intended,orauthorizedforuseascomponentsinsystemsintendedforsurgicalimplantintothebody,  
orinotherapplicationsintendedtosupportorsustainlife,orinanyotherapplicationinwhichthefailureoftheIRproductcouldcreate  
a situation where personal injury or death may occur. Should Buyer purchase or use IR products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold International Rectifier and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly  
or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges  
that IR was negligent regarding the design or manufacture of the product.  
IR products are neither designed nor intended for use in military/aerospace applications or environments unless the IR products  
are specifically designated by IR as military-grade or “enhanced plastic.” Only products designated by IR as military-grade meet  
military specifications. Buyers acknowledge and agree that any such use of IR products which IR has not designated as military-  
grade is solely at the Buyer’s risk, and that they are solely responsible for compliance with all legal and regulatory requirements in  
connection with such use.  
IR products are neither designed nor intended for use in automotive applications or environments unless the specific IR products  
aredesignatedbyIRascompliantwithISO/TS16949requirementsandbearapartnumberincludingthedesignationAU”. Buyers  
acknowledge and agree that, if they use any non-designated products in automotive applications, IR will not be responsible forany  
failure to meet such requirements  
For technical support, please contact IR’s Technical Assistance Center  
http://www.irf.com/technical-info/  
WORLD HEADQUARTERS:  
233 Kansas St., El Segundo, California 90245  
Tel: (310) 252-7105  
www.irf.com  
13  

相关型号:

AUIRFS4610STRR

AUTOMOTIVE GRADE
INFINEON

AUIRFS6535

Advanced Process Technology Low On-Resistance
INFINEON

AUIRFS6535TRL

Advanced Process Technology Low On-Resistance
INFINEON

AUIRFS6535TRR

Advanced Process Technology Low On-Resistance
INFINEON

AUIRFS8403

Advanced Process Technology New Ultra Low On-Resistance
INFINEON

AUIRFS8403TRL

Advanced Process Technology New Ultra Low On-Resistance
INFINEON

AUIRFS8403TRR

Advanced Process Technology New Ultra Low On-Resistance
INFINEON

AUIRFS8405

Advanced Process Technology New Ultra Low On-Resistance
INFINEON

AUIRFS8405TRL

Advanced Process Technology New Ultra Low On-Resistance
INFINEON

AUIRFS8405TRR

Advanced Process Technology New Ultra Low On-Resistance
INFINEON

AUIRFS8407

Advanced Process Technology New Ultra Low On-Resistance
INFINEON

AUIRFS8407-7P

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET
INFINEON