BTT6030-2ERB [INFINEON]

The power transistor is built by an N-channel vertical power MOSFET with charge pump. The device is integrated in Smart6 HV technology. It is specially designed to drive lamps up to 2 * P21W 24V, as well as LEDs in the harsh automotive environment.;
BTT6030-2ERB
型号: BTT6030-2ERB
厂家: Infineon    Infineon
描述:

The power transistor is built by an N-channel vertical power MOSFET with charge pump. The device is integrated in Smart6 HV technology. It is specially designed to drive lamps up to 2 * P21W 24V, as well as LEDs in the harsh automotive environment.

文件: 总55页 (文件大小:1556K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PROFET™ +24V  
BTT6030-2ERB  
Smart High-Side Power Switch Dual Channel, 32 mΩ  
Package PG-TDSO-14  
Marking 6030-2ERB  
1
Overview  
Application  
Suitable for resistive, inductive and capacitive loads  
Replaces electromechanical relays, fuses and discrete circuits  
Most suitable for loads with high inrush current, such as lamps  
Suitable for 12 V and 24 V trucks + trailer and transportation systems  
VBAT  
Voltage Regulator  
OUT VS  
T1  
GND  
CVDD  
Z
CVS  
VS  
VDD  
GPIO  
RDEN  
DEN  
GPIO  
RDSEL  
DSEL  
OUT0  
Microcontroller  
GPIO  
OUT4  
IN0  
IN1  
RIN  
RIN  
COUT  
Valve  
GPIO  
OUT1  
COUT  
IS  
RSENSE  
ADC IN  
GND  
GND  
Bulb  
CSENSE  
D
Application Diagram with BTT6030-2ERB  
Datasheet  
www.infineon.com  
1
Rev.1.00  
2019-03-09  
PROFET™ +24V  
BTT6030-2ERB  
Overview  
Basic Features  
Two channel device  
Very low stand-by current  
3.3 V and 5 V compatible logic inputs  
Electrostatic discharge protection (ESD)  
Optimized electromagnetic compatibility  
Logic ground independent from load ground  
Very low power DMOS leakage current in OFF state  
Green product (RoHS compliant) & AEC qualified  
Description  
The BTT6030-2ERB is a 32 mdual channel Smart High-Side Power Switch, embedded in a PG-TDSO-14,  
Exposed Pad package, providing protective functions and diagnosis. The power transistor is built by an  
N-channel vertical power MOSFET with charge pump. The device is integrated in Smart6 HV technology. It is  
specially designed to drive lamps up to 2 * P21W 24V, as well as LEDs in the harsh automotive environment.  
Table 1  
Product Summary  
Parameter  
Symbol  
VS(OP)  
Value  
5 V ... 36 V  
65 V  
Operating voltage range  
Maximum supply voltage  
VS(LD)  
Maximum ON state resistance at TJ = 150°C per channel  
Nominal load current (one channel active)  
Nominal load current (both channels active)  
Typical current sense ratio  
RDS(ON)  
IL(NOM)1  
IL(NOM)2  
kILIS  
62 mΩ  
6 A  
4 A  
2240  
Minimum current limitation  
IL5(SC)  
40 A  
Maximum standby current with load at TJ = 25°C  
IS(OFF)  
500 nA  
Diagnostic Functions  
Proportional load current sense for both channels multiplexed  
Open load in ON and OFF  
Overtemperature. Short circuit to battery and ground  
Stable diagnostic signal during short circuit  
Enhanced kILIS dependency with temperature and load current  
Protection Functions  
Stable behavior during undervoltage  
Reverse polarity protection with external components  
Secure load turn-off during logic ground disconnect with external components  
Overtemperature protection with latch  
Overvoltage protection with external components  
Voltage dependent current limitation  
Enhanced short circuit protection for up to 40 m cables  
Datasheet  
2
Rev.1.00  
2019-03-09  
PROFET™ +24V  
BTT6030-2ERB  
Block Diagram  
2
Block Diagram  
Channel 0  
VS  
voltage sen sor  
int ern al  
power  
supply  
over  
temperatu re  
T
clamp for  
ind uctive load  
gate control  
&
charge pump  
IN0  
driver  
logic  
over current  
switch limit  
DEN  
ESD  
protection  
load cu rrent sense and  
OUT 0  
open load detection  
IS  
forward voltage drop detection  
VS  
Channel 1  
T
IN1  
Control and pro tection circuit equivalent to channel 0  
DSEL  
OUT 1  
Block diagramDxS.vsd  
GND  
Figure 1  
Block Diagram for the BTT6030-2ERB  
Datasheet  
3
Rev.1.00  
2019-03-09  
PROFET™ +24V  
BTT6030-2ERB  
Pin Configuration  
3
Pin Configuration  
3.1  
Pin Assignment  
GND  
1
2
14  
13  
OUT0  
OUT0  
IN0  
DEN  
IS  
3
4
5
12  
11  
10  
OUT0  
NC  
DSEL  
OUT1  
6
7
9
8
OUT1  
OUT1  
IN1  
NC  
Pinout dual SO14.vsd  
Figure 2  
Pin Configuration  
3.2  
Pin Definitions and Functions  
Table 2  
Pin Definition and Functions  
Pin  
Symbol  
GND  
IN0  
Function  
1
GrouND; Ground connection  
2
INput channel 0; Input signal for channel 0 activation  
Diagnostic ENable; Digital signal to enable/disable the diagnosis of the device  
Sense; Sense current of the selected channel  
3
DEN  
IS  
4
5
DSEL  
IN1  
Diagnostic SELection; Digital signal to select the channel to be diagnosed  
INput channel 1; Input signal for channel 1 activation  
Not Connected; No internal connection to the chip  
OUTput 1; Protected high-side power output channel 11)  
OUTput 0; Protected high-side power output channel 01)  
Voltage Supply; Battery voltage  
6
7, 11  
NC  
8, 9, 10  
12, 13, 14  
OUT1  
OUT0  
Cooling Tab VS  
1) All output pins of a given channel must be connected together on the PCB. All pins of an output are internally  
connected together. PCB traces have to be designed to withstand the maximum current which can flow.  
Datasheet  
4
Rev.1.00  
2019-03-09  
PROFET™ +24V  
BTT6030-2ERB  
Pin Configuration  
3.3  
Voltage and Current Definition  
Figure 3 shows all terms used in this data sheet, with associated convention for positive values.  
IVS  
VS  
VDS0  
VS  
IIN0  
IOUT0  
IN0  
IN1  
OUT0  
OUT1  
VIN0  
VDS1  
VOUT0  
VIN1  
IDEN  
DEN  
DSEL  
IS  
IOUT1  
VDEN  
VDSEL  
IIS  
VOUT1  
GND  
VIS  
IGND  
voltage and current convention.vsd  
Figure 3  
Voltage and Current Definition  
Datasheet  
5
Rev.1.00  
2019-03-09  
PROFET™ +24V  
BTT6030-2ERB  
General Product Characteristics  
4
General Product Characteristics  
4.1  
Absolute Maximum Ratings  
Table 3  
Absolute Maximum Ratings 1)  
TJ = -40°C to +150°C; (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or  
Test Condition  
Number  
Min.  
Max.  
Supply Voltages  
Supply voltage  
VS  
-0.3  
0
48  
28  
V
V
P_4.1.1  
P_4.1.2  
Reverse polarity voltage  
-VS(REV)  
t < 2 min  
TA = 25 °C  
RL 12 Ω  
ZGND= Diode +27 Ω  
Supply voltage for short  
circuit protection  
VBAT(SC)  
0
36  
V
Rsupply = 10 mΩ  
Lsupply = 5 µH  
P_4.1.3  
R
Cable1 = 20 mΩ  
Cable1 = 0 µH  
RCable2 = 320 mΩ  
Cable2 = 40 µH  
L
L
See Chapter 6  
and Figure 53  
Supply voltage for Load  
dump protection  
VS(LD)  
65  
V
2) RI = 2 Ω  
RL = 12 Ω  
P_4.1.12  
P_4.1.4  
Short Circuit Capability  
3)  
Permanent short circuit  
IN pin toggles  
nRSC1  
100  
k cycles  
V
= 28 V  
Supply  
Input Pins  
Voltage at INPUT pins  
VIN  
-0.3  
6
7
V
P_4.1.13  
P_4.1.14  
P_4.1.15  
t < 2 min  
Current through INPUT  
pins  
IIN  
-2  
2
mA  
V
Voltage at DEN pin  
VDEN  
-0.3  
6
7
t < 2 min  
Current through DEN pin  
Voltage at DSEL pin  
IDEN  
-2  
2
mA  
V
P_4.1.16  
P_4.1.17  
VDSEL  
-0.3  
6
7
t < 2 min  
Current through DSEL pin IDSEL  
-2  
2
mA  
P_4.1.18  
Sense Pin  
Voltage at IS pin  
VIS  
IIS  
-0.3  
-25  
VS  
V
P_4.1.19  
P_4.1.20  
Current through IS pin  
50  
mA  
Datasheet  
6
Rev.1.00  
2019-03-09  
PROFET™ +24V  
BTT6030-2ERB  
General Product Characteristics  
Table 3  
Absolute Maximum Ratings (cont’d)1)  
TJ = -40°C to +150°C; (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or  
Test Condition  
Number  
Min.  
Max.  
Power Stage  
Load current  
| IL |  
IL(LIM)  
A
P_4.1.21  
P_4.1.22  
Power dissipation (DC)  
PTOT  
2.0  
W
TA = 85°C  
TJ < 150°C  
Maximum energy  
dissipation  
Single pulse (one channel)  
EAS  
85  
65  
mJ  
IL(0) = 4 A  
P_4.1.23  
TJ(0) = 150°C  
VS = 28 V  
Voltage at power transistor VDS  
V
P_4.1.26  
P_4.1.27  
Currents  
Current through ground  
pin  
I GND  
-20  
-200  
20  
20  
mA  
t < 2 min  
Temperatures  
Junction temperature  
Storage temperature  
ESD Susceptibility  
TJ  
-40  
-55  
150  
150  
°C  
°C  
P_4.1.28  
P_4.1.30  
TSTG  
ESD susceptibility (all pins) VESD  
-2  
-4  
2
4
kV  
kV  
4) HBM  
4) HBM  
P_4.1.31  
P_4.1.32  
ESD susceptibility OUT Pin VESD  
vs. GND and VS connected  
ESD susceptibility  
VESD  
VESD  
-500  
-750  
500  
750  
V
V
5) CDM  
5) CDM  
P_4.1.33  
P_4.1.34  
ESD susceptibility pin  
(corner pins)  
1) Not subject to production test. Specified by design.  
2) VS(LD) is setup without the DUT connected to the generator per ISO 7637-1.  
3) Threshold limit for short circuit failures : 100 ppm. Please refer to the legal disclaimer for short circuit capability on  
the Back Cover of this document.  
4) ESD susceptibility, Human Body Model “HBM” according to AEC Q100-002  
5) ESD susceptibility, Charged Device Model “CDM” according to AEC Q100-011  
Notes  
1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the  
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are  
not designed for continuous repetitive operation.  
Datasheet  
7
Rev.1.00  
2019-03-09  
PROFET™ +24V  
BTT6030-2ERB  
General Product Characteristics  
4.2  
Functional Range  
Table 4  
Functional Range TJ = -40°C to +150°C; (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
28  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
36  
Nominal operating voltage  
Extended operating voltage  
VNOM  
8
5
V
V
2)  
P_4.2.1  
P_4.2.2  
VS(OP)  
48  
V = 4.5 V  
IN  
RL = 12 Ω  
DS < 0.5 V  
V
See Figure 15  
1)  
Minimum functional supply  
voltage  
VS(OP)_MIN  
3.8  
4.3  
3.5  
5
V
V
V
= 4.5 V  
P_4.2.3  
P_4.2.4  
IN  
RL = 12 Ω  
From IOUT = 0 A  
to VDS < 0.5 V;  
See Figure 15  
See Figure 29  
1)  
Undervoltage shutdown  
VS(UV)  
3
4.1  
V = 4.5 V  
IN  
VDEN = 0 V  
RL = 12 Ω  
From VDS < 1 V;  
to IOUT = 0 A  
See Figure 15  
See Figure 30  
2)  
Undervoltage shutdown  
hysteresis  
VS(UV)_HYS  
IGND_1  
850  
5.5  
9
mV  
mA  
P_4.2.13  
P_4.2.5  
Operating current  
One channel active  
VIN = 5.5 V  
V
DEN = 5.5 V  
Device in RDS(ON)  
VS = 36 V  
See Figure 31  
Operating current  
All channels active  
IGND_2  
9
12  
mA  
µA  
VIN = 5.5 V  
P_4.2.6  
P_4.2.7  
V
DEN = 5.5 V  
Device in RDS(ON)  
VS = 36 V  
See Figure 32  
1) VS = 36 V  
VOUT = 0 V  
Standby current for whole  
device with load  
IS(OFF)  
0.1  
0.5  
V
V
IN floating  
DEN floating  
TJ 85°C  
See Figure 33  
Datasheet  
8
Rev.1.00  
2019-03-09  
PROFET™ +24V  
BTT6030-2ERB  
General Product Characteristics  
Table 4  
Functional Range (cont’d)TJ = -40°C to +150°C; (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
6
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Maximum standby current for IS(OFF)_150  
whole device with load  
15  
µA  
VS = 36 V  
OUT = 0 V  
VIN floating  
DEN floating  
P_4.2.10  
V
V
TJ = 150°C  
See Figure 33  
Standby current for whole  
device with load, diagnostic  
active  
IS(OFF_DEN)  
0.6  
mA  
2) VS = 36 V  
VOUT = 0 V  
P_4.2.8  
V
V
IN floating  
DEN = 5.5 V  
1) Test at TJ = -40°C only  
2) Not subject to production test. Specified by design.  
Note:  
Within the functional range the IC operates as described in the circuit description. The electrical  
characteristics are specified within the conditions given in the related electrical characteristics  
table.  
4.3  
Thermal Resistance  
Table 5  
Thermal Resistance  
Parameter  
Symbol  
Values  
Typ.  
2
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
1)  
Junction to case  
RthJC  
RthJA  
K/W  
K/W  
P_4.3.1  
P_4.3.2  
1) 2)  
Junction to ambient  
Both channels active  
25  
1) Not subject to production test. Specified by design.  
2) Specified RthJA value is according to JEDEC JESD51-2,-5,-7 at natural convection on FR4 2s2p board with 1 W power  
dissipation equally dissipated for both channel at TA=105°C ; The product (chip + package) was simulated on a 76.4 x  
114.3 x 1.5 mm board with 2 inner copper layers (2 x 70 µm Cu, 2 x 35 µm Cu). Where applicable, a thermal via array  
under the exposed pad contacts the first inner copper layer. Please refer to Figure 4.  
Datasheet  
9
Rev.1.00  
2019-03-09  
PROFET™ +24V  
BTT6030-2ERB  
General Product Characteristics  
4.3.1  
PCB set up  
70µm  
35µm  
1.5mm  
0.3mm  
PCB 2s2p.vsd  
Figure 4  
2s2p PCB Cross Section  
PCB bottom view  
PCB top view  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
COOLING  
TAB  
V
8
thermique SO14.vsd  
Figure 5  
PC Board Top and Bottom View for Thermal Simulation with 600 mm2 Cooling Area  
Datasheet  
10  
Rev.1.00  
2019-03-09  
PROFET™ +24V  
BTT6030-2ERB  
General Product Characteristics  
4.3.2  
Thermal Impedance  
BTT6030-2ERx  
100  
10  
1
2s2p  
1s0p - 600 mm²  
1s0p - 300 mm²  
1s0p - footprint  
0,1  
0,0001  
0,001  
0,01  
0,1  
1
10  
100  
1000  
Time (s)  
Figure 6  
Typical Thermal Impedance. 2s2p set-up according Figure 4  
BTT6030-2ERx  
100  
90  
80  
70  
60  
50  
40  
30  
1s0p - Tambient = 105°C  
0
100  
200  
300  
400  
500  
600  
Cooling area (mm²)  
Figure 7  
Typical Thermal Resistance. PCB set-up 1s0p  
Datasheet  
11  
Rev.1.00  
2019-03-09  
PROFET™ +24V  
BTT6030-2ERB  
Power Stage  
5
Power Stage  
The power stages are built using an N-channel vertical power MOSFET (DMOS) with charge pump.  
5.1  
Output ON-State Resistance  
The ON-state resistance RDS(ON) depends on the supply voltage as well as the junction temperature TJ. Figure 8  
shows the dependencies in terms of temperature and supply voltage for the typical ON-state resistance. The  
behavior in reverse polarity is described in Chapter 6.4.  
20  
Figure 8  
Typical ON-State Resistance  
A high signal (see Chapter 8) at the input pin causes the power DMOS to switch ON with a dedicated slope,  
which is optimized in terms of EMC emission.  
5.2  
Turn ON/OFF Characteristics with Resistive Load  
Figure 9 shows the typical timing when switching a resistive load.  
IN  
VIN _H  
VIN _L  
t
VOUT  
90% VS  
dV/dt  
ON  
dV/dt  
OFF  
tON  
tOFF_DELAY  
70% VS  
30% VS  
10% VS  
tON_DELAY  
tOFF  
t
Switching times.vsd  
Figure 9  
Switching a Resistive Load Timing  
Datasheet  
12  
Rev.1.00  
2019-03-09  
PROFET™ +24V  
BTT6030-2ERB  
Power Stage  
5.3  
Inductive Load  
5.3.1  
Output Clamping  
When switching OFF inductive loads with high side switches, the voltage VOUT drops below ground potential,  
because the inductance intends to continue driving the current. To prevent the destruction of the device by  
avalanche due to high voltages, there is a voltage clamp mechanism ZDS(AZ) implemented that limits negative  
output voltage to a certain level (VS - VDS(AZ)). Please refer to Figure 10 and Figure 11 for details. Nevertheless,  
the maximum allowed load inductance is limited.  
VS  
ZDS(AZ)  
VDS  
IN  
LOGIC  
IL  
VBAT  
GND  
ZGND  
OUT  
VOUT  
VIN  
L, RL  
Output_clamp.vsd  
Figure 10 Output Clamp (OUT0 and OUT1)  
IN  
t
VOUT  
VS  
t
VS-VDS(AZ)  
IL  
t
Switching an inductance.vsd  
Figure 11 Switching an Inductive Load Timing  
Datasheet  
13  
Rev.1.00  
2019-03-09  
PROFET™ +24V  
BTT6030-2ERB  
Power Stage  
5.3.2  
Maximum Load Inductance  
During demagnetization of inductive loads, energy has to be dissipated in the BTT6030-2ERB. This energy can  
be calculated with following equation:  
RL IL  
VS VDS(AZ)  
----- ------------------------------  
L
RL  
------------------------------  
VS VDS(AZ)  
E = VDS(AZ)  
ln 1 –  
+ IL  
(5.1)  
RL  
The following equation simplifies under the assumption of RL = 0 .  
VS  
L I2 1 –  
(5.2)  
1
--  
------------------------------  
VS VDS(AZ)  
E =  
2
The energy, which is converted into heat, is limited by the thermal design of the component. See Figure 12 for  
the maximum allowed energy dissipation as a function of the load current.  
Figure 12 Maximum Energy Dissipation Single Pulse, TJ(0) = 150°C; VS = 28 V  
Datasheet  
14  
Rev.1.00  
2019-03-09  
PROFET™ +24V  
BTT6030-2ERB  
Power Stage  
5.4  
Inverse Current Capability  
In case of inverse current, meaning a voltage VINV at the OUTput higher than the supply voltage VS, a current  
IINV will flow from output to VS pin via the body diode of the power transistor (please refer to Figure 13). The  
output stage follows the state of the IN pin, except if the IN pin goes from OFF to ON during inverse. In that  
particular case, the output stage is kept OFF until the inverse current disappears. Nevertheless, the current IINV  
should not be higher than IL(INV). Otherwise, the second channel can be corrupted and erratic behavior can be  
observed. If the affected channel is OFF, the diagnostic will detect an open load at OFF. If the affected channel  
is ON, the diagnostic will detect open load at ON (the overtemperature signal is inhibited). At the appearance  
of VINV, a parasitic diagnostic can be observed at the unaffected channel. After, the diagnosis is valid and  
reflects the output state. At VINV vanishing, the diagnosis is valid and reflects the output state. During inverse  
current, no protection function are available.  
VBAT  
VS  
Gate  
driver  
Device  
logic  
VINV  
INV  
Comp.  
IL(INV)  
OUT  
GND  
ZGND  
inverse current.vsd  
Figure 13 Inverse Current Circuitry  
Datasheet  
15  
Rev.1.00  
2019-03-09  
PROFET™ +24V  
BTT6030-2ERB  
Power Stage  
5.5  
Electrical Characteristics Power Stage  
Table 6  
Electrical Characteristics: Power Stage  
VS = 8 V to 36 V, TJ = -40°C to +150°C (unless otherwise specified).  
Typical values are given at VS = 28 V, TJ = 25°C  
Parameter  
Symbol  
Values  
Typ.  
55  
Unit Note or  
Test Condition  
Number  
Min.  
ON-state resistance per channel RDS(ON)_150 40  
Max.  
62  
mIL = IL4 = 4 A  
VIN = 4.5 V  
P_5.5.1  
TJ = 150°C  
See Figure 8  
ON-state resistance per channel RDS(ON)_25  
32  
6
m1) TJ = 25°C  
P_5.5.21  
P_5.5.2  
Nominal load current  
One channel active  
IL(NOM)1  
A
1) TA = 85°C  
TJ < 150°C  
Nominal load current  
All channels active  
IL(NOM)2  
4
A
P_5.5.3  
P_5.5.4  
P_5.5.5  
Output voltage drop limitation at VDS(NL)  
small load currents  
10  
70  
22  
75  
mV  
V
IL = IL0 = 50 mA  
See Figure 34  
Drain to source clamping voltage VDS(AZ)  
66  
IDS = 20 mA  
See Figure 11  
See Figure 35  
2)  
VDS(AZ) = (VS - VOUT  
)
Output leakage current per  
channel; TJ 85°C  
IL(OFF)  
0.05  
2
0.5  
10  
µA  
µA  
V
floating  
P_5.5.6  
P_5.5.8  
IN  
VOUT = 0 V  
TJ 85°C  
Output leakage current per  
channel; TJ = 150°C  
IL(OFF)_150  
VIN floating  
VOUT = 0 V  
TJ = 150°C  
Slew rate  
30% to 70% VS  
ΔV/dtON  
0.3  
0.8  
0.8  
0
1.4  
V/µs RL = 12 Ω  
VS = 28 V  
P_5.5.11  
P_5.5.12  
P_5.5.13  
See Figure 9  
Slew rate  
70% to 30% VS  
-ΔV/dtOFF 0.3  
1.4  
V/µs  
See Figure 36  
See Figure 37  
See Figure 38  
See Figure 39  
See Figure 40  
Slew rate matching  
dV/dtON - dV/dtOFF  
ΔdV/dt  
-0.15  
0.15  
V/µs  
Turn-ON time to VOUT = 90% VS  
Turn-OFF time to VOUT = 10% VS  
tON  
20  
50  
55  
0
150  
150  
50  
µs  
µs  
µs  
P_5.5.14  
P_5.5.15  
P_5.5.16  
tOFF  
ΔtSW  
20  
Turn-ON / OFF matching  
-50  
tOFF - tON  
Turn-ON time to VOUT = 10% VS  
Turn-OFF time to VOUT = 90% VS  
tON_delay  
tOFF_delay  
30  
30  
70  
70  
µs  
µs  
P_5.5.17  
P_5.5.18  
Datasheet  
16  
Rev.1.00  
2019-03-09  
PROFET™ +24V  
BTT6030-2ERB  
Power Stage  
Table 6  
Electrical Characteristics: Power Stage (cont’d)  
VS = 8 V to 36 V, TJ = -40°C to +150°C (unless otherwise specified).  
Typical values are given at VS = 28 V, TJ = 25°C  
Parameter  
Symbol  
Values  
Typ.  
0.6  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Switch ON energy  
EON  
mJ  
1) RL = 12 Ω  
OUT = 90% VS  
P_5.5.19  
V
VS = 36 V  
See Figure 41  
Switch OFF energy  
EOFF  
0.8  
mJ  
1) RL = 12 Ω  
VOUT = 10% VS  
VS = 36 V  
P_5.5.20  
See Figure 42  
1) Not subject to production test, specified by design.  
2) Test at TJ = -40°C only  
Datasheet  
17  
Rev.1.00  
2019-03-09  
PROFET™ +24V  
BTT6030-2ERB  
Protection Functions  
6
Protection Functions  
The device provides integrated protection functions. These functions are designed to prevent the destruction  
of the IC from fault conditions described in the data sheet. Fault conditions are considered as “outside”  
normal operating range. Protection functions are designed for neither continuous nor repetitive operation.  
6.1  
Loss of Ground Protection  
In case of loss of the module ground and the load remains connected to ground, the device protects itself by  
automatically turning OFF (when it was previously ON) or remains OFF, regardless of the voltage applied on IN  
pins.  
In case of loss of device ground, it’s recommended to use input resistors between the microcontroller and the  
BTT6030-2ERB to ensure switching OFF of the channels.  
In case of loss of module or device ground, a current (IOUT(GND)) can flow out of the DMOS illustrated in  
Figure 14.  
ZGND is recommended to be a resistor in series to a diode.  
ZIS(AZ)  
VS  
ZD(AZ)  
VBAT  
ZDS(AZ)  
IS  
RSENSE  
DSEL  
DEN  
IN0  
RDSEL  
RDEN  
RIN  
IOUT(GND)  
LOGIC  
IN1  
RIN  
OUT  
GND  
ZGND  
ZDESD  
L, RL  
RIS  
RIS  
Loss of ground protection.vsd  
Figure 14 Loss of Ground Protection with External Components  
6.2  
Undervoltage Protection  
Between VS(UV) and VS(OP), the undervoltage mechanism is triggered. VS(OP) represents the minimum voltage  
where the switching ON and OFF can takes place. VS(UV) represents the minimum voltage the switch can hold  
ON. If the supply voltage is below the undervoltage mechanism VS(UV), the device is OFF (turns OFF). As soon as  
the supply voltage is above the undervoltage mechanism VS(OP), then the device can be switched ON. When the  
switch is ON, protection functions are operational. Nevertheless, the diagnosis is not guaranteed until VS is in  
the VNOM range. Figure 15 illustrates the undervoltage mechanism.  
Datasheet  
18  
Rev.1.00  
2019-03-09  
PROFET™ +24V  
BTT6030-2ERB  
Protection Functions  
VOUT  
undervoltage behavior . vsd  
VS  
VS(UV)  
VS(OP)  
Figure 15 Undervoltage Behavior  
6.3  
Overvoltage Protection  
There is an integrated clamp mechanism for overvoltage protection (ZD(AZ)). To guarantee this mechanism  
operates properly in the application, the current in the Zener diode has to be limited by a ground resistor.  
Figure 16 shows a typical application to withstand overvoltage issues. In case of supply voltage higher than  
VS(AZ), the power transistor switches ON and the voltage across the logic section is clamped. As a result, the  
internal ground potential rises to VS - VS(AZ). Due to the ESD Zener diodes, the potential at pin IN and DEN rises  
almost to that potential, depending on the impedance of the connected circuitry. In the case the device was  
ON, prior to overvoltage, the BTT6030-2ERB remains ON. In the case the BTT6030-2ERB was OFF, prior to  
overvoltage, the power transistor can be activated. In the case the supply voltage is in above VBAT(SC) and below  
VDS(AZ), the output transistor is still operational and follows the input. If at least one channel is in the ON state,  
parameters are no longer guaranteed and lifetime is reduced compared to the nominal supply voltage range.  
This especially impacts the short circuit robustness, as well as the maximum energy EAS capability.  
ISOV  
ZIS(AZ)  
VS  
VBAT  
IS  
ZD(AZ)  
ZDS(AZ)  
RSENSE  
DSEL  
DEN  
IN0  
RDSEL  
RDEN  
RIN  
LOGIC  
IN1  
RIN  
OUT  
ZDESD  
GND  
ZGND  
L, RL  
RIS  
Overvoltage protection.vsd  
Figure 16 Overvoltage Protection with External Components  
Datasheet  
19  
Rev.1.00  
2019-03-09  
PROFET™ +24V  
BTT6030-2ERB  
Protection Functions  
6.4  
Reverse Polarity Protection  
In case of reverse polarity, the intrinsic body diodes of the power DMOS causes power dissipation. The current  
in this intrinsic body diode is limited by the load itself. Additionally, the current into the ground path and the  
logic pins has to be limited to the maximum current described in Chapter 4.1 with an external resistor.  
Figure 17 shows a typical application. RGND resistor is used to limit the current in the Zener protection of the  
device. Resistors RDSEL, RDEN, and RIN are used to limit the current in the logic of the device and in the ESD  
protection stage. RSENSE is used to limit the current in the sense transistor which behaves as a diode. The  
recommended value for RDEN = RDSEL = RIN = RSENSE = 10 k. ZGND is recommended to be a resistor in series to a  
diode.  
During reverse polarity, no protection functions are available.  
Microcontroller  
ZIS(AZ)  
VS  
protection diodes  
IS  
ZDS(AZ)  
ZD(AZ)  
RSENSE  
VDS(REV)  
DSEL  
DEN  
IN0  
RDSEL  
RDEN  
RIN  
LOGIC  
-VS(REV)  
IN1  
RIN  
OUT  
L, RL  
ZDESD  
GND  
RIS  
ZGND  
Reverse Polarity.vsd  
Figure 17 Reverse Polarity Protection with External Components  
Datasheet  
20  
Rev.1.00  
2019-03-09  
PROFET™ +24V  
BTT6030-2ERB  
Protection Functions  
6.5  
Overload Protection  
In case of overload, such as high inrush of cold lamp filament, or short circuit to ground, the BTT6030-2ERB  
offers several protection mechanisms.  
6.5.1  
Current Limitation  
At first step, the instantaneous power in the switch is maintained at a safe value by limiting the current to the  
maximum current allowed in the switch IL(SC). During this time, the DMOS temperature is increasing, which  
affects the current flowing in the DMOS. The current limitation value is VDS dependent. Figure 18 shows the  
behavior of the current limitation as a function of the drain to source voltage.  
60  
50  
40  
30  
20  
10  
0
2
7
12  
17  
22  
27  
32  
Drain Source Voltage VDS (V)  
Figure 18 Current Limitation (typical behavior)  
Datasheet  
21  
Rev.1.00  
2019-03-09  
PROFET™ +24V  
BTT6030-2ERB  
Protection Functions  
6.5.2  
Temperature Limitation in the Power DMOS  
Each channel incorporates both an absolute (TJ(SC)) and a dynamic (TJ(SW)) temperature sensor. Activation of  
either sensor will cause an overheated channel to switch OFF to prevent destruction. Any protective switch  
OFF latches the output until the temperature has reached an acceptable value illustrated in Figure 19.  
No retry strategy is implemented such that when the DMOS temperature has cooled down enough, the switch  
is switched ON again. Only the IN pin signal toggling can re-activate the power stage. (latch behavior).  
IN  
t
IL  
LOAD CURRENT BELOW  
LOAD CURRENT LIMITATION PHASE  
LIMITATION PHASE  
IL(x)SC  
IL(NOM)  
t
TDMOS  
TJ(SC)  
Temperature  
protection phase  
ΔTJ(SW)  
TA  
tsIS(FAULT)  
t
t
tsIS(OC_blank)  
IIS  
IIS(FAULT)  
IL(NOM) / kILIS  
0A  
tsIS(OFF)  
VDEN  
0V  
t
Hard start.vsd  
Figure 19 Overload Protection  
Note:  
For better understanding, the time scale is not linear. The real timing of this drawing is application  
dependant and cannot be described.  
Datasheet  
22  
Rev.1.00  
2019-03-09  
PROFET™ +24V  
BTT6030-2ERB  
Protection Functions  
6.6  
Electrical Characteristics for the Protection Functions  
Table 7  
Electrical Characteristics: Protection  
VS = 8 V to 36 V, TJ = -40°C to +150°C (unless otherwise specified).  
Typical values are given at VS = 28 V, TJ = 25°C  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Loss of Ground  
Output leakage current while IOUT(GND)  
GND disconnected  
0.1  
mA  
mV  
1) 2) VS = 48 V  
See Figure 14  
P_6.6.1  
P_6.6.2  
Reverse Polarity  
Drain source diode voltage  
during reverse polarity  
VDS(REV)  
200  
610  
700  
IL = - 2 A  
TJ = 150°C  
See Figure 17  
Overvoltage  
Overvoltage protection  
VS(AZ)  
65  
70  
75  
V
ISOV = 5 mA  
P_6.6.3  
See Figure 16  
Overload Condition  
3)  
Load current limitation  
IL5(SC)  
40  
50  
25  
80  
60  
A
A
K
V
= 5 V  
P_6.6.4  
P_6.6.7  
P_6.6.8  
P_6.6.10  
DS  
See Figure 43  
2)  
Load current limitation  
IL28(SC)  
V = 42 V  
DS  
See Figure 44  
4) See Figure 19  
Dynamic temperature increase TJ(SW)  
while switching  
Thermal shutdown  
temperature  
TJ(SC)  
150  
170 4) 200 4) °C  
5) See Figure 19  
Thermal shutdown hysteresis TJ(SC)  
30  
K
5) 4) See Figure 19 P_6.6.11  
1) All pins are disconnected except VS and OUT.  
2) Not Subject to production test, specified by design  
3) Test at TJ = -40°C only  
4) Functional test only  
5) Test at TJ = +150°C only  
Datasheet  
23  
Rev.1.00  
2019-03-09  
PROFET™ +24V  
BTT6030-2ERB  
Diagnostic Functions  
7
Diagnostic Functions  
For diagnosis purposes, the BTT6030-2ERB provides a combination of digital and analog signals at pin IS.  
These signals are called SENSE. In case the diagnostic is disabled via DEN, pin IS becomes high impedance. In  
case DEN is activated, the sense current of the channel X is enabled/disabled via associated pin DSEL. Table 8  
gives the truth table.  
Table 8  
Diagnostic Truth Table  
DEN  
DSEL  
IS  
0
1
1
don’t care  
Z
0
1
Sense output 0 IIS(0)  
Sense output 1 IIS(1)  
7.1  
IS Pin  
The BTT6030-2ERB provides a SENSE current written IIS at pin IS. As long as no “hard” failure mode occurs  
(short circuit to GND / current limitation / overtemperature / excessive dynamic temperature increase or open  
load at OFF) a proportional signal to the load current (ratio kILIS = IL / IIS) is provided. The complete IS pin and  
diagnostic mechanism is described in Figure 20. The accuracy of the SENSE depends on temperature and load  
current. The IS pin multiplexes the current IIS(0) and IIS(1), via the pin DSEL. Thanks to this multiplexing, the  
matching between kILISCHANNEL0 and kILISCHANNEL1 is optimized. Due to the ESD protection, in connection to VS, it  
is not recommended to share the IS pin with other devices if these devices are using another battery feed. The  
consequence is that the unsupplied device would be fed via the IS pin of the supplied device.  
VS  
IIS1  
IL1 / kILIS  
=
IIS0  
IL0 / kILIS  
=
IIS(FAULT)  
ZIS(AZ)  
0
1
FAULT  
IS  
DEN  
0
1
DSEL  
Sense schematic.vsd  
Figure 20 Diagnostic Block Diagram  
Datasheet  
24  
Rev.1.00  
2019-03-09  
PROFET™ +24V  
BTT6030-2ERB  
Diagnostic Functions  
7.2  
SENSE Signal in Different Operating Modes  
Table 9 gives a quick reference for the state of the IS pin during device operation.  
Table 9  
Sense Signal, Function of Operation Mode  
Operation Mode  
Input level Channel X DEN1)  
Output  
Level  
Diagnostic Output  
Normal operation  
Short circuit to GND  
Overtemperature  
Short circuit to VS  
Open Load  
OFF H  
Z
Z
~ GND  
Z
Z
Z
VS  
IIS(FAULT)  
< VOL(OFF)  
> VOL(OFF)  
Z
2)  
IIS(FAULT)  
Inverse current  
~ VINV  
~ VS  
< VS  
~ GND  
Z
IIS(FAULT)  
IIS = IL / kILIS  
IIS(FAULT)  
IIS(FAULT)  
IIS(FAULT)  
Normal operation  
Current limitation  
Short circuit to GND  
ON  
Overtemperature TJ(SW)  
event  
Short circuit to VS  
Open Load  
VS  
IIS < IL / kILIS  
IIS < IIS(OL)  
3)  
~ VS  
4)  
Inverse current  
Underload  
~ VINV  
IIS < IIS(OL)  
5)  
~ VS  
IIS(OL) < IIS < IL / kILIS  
Don’t care  
Don’t care  
L
Don’t care  
Z
1) The table doesn’t indicate but it is assumed that the appropriate channel is selected via the DSEL pin.  
2) With additional pull-up resistor.  
3) The output current has to be smaller than IL(OL)  
4) After maximum tINV  
.
.
5) The output current has to be higher than IL(OL)  
.
Datasheet  
25  
Rev.1.00  
2019-03-09  
PROFET™ +24V  
BTT6030-2ERB  
Diagnostic Functions  
7.3  
SENSE Signal in the Nominal Current Range  
Figure 21 show the current sense as a function of the load current in the power DMOS. Usually, a pull-down  
resistor RIS is connected to the IS pin. This resistor has to be higher than 560 to limit the power losses in the  
sense circuitry. A typical value is 1.2 k. The blue curve represents the ideal SENSE, assuming an ideal kILIS  
factor value. The red curves show the accuracy the device provides across full temperature range, at a defined  
current.  
5
4.5  
4
3.5  
3
2.5  
2
1.5  
1
0.5  
min/max Sense Current  
typical Sense Current  
0
0
1
2
3
4
5
6
7
8
9
10  
I
[A]  
L
BTT6030-2ERB  
Figure 21 Current Sense for Nominal Load  
7.3.1  
SENSE Signal Variation as a Function of Temperature and Load Current  
In some applications a better accuracy is required around half the nominal current IL(NOM). To achieve this  
accuracy requirement, a calibration on the application is possible. To avoid multiple calibration points at  
different load and temperature conditions, the BTT6030-2ERB allows limited derating of the kILIS value, at  
nominal load current (IL3; TJ = +25°C). This derating is described by the parameter ΔkILIS. Figure 22 shows the  
behavior of the SENSE current, assuming one calibration point at nominal load at +25°C.  
The blue line indicates the ideal kILIS ratio.  
The green lines indicate the derating on the parameter across temperature and voltage, assuming one  
calibration point at nominal temperature and nominal battery voltage.  
The red lines indicate the kILIS accuracy without calibration.  
Datasheet  
26  
Rev.1.00  
2019-03-09  
PROFET™ +24V  
BTT6030-2ERB  
Diagnostic Functions  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
calibrated k  
min/max k  
ILIS  
ILIS  
typical k  
ILIS  
0
1
2
3
4
5
[A]  
6
7
8
9
10  
I
L
BTT6030-2ERB  
Figure 22 Improved SENSE Accuracy with One Calibration Point  
7.3.2  
SENSE Signal Timing  
Figure 23 shows the timing during settling and disabling of the SENSE.  
VINx  
t
IL  
tONx  
tOFFx  
tONx  
90% of  
L static  
I
t
t
VDEN  
IIS  
tsIS(LC)  
tsIS(chC)  
tsIS(OFF)  
tsIS(ON)  
tsIS(ON_DEN)  
90% of  
IS static  
I
t
t
VDSEL  
VINy  
t
ILy  
tONy  
t
current sense settling disabling time.vsd  
Figure 23 SENSE Settling / Disabling Timing  
Datasheet  
27  
Rev.1.00  
2019-03-09  
PROFET™ +24V  
BTT6030-2ERB  
Diagnostic Functions  
7.3.3  
SENSE Signal in Open Load  
7.3.3.1 Open Load in ON Diagnostic  
If the channel is ON, a leakage current can still flow through an open load, for example due to humidity. The  
parameter IL(OL) gives the threshold of recognition for this leakage current. If the current IL flowing out the  
power DMOS is below this value, the device recognizes a failure, if the DEN (and DSEL) is selected. In that case,  
the SENSE current is below IIS(OL). Otherwise, the minimum SENSE current is given above parameter IIS(OL)  
.
Figure 24 shows the SENSE current behavior in this area. The red curve shows a typical product curve. The  
blue curve shows the ideal kILIS ratio.  
IIS  
IIS(OL)  
IL  
IL(OL)  
Sense for OL .vsd  
Figure 24 Current Sense Ratio for Low Currents  
7.3.3.2 Open Load in OFF Diagnostic  
For open load diagnosis in OFF-state, an external output pull-up resistor (ROL) is recommended. For the  
calculation of pull-up resistor value, the leakage currents and the open load threshold voltage VOL(OFF) have to  
be taken into account. Figure 25 gives a sketch of the situation. Ileakage defines the leakage current in the  
complete system, including IL(OFF) (see Chapter 5.5) and external leakages, e.g, due to humidity, corrosion,  
etc.... in the application.  
To reduce the stand-by current of the system, an open load resistor switch SOL is recommended. If the channel  
x is OFF, the output is no longer pulled down by the load and VOUT voltage rises to nearly VS. This is recognized  
by the device as an open load. The voltage threshold is given by VOL(OFF). In that case, the SENSE signal is  
switched to the IIS(FAULT)  
.
An additional RPD resistor can be used to pull VOUT to 0 V. Otherwise, the OUT pin is floating. This resistor can  
be used as well for short circuit to battery detection, see Chapter 7.3.4.  
Datasheet  
28  
Rev.1.00  
2019-03-09  
PROFET™ +24V  
BTT6030-2ERB  
Diagnostic Functions  
Vbat  
SOL  
VS  
IIS(FAULT)  
ROL  
OL  
comp.  
OUT  
IS  
ILOFF  
Ileakage  
GND  
VOL(OFF)  
ZGND  
Rleakage  
RIS  
RPD  
Open Load in OFF.vsd  
Figure 25 Open Load Detection in OFF Electrical Equivalent Circuit  
7.3.3.3 Open Load Diagnostic Timing  
Figure 26 shows the timing during either Open Load in ON or OFF condition. Please note that a delay  
tsIS(FAULT_OL_OFF) has to be respected after the rising edge of the DEN, when applying an open load in OFF  
diagnosis request, otherwise the diagnosis can be wrong.  
Load is present  
Open load  
VIN  
t
VOUT  
VOL(OFF)  
RDSON x IL  
t
IOUT  
VDEN  
t
IIS  
tsIS(FAULT_OL_OFF)  
tsIS(LC)  
90% of IIIS(FAULT) static  
t
Error Settling Disabling Time.vsd  
Figure 26 SENSE Signal in Open Load Timing  
Datasheet  
29  
Rev.1.00  
2019-03-09  
PROFET™ +24V  
BTT6030-2ERB  
Diagnostic Functions  
7.3.4  
SENSE Signal with OUT in Short Circuit to VS  
In case of a short circuit between the OUTput-pin and the VS pin, all or portion (depending on the short circuit  
impedance) of the load current will flow through the short circuit. As a result, a lower current compared to the  
normal operation will flow through the DMOS of the BTT6030-2ERB, which can be recognized at the SENSE  
signal. The open load at OFF detection circuitry can also be used to distinguish a short circuit to VS. In that case,  
an external resistor to ground RSC_VS is required illustrated in Figure 27.  
Vbat  
VS  
IIS(FAULT)  
VBAT  
OL  
Comp.  
IS  
OUT  
VOL(OFF)  
GND  
RSC_VS  
ZGND  
RIS  
Sh ort c irc uit to Vs .v sd  
Figure 27 Short Circuit to Battery Detection in OFF Electrical Equivalent Circuit  
7.3.5  
SENSE Signal in Case of Overload  
An overload condition is defined by a current flowing out of the DMOS reaching the current limitation and / or  
the absolute dynamic temperature swing TJ(SW) is reached, and / or the junction temperature reaches the  
thermal shutdown temperature TJ(SC). Please refer to Chapter 6.5 for details.  
In that case, the SENSE signal given is by IIS(FAULT) when the diagnostic is selected.  
The device has a thermal latch behavior, such that when the overtemperature or the exceed dynamic  
temperature condition has disappeared, the DMOS is reactivated only when the IN is toggled LOW to HIGH. If  
the DEN pin is activated, and DSEL pin is selected to the correct channel, the SENSE follows the output stage.  
If no reset of the latch occurs, the device remains in the latching phase and IIS(FAULT) at the IS pin, even though  
the DMOS is OFF.  
7.3.6  
SENSE Signal in Case of Inverse Current  
In the case of inverse current, the sense signal of the affected channel will indicate open load in OFF state  
during OFF state and indicate open load in ON during ON state. The unaffected channel indicates normal  
behavior as long as the IINV current is not exceeding the maximum value specified in Chapter 5.4.  
Datasheet  
30  
Rev.1.00  
2019-03-09  
PROFET™ +24V  
BTT6030-2ERB  
Diagnostic Functions  
7.4  
Electrical Characteristics Diagnostic Function  
Table 10 Electrical Characteristics: Diagnostics  
VS = 8 V to 36 V, TJ = -40°C to +150°C (unless otherwise specified).  
Typical values are given at VS = 28 V, TJ = 25°C  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition Number  
Min.  
Load Condition Threshold for Diagnostic  
Max.  
1)  
Open load detection  
threshold in OFF state  
VS - VOL(OFF)  
4
6
V
V
= 0 V  
P_7.5.1  
P_7.5.2  
IN  
V
DEN = 4.5 V  
See Figure 26  
Open load detection  
threshold in ON state  
IL(OL)  
4
25  
mA VIN = VDEN = 4.5 V  
IIS(OL) = 5 µA  
See Figure 24  
See Figure 46  
Sense Pin  
1)  
IS pin leakage current when IIS_(DIS)  
sense is disabled  
1
0.02  
1
µA  
V
V
= 4.5 V  
P_7.5.4  
P_7.5.6  
IN  
VDEN = 0 V  
IL = IL4 = 4 A  
2)  
Sense signal saturation  
voltage  
VS- VIS  
3.5  
V = 0 V  
IN  
V
OUT = VS > 10 V  
(RANGE)  
VDEN = 4.5 V  
IIS = 6 mA  
See Figure 47  
Sense signal maximum  
current in fault condition  
IIS(FAULT)  
6
15  
40  
mA VIS = VIN = VDSEL = 0 V  
OUT = VS > 10 V  
P_7.5.7  
P_7.5.3  
V
VDEN = 4.5 V  
See Figure 20  
See Figure 48  
Sense pin maximum  
voltage  
VIS(AZ)  
65  
70  
75  
V
IIS = 5 mA  
See Figure 20  
Current Sense Ratio Signal in the Nominal Area, Stable Load Current Condition  
Current sense ratio  
L0 = 50 mA  
kILIS0  
kILIS1  
kILIS2  
kILIS3  
kILIS4  
-50% 2450  
-25% 2360  
-12% 2240  
+50%  
+25%  
+12%  
+9%  
+8%  
+5  
VIN = 4.5 V  
DEN = 4.5 V  
See Figure 21  
P_7.5.8  
I
V
Current sense ratio  
IL1 = 0.5 A  
P_7.5.9  
TJ = -40 °C; 150 °C  
Current sense ratio  
IL2 = 1 A  
P_7.5.10  
P_7.5.11  
P_7.5.12  
P_7.5.17  
Current sense ratio  
IL3 = 2 A  
-9%  
-8%  
-5  
2240  
2240  
0
Current sense ratio  
IL4 = 4 A  
2)  
kILIS derating with current ΔkILIS  
%
k
versus kILIS2  
ILIS3  
and temperature  
See Figure 22  
Datasheet  
31  
Rev.1.00  
2019-03-09  
PROFET™ +24V  
BTT6030-2ERB  
Diagnostic Functions  
Table 10 Electrical Characteristics: Diagnostics (cont’d)  
VS = 8 V to 36 V, TJ = -40°C to +150°C (unless otherwise specified).  
Typical values are given at VS = 28 V, TJ = 25°C  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition Number  
Min.  
Max.  
Diagnostic Timing in Normal Condition  
2)  
Current sense settling time tsIS(ON)  
to kILIS function stable after  
positive input slope on both  
INput and DEN  
150  
µs  
µs  
µs  
V
= VIN = 0 to 4.5 V P_7.5.18  
DEN  
VS = 28 V  
RIS = 1.2 kΩ  
C
IL = IL3 = 2 A  
See Figure 23  
1)  
SENSE < 100 pF  
Current sense settling time tsIS(ON_DEN)  
with load current stable  
and transition of the DEN  
10  
20  
V = 4.5 V  
P_7.5.19  
P_7.5.20  
IN  
V
DEN = 0 to 4.5 V  
RIS = 1.2 kΩ  
CSENSE < 100 pF  
IL = IL3 = 2 A  
See Figure 23  
1)  
Current sense settling time tsIS(LC)  
to IIS stable after positive  
input slope on current load  
V = 4.5 V  
IN  
V
DEN = 4.5 V  
RIS = 1.2 kΩ  
SENSE < 100 pF  
C
IL = IL2 = 1 A to IL = IL3 = 2 A  
See Figure 23  
Diagnostic Timing in Open Load Condition  
1)  
Current sense settling time tsIS(FAULT_OL_  
100  
µs  
µs  
V = 0V  
P_7.5.22  
P_7.5.23  
IN  
to IIS stable for open load  
V
DEN = 0 to 4.5 V  
RIS = 1.2 kΩ  
SENSE < 100 pF  
OUT = VS = 28 V  
OFF)  
detection in OFF state  
C
V
See Figure 26  
2)  
Current sense settling time tsIS(FAULT_OL_  
-
200  
V = 4.5 to 0V  
IN  
for open load detection in  
VDEN = 4.5 V  
ON_OFF)  
ON-OFF transition  
RIS = 1.2 kΩ  
CSENSE < 100 pF  
V
OUT = VS = 28 V  
See Figure 26  
Diagnostic Timing in Overload Condition  
2)  
Current sense settling time tsIS(FAULT)  
to IIS stable for overload  
detection  
150  
µs  
V = VDEN = 0 to 4.5 V P_7.5.24  
IN  
RIS = 1.2 kΩ  
SENSE < 100 pF  
C
VDS = 24 V  
See Figure 19  
Datasheet  
32  
Rev.1.00  
2019-03-09  
PROFET™ +24V  
BTT6030-2ERB  
Diagnostic Functions  
Table 10 Electrical Characteristics: Diagnostics (cont’d)  
VS = 8 V to 36 V, TJ = -40°C to +150°C (unless otherwise specified).  
Typical values are given at VS = 28 V, TJ = 25°C  
Parameter  
Symbol  
Values  
Typ.  
350  
Unit Note or Test Condition Number  
Min.  
Max.  
2)  
Current sense over current tsIS(OC_blank)  
µs  
V
= VDEN = 4.5 V  
P_7.5.32  
IN  
blanking time  
RIS = 1.2 kΩ  
SENSE < 100 pF  
C
VDS = 5 V to 0 V  
See Figure 19  
1)  
Diagnostic disable time  
DEN transition to  
IIS < 50% IL /kILIS  
tsIS(OFF)  
20  
20  
µs  
V = 4.5 V  
IN  
P_7.5.25  
V
DEN = 4.5 V to 0 V  
RIS = 1.2 kΩ  
CSENSE < 100 pF  
IL = IL3 = 2 A  
See Figure 23  
Current sense settling time tsIS(ChC)  
from one channel to  
another  
µs  
VIN0 = VIN1 = 4.5 V  
P_7.5.26  
V
DEN = 4.5 V  
VDSEL = 0 to 4.5 V  
RIS = 1.2 kΩ  
C
SENSE < 100 pF  
IL(OUT0) = IL3 = 2 A  
L(OUT1) = IL3 = 1 A  
See Figure 23  
I
1) DSEL pin select channel 0 only.  
2) Not subject to production test, specified by design  
Datasheet  
33  
Rev.1.00  
2019-03-09  
PROFET™ +24V  
BTT6030-2ERB  
Input Pins  
8
Input Pins  
8.1  
Input Circuitry  
The input circuitry is compatible with 3.3 and 5 V microcontrollers. The concept of the input pin is to react to  
voltage thresholds. An implemented Schmitt trigger avoids any undefined state if the voltage on the input pin  
is slowly increasing or decreasing. The output is either OFF or ON but cannot be in a linear or undefined state.  
The input circuitry is compatible with PWM applications. Figure 28 shows the electrical equivalent input  
circuitry. In case the pin is not needed, it must be left opened, or must be connected to device ground (and not  
module ground) via a 4.7 kinput resistor.  
IN  
GND  
Input circuitry.vsd  
Figure 28 Input Pin Circuitry  
8.2  
DEN / DSEL Pin  
The DEN / DSEL pins enable and disable the diagnostic functionality of the device. The pins have the same  
structure to INput pins, please refer to Figure 28.  
8.3  
Input Pin Voltage  
The IN, DSEL and DEN use a comparator with hysteresis. The switching ON / OFF takes place in a defined  
region, set by the thresholds VIN(L) Max. and VIN(H) Min. The exact value where the ON and OFF take place are  
unknown and depends on the process, as well as the temperature. To avoid cross talk and parasitic turn ON  
and OFF, a hysteresis is implemented. This ensures a certain immunity to noise.  
Datasheet  
34  
Rev.1.00  
2019-03-09  
PROFET™ +24V  
BTT6030-2ERB  
Input Pins  
8.4  
Electrical Characteristics  
Table 11 Electrical Characteristics: Input Pins  
VS = 8 V to 36 V, TJ = -40°C to +150°C (unless otherwise specified).  
Typical values are given at VS = 28 V, TJ = 25°C  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
INput Pins Characteristics  
Low level input voltage range  
High level input voltage range  
Input voltage hysteresis  
Low level input current  
VIN(L)  
VIN(H)  
VIN(HYS)  
IIN(L)  
-0.3  
2
0.8  
6
V
V
See Figure 49  
See Figure 50  
P_8.4.1  
P_8.4.2  
250  
10  
10  
mV 1) See Figure 51 P_8.4.3  
1
25  
25  
µA  
µA  
VIN = 0.8 V  
P_8.4.4  
P_8.4.5  
High level input current  
IIN(H)  
2
VIN = 5.5 V  
See Figure 52  
DEN Pin  
Low level input voltage range  
High level input voltage range  
Input voltage hysteresis  
Low level input current  
High level input current  
DSEL Pin  
VDEN(L)  
VDEN(H)  
VDEN(HYS)  
IDEN(L)  
-0.3  
2
0.8  
6
V
P_8.4.6  
P_8.4.7  
P_8.4.8  
P_8.4.9  
P_8.4.10  
V
1)  
250  
10  
10  
mV  
µA  
µA  
1
25  
25  
VDEN = 0.8 V  
VDEN = 5.5 V  
IDEN(H)  
2
Low level input voltage range  
High level input voltage range  
Input voltage hysteresis  
Low level input current  
High level input current  
VDSEL(L)  
VDSEL(H)  
VDSEL(HYS)  
IDSEL(L)  
-0.3  
2
0.8  
6
V
P_8.4.11  
P_8.4.12  
P_8.4.13  
P_8.4.14  
P_8.4.15  
V
1)  
250  
10  
10  
mV  
µA  
µA  
1
25  
25  
VDSEL = 0.8 V  
VDSEL = 5.5 V  
IDSEL(H)  
2
1) Not subject to production test, specified by design  
Datasheet  
35  
Rev.1.00  
2019-03-09  
PROFET™ +24V  
BTT6030-2ERB  
Characterization Results  
9
Characterization Results  
The characterization has been performed on 3 lots, with 3 devices each. Characterization has been performed  
at 8 V, 28 V and 36 V, from -40°C to 150°C. When no dependency to voltage is seen, only one curve (28 V) is  
sketched.  
9.1  
General Product Characteristics  
9.1.1  
Minimum Functional Supply Voltage  
P_4.2.3  
4,2  
Figure 29 Minimum Functional Supply Voltage VS(OP)_MIN = f(TJ)  
9.1.2  
Undervoltage Shutdown  
P_4.2.4  
,
Figure 30 Undervoltage Threshold VS(UV) = f(TJ)  
Datasheet  
36  
Rev.1.00  
2019-03-09  
PROFET™ +24V  
BTT6030-2ERB  
Characterization Results  
9.1.3  
Current Consumption One Channel Active  
P_4.2.5  
8V  
4
Figure 31 Current Consumption for Whole Device with Load. One Channel Active IGND_1 = f(TJ;VS)  
9.1.4  
Current Consumption Two Channels Active  
P_4.2.6  
8V  
4
Figure 32 Current Consumption for Whole Device with Load. Two Channels Active IGND_2 = f(TJ;VS)  
Datasheet  
37  
Rev.1.00  
2019-03-09  
PROFET™ +24V  
BTT6030-2ERB  
Characterization Results  
9.1.5  
Standby Current for Whole Device with Load  
P_4.2.7, P_4.2.10  
Figure 33 Standby Current for Whole Device with Load. IS(OFF) = f(TJ;VS)  
Datasheet  
38  
Rev.1.00  
2019-03-09  
PROFET™ +24V  
BTT6030-2ERB  
Characterization Results  
9.2  
Power Stage  
9.2.1  
Output Voltage Drop Limitation at Low Load Current  
P_5.5.4  
8V  
Figure 34 Output Voltage Drop Limitation at Low Load Current VDS(NL) = f(TJ;VS) ; IL = IL(0) = 50 mA  
9.2.2  
Drain to Source Clamp Voltage  
P_5.5.5  
Figure 35 Drain to Source Clamp Voltage VDS(AZ) = f(TJ)  
Datasheet  
39  
Rev.1.00  
2019-03-09  
PROFET™ +24V  
BTT6030-2ERB  
Characterization Results  
9.2.3  
Slew Rate at Turn ON  
P_5.5.11  
,
8V  
Figure 36 Slew Rate at Turn ON dV/dtON = f(TJ;VS), RL = 12 Ω  
9.2.4  
Slew Rate at Turn OFF  
P_5.5.12  
,
8V  
Figure 37 Slew Rate at Turn OFF - dV/dtOFF = f(TJ;VS), RL = 12 Ω  
Datasheet  
40  
Rev.1.00  
2019-03-09  
PROFET™ +24V  
BTT6030-2ERB  
Characterization Results  
9.2.5  
Turn ON  
P_5.5.14  
8V  
70  
Figure 38 Turn ON tON = f(TJ;VS), RL = 12 Ω  
Datasheet  
41  
Rev.1.00  
2019-03-09  
PROFET™ +24V  
BTT6030-2ERB  
Characterization Results  
9.2.6  
Turn OFF  
P_5.5.15  
8V  
70  
Figure 39 Turn OFF tOFF = f(TJ;VS), RL = 12 Ω  
9.2.7  
Turn ON / OFF matching  
P_5.5.16  
8V  
Figure 40 Turn ON / OFF matching ΔtSW = f(TJ;VS), RL = 12 Ω  
Datasheet  
42  
Rev.1.00  
2019-03-09  
PROFET™ +24V  
BTT6030-2ERB  
Characterization Results  
9.2.8  
Switch ON Energy  
P_5.5.19  
Figure 41 Switch ON Energy EON = f(TJ;VS), RL = 12 Ω  
9.2.9  
Switch OFF Energy  
P_5.5.20  
Figure 42 Switch OFF Energy EOFF = f(TJ;VS), RL = 12 Ω  
Datasheet  
43  
Rev.1.00  
2019-03-09  
PROFET™ +24V  
BTT6030-2ERB  
Characterization Results  
9.3  
Protection Functions  
9.3.1  
Overload Condition in the Low Voltage Area  
P_6.6.4  
Figure 43 Overload Condition in the Low Voltage Area IL5(SC) = f(TJ;VS)  
9.3.2  
Overload Condition in the High Voltage Area  
P_6.6.7  
24  
23  
22  
21  
20  
19  
18  
-40 -30 -20 -10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100 110 120 130 140 150  
Junction Temperature [˚C]  
Figure 44 Overload Condition in the High Voltage Area IL28(SC) = f(TJ;VS)  
Datasheet  
44  
Rev.1.00  
2019-03-09  
PROFET™ +24V  
BTT6030-2ERB  
Characterization Results  
9.4  
Diagnostic Mechanism  
9.4.1  
Current Sense at no Load  
36V  
Figure 45 Current Sense at no Load IL(OL) = f(TJ;VS), IL = 0  
9.4.2  
Open Load Detection Threshold in ON State  
P_7.5.2  
8V  
Figure 46 Open Load Detection ON State Threshold IL(OL) = f(TJ;VS)  
Datasheet  
45  
Rev.1.00  
2019-03-09  
PROFET™ +24V  
BTT6030-2ERB  
Characterization Results  
9.4.3  
Sense Signal Maximum Voltage  
P_7.5.6  
1
8V  
Figure 47 Sense Signal Maximum Voltage VS - VIS(RANGE) =f(TJ;VS)  
9.4.4  
Sense Signal maximum Current  
P_7.5.7  
8V  
Figure 48 Sense Signal Maximum Current in Fault Condition IIS(FAULT) = f(TJ;VS)  
Datasheet  
46  
Rev.1.00  
2019-03-09  
PROFET™ +24V  
BTT6030-2ERB  
Characterization Results  
9.5  
Input Pins  
9.5.1  
Input Voltage Threshold ON to OFF  
P_8.4.1  
1,2  
8V  
Figure 49 Input Voltage Threshold VIN(L) = f(TJ;VS)  
9.5.2  
Input Voltage Threshold OFF to ON  
P_8.4.2  
1,2  
8V  
Figure 50 Input Voltage Threshold VIN(H) = f(TJ;VS)  
Datasheet  
47  
Rev.1.00  
2019-03-09  
PROFET™ +24V  
BTT6030-2ERB  
Characterization Results  
9.5.3  
Input Voltage Hysteresis  
P_8.4.3  
8V  
Figure 51 Input Voltage Hysteresis VIN(HYS) = f(TJ;VS)  
9.5.4  
Input Current High Level  
P_8.4.5  
8V  
Figure 52 Input Current High Level IIN(H) = f(TJ;VS)  
Datasheet  
48  
Rev.1.00  
2019-03-09  
PROFET™ +24V  
BTT6030-2ERB  
Application Information  
10  
Application Information  
Note:  
The following information is given as a hint for the implementation of the device only and shall not  
be regarded as a description or warranty of a certain functionality, condition or quality of the device.  
VBAT  
Voltage Regulator  
OUT VS  
T1  
GND  
CVDD  
Z
CVS  
VS  
VDD  
GPIO  
RDEN  
DEN  
GPIO  
RDSEL  
DSEL  
OUT0  
Microcontroller  
GPIO  
OUT4  
IN0  
IN1  
RIN  
RIN  
COUT  
Valve  
GPIO  
OUT1  
COUT  
IS  
RSENSE  
ADC IN  
GND  
GND  
Bulb  
CSENSE  
D
Figure 53 Application Diagram with BTT6030-2ERB  
Note:  
This is a very simplified example of an application circuit. The function must be verified in the real  
application.  
Table 12 Bill of Material  
Reference Value  
Purpose  
RIN  
10 kΩ  
Protection of the microcontroller during overvoltage, reverse polarity  
Guarantee BTT6030-2ERB channels OFF during loss of ground  
RDEN  
RDSEL  
RPD  
10 kΩ  
10 kΩ  
47 kΩ  
Protection of the microcontroller during overvoltage, reverse polarity  
Protection of the microcontroller during overvoltage, reverse polarity  
Polarization of the output for short circuit to VS detection  
Improve BTT6030-2ERB immunity to electromagnetic noise  
Datasheet  
49  
Rev.1.00  
2019-03-09  
PROFET™ +24V  
BTT6030-2ERB  
Application Information  
Table 12 Bill of Material (cont’d)  
Reference Value  
Purpose  
ROL  
1.5 kΩ  
Ensures polarization of the BTT6030-2ERB output during open load in OFF  
diagnostic  
RIS  
1.2 kΩ  
4.7 kΩ  
Sense resistor  
RSENSE  
Overvoltage, reverse polarity, loss of ground. Value to be tuned with  
microcontroller specification.  
CSENSE  
COUT  
T1  
100 pF  
10 nF  
Sense signal filtering.  
Protection of the device during ESD and BCI  
Dual NPN/PNP Switch the battery voltage for open load in OFF diagnostic  
RGND  
D
27 Ω  
Protection of the BTT6030-2ERB during overvoltage  
Protection of the BTT6030-2ERB during reverse polarity  
BAS21  
Z
58 V Zener diode Protection of the device during overvoltage  
100 nF Filtering of voltage spikes at the battery line  
CVS  
10.1  
Further Application Information  
Please contact us to get the pin FMEA  
Existing App. Notes  
For further information you may visit www.infineon.com  
Datasheet  
50  
Rev.1.00  
2019-03-09  
PROFET™ +24V  
BTT6030-2ERB  
Package Outlines  
11  
Package Outlines  
1)  
3.9 0.1  
1)  
8.65 0.1  
14x  
SEATING COPLANARITY  
PLANE  
0.67 0.25  
6 0.2  
2)  
0.4 0.05  
14x  
BOTTOM VIEW  
14  
8
8
7
14  
1
7
1
INDEX  
MARKING  
6.4 0.1  
1.27  
All dimensions are in units mm  
The drawing is in compliance with ISO 128-30, Projection Method 1[  
]
1)  
2)  
Does not Include plastic or metal protrusion of 0.15 max. per side  
Dambar protrusion shall be maximum 0.1mm total in excess of width lead width  
Figure 54 PG-TDSO-141) (Plastic Dual Small Outline Package) (RoHS-Compliant)  
Green Product (RoHS compliant)  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant  
with government regulations the device is available as a green product. Green products are RoHS-Compliant  
(i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
Legal Disclaimer for Short-Circuit Capability  
Infineon disclaims any warranties and liablilities, whether expressed or implied, for any short-circuit failures  
below the threshold limit.  
Further information on packages  
https://www.infineon.com/packages  
1) Dimensions in mm  
Datasheet  
51  
Rev.1.00  
2019-03-09  
PROFET™ +24V  
BTT6030-2ERB  
Revision History  
12  
Revision History  
Version  
Date  
Changes  
1.00  
2019-03-09  
Creation of the datasheet  
Datasheet  
52  
Rev.1.00  
2019-03-09  
PROFET™ +24V  
BTT6030-2ERB  
Table of Contents  
1
2
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
3
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Voltage and Current Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
3.1  
3.2  
3.3  
4
4.1  
4.2  
4.3  
4.3.1  
4.3.2  
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
PCB set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Thermal Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
5
Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Output ON-State Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Turn ON/OFF Characteristics with Resistive Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Inductive Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Output Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Maximum Load Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Inverse Current Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Electrical Characteristics Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
5.1  
5.2  
5.3  
5.3.1  
5.3.2  
5.4  
5.5  
6
Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Loss of Ground Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Undervoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Reverse Polarity Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Overload Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Current Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Temperature Limitation in the Power DMOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Electrical Characteristics for the Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
6.1  
6.2  
6.3  
6.4  
6.5  
6.5.1  
6.5.2  
6.6  
7
7.1  
7.2  
7.3  
Diagnostic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
IS Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
SENSE Signal in Different Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
SENSE Signal in the Nominal Current Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
SENSE Signal Variation as a Function of Temperature and Load Current . . . . . . . . . . . . . . . . . . . . . 26  
SENSE Signal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
SENSE Signal in Open Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Open Load in ON Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Open Load in OFF Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Open Load Diagnostic Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
SENSE Signal with OUT in Short Circuit to VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
SENSE Signal in Case of Overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
SENSE Signal in Case of Inverse Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Electrical Characteristics Diagnostic Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
7.3.1  
7.3.2  
7.3.3  
7.3.3.1  
7.3.3.2  
7.3.3.3  
7.3.4  
7.3.5  
7.3.6  
7.4  
8
Input Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Datasheet  
53  
Rev.1.00  
2019-03-09  
PROFET™ +24V  
BTT6030-2ERB  
8.1  
8.2  
8.3  
8.4  
Input Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
DEN / DSEL Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Input Pin Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
9
9.1  
Characterization Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Minimum Functional Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Undervoltage Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Current Consumption One Channel Active . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Current Consumption Two Channels Active . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Standby Current for Whole Device with Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Output Voltage Drop Limitation at Low Load Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Drain to Source Clamp Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Slew Rate at Turn ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Slew Rate at Turn OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Turn ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Turn OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Turn ON / OFF matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Switch ON Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Switch OFF Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Overload Condition in the Low Voltage Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Overload Condition in the High Voltage Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Diagnostic Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Current Sense at no Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Open Load Detection Threshold in ON State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Sense Signal Maximum Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Sense Signal maximum Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Input Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Input Voltage Threshold ON to OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Input Voltage Threshold OFF to ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Input Voltage Hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Input Current High Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
9.1.1  
9.1.2  
9.1.3  
9.1.4  
9.1.5  
9.2  
9.2.1  
9.2.2  
9.2.3  
9.2.4  
9.2.5  
9.2.6  
9.2.7  
9.2.8  
9.2.9  
9.3  
9.3.1  
9.3.2  
9.4  
9.4.1  
9.4.2  
9.4.3  
9.4.4  
9.5  
9.5.1  
9.5.2  
9.5.3  
9.5.4  
10  
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
10.1  
Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
11  
12  
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Datasheet  
54  
Rev.1.00  
2019-03-09  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on technology, delivery terms  
Edition 2019-03-09  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
event be regarded as a guarantee of conditions or and conditions and prices, please contact the nearest  
characteristics ("Beschaffenheitsgarantie").  
Infineon Technologies Office (www.infineon.com).  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer's compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer's products and any use of the product of  
Infineon Technologies in customer's applications.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer's technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to  
such application.  
WARNINGS  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
© 2019 Infineon Technologies AG.  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or any  
consequences of the use thereof can reasonably be  
expected to result in personal injury.  
Document reference  
BTT6030-2ERB  

相关型号:

BTT60302EKAXUMA1

Buffer/Inverter Based Peripheral Driver, 4A, PDSO14, GREEN, PLASTIC, MS-012BB, SOP-14
INFINEON

BTT6050-1EKA

Smart High-Side Power Switch Single Channel
INFINEON

BTT6050-1EKA_15

Smart High-Side Power Switch Single Channel
INFINEON

BTT6050-1ERA

The power transistor is built by an N-channel vertical power MOSFET with charge pump. The device is integrated in Smart6 technology. It is specially designed to drive lamps up to 2 * P21W 24V, as well as LEDs in the harsh automotive environment.
INFINEON

BTT6050-2EKA

Buffer/Inverter Based Peripheral Driver, 3A, PDSO14, GREEN, PLASTIC, MS-012BB, SOP-14
INFINEON

BTT60502EKAXUMA1

Buffer/Inverter Based Peripheral Driver, 3A, PDSO14, GREEN, PLASTIC, MS-012BB, SOP-14
INFINEON

BTT6100-2ERA

The BTT6100-2ERA is a 100mΩ dual channel Smart High-Side Power Switch, embedded in a PG-TDSO-14, Exposed Pad package, providing protective functions and diagnosis. The power transistor is built by a N-channel vertical power MOSFET with charge pump. The device is integrated in Smart6 HV technology. It is specially designed to drive lamps up to 1x P21W 24V or 1x R10W 12V, as well as LEDs in the harsh automotive environment. Diagnostic.
INFINEON

BTT6200-1EJA

Buffer/Inverter Based Peripheral Driver,
INFINEON

BTT6200-1ENA

The power transistor is built by an N-channel vertical power MOSFET with charge pump. The device is integrated in Smart6 HV technology. It is especially designed to drive lamps up to 1 x R10W 24 V or 1 x R5W 12 V, as well as LEDs in the harsh automotive environment.
INFINEON

BTT6200-4EMA

Buffer/Inverter Based Peripheral Driver,
INFINEON

BTT6200-4ESA

The power transistor is built by an N-channel vertical power MOSFET with charge pump. The device is integrated in Smart6 HV technology. It is specially designed to drive lamps up to R10 W 24 V or R5 W 12 V, as well as LEDs in the harsh automotive environment.
INFINEON