CYPD7191-40LDXS [INFINEON]

EZ-PD™ CCG7S CYPD7191-40LDXS is the tray packing type option belonging to EZ-PD™ CCG7S family of Infineon’s highly integrated single-port USB-C Power Delivery (PD) with integrated buck-boost controller for automotive in-cabin charger applications.;
CYPD7191-40LDXS
型号: CYPD7191-40LDXS
厂家: Infineon    Infineon
描述:

EZ-PD™ CCG7S CYPD7191-40LDXS is the tray packing type option belonging to EZ-PD™ CCG7S family of Infineon’s highly integrated single-port USB-C Power Delivery (PD) with integrated buck-boost controller for automotive in-cabin charger applications.

光电二极管
文件: 总48页 (文件大小:485K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CYPD7191-40LDXS  
EZ-PD™ CCG7S Automotive single-port USB  
Type-C with PD and buck-boost controller  
General description  
EZ-PD™ CCG7S is a highly integrated single-port USB Type-C Power delivery (PD) solution with an integrated  
buck-boost controller. It complies with the latest USB Type-C and PD specifications, and is targeted for  
automotive charger applications such as head unit (HU) chargers, rear seat entertainment (RSE) and rear seat  
chargers (RSC). Integration offered by EZ-PD™ CCG7S not only reduces the BOM but also provides a footprint  
optimized solution for automotive charging needs. It also includes hardware-controlled protection features on  
the VBUS. EZ-PD™ CCG7S supports a wide input voltage range (4 V–24 V with 40 V tolerance) and programmable  
switching frequency (150 kHz–600 kHz) in an integrated PD solution.  
EZ-PD™ CCG7S is the most programmable USBPD solution with an on-chip 32-bit Arm® Cortex®-M0 processor,  
128-KB flash, 16-KB RAM and 32-KB ROM that leaves most flash available for user application use. It also includes  
various analog and digital peripherals such as ADC, PWMs and timers. The inclusion of a fully programmable MCU  
with analog and digital peripherals allows the implementation of custom system management functions such as  
power throttling, load sharing, temperature monitoring, and fault logging.  
Applications  
• Head unit (HU) charger  
• Rear seat charger (RSC)  
• Rear seat entertainment (RSE)  
Features  
• USBPD  
- Supports one USBPD port  
- Supports latest USBPD 3.1 including programmable power supply (PPS) mode  
- Extended data messaging  
• Type-C  
- Configurable resistors Rp and Rd  
- VBUS provider NFET Gate driver  
- Integrated 100-mW VCONN power supply and control  
• 1x buck-boost controller  
- 150 kHz to 600 kHz switching frequency  
- 4.5 V to 24 V input, 40V tolerant  
- 3.3 V to 21.5 V output  
- 20-mV voltage and 50-mA current steps for PPS  
- Supports selectable pulse skipping mode (PSM) and forced continuous current/conduction mode (FCCM)  
- Supports soft start  
- Programmable spread spectrum frequency modulation for low EMI  
• 1x legacy/proprietary charging block  
- Supports Qualcomm QC 2.0/3.0/4.0/5.0, Apple charging 2.4 A, Samsung adaptive fast charging (AFC),  
USB BC 1.2  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 1  
002-33534 Rev. *F  
2023-01-30  
EZ-PD™ CCG7S Automotive single-port USB Type-C with PD and  
buck-boost controller  
Features  
• System-level fault protection  
- On-chip VBUS overvoltage protection (OVP), overcurrent protection (OCP), undervoltage protection (UVP)  
- VBUS to CC short protection  
- VBAT to GND protection FET gate driver  
- Under-voltage lockout (UVLO)  
- Supports over-temperature protection through integrated ADC circuit and internal temperature sensor  
- Supports connector and board temperature measurement using external thermistors  
• 32-bit MCU subsystem  
- 48-MHz Arm® Cortex®-M0 CPU  
- 128-KB Flash  
- 16-KB SRAM  
- 32-KB ROM  
• Peripherals and GPIOs  
- Up to 13 GPIOs including two overvoltage GPIOs  
- 2x 8-bit ADC  
- 8x 16-bit timer/counter/PWMs (TCPWM)  
• Communication interfaces  
- 3x SCBs (I2C/SPI/UART/LIN)  
• Clocks and oscillators  
- Integrated oscillator eliminating the need for an external clock  
• Power supply  
- 4 V to 24 V input (40 V tolerant)  
- 3.3 V to 21.5 V output  
- Integrated LDO capable of 5 V @ 75 mA  
• Packages  
- 40-pin QFN, wettable flank, AEC-Q100  
- Supports automotive ambient temperature range (–40°C to +105°C) with 125°C operating junction  
temperature  
Datasheet  
2
002-33534 Rev. *F  
2023-01-30  
EZ-PD™ CCG7S Automotive single-port USB Type-C with PD and  
buck-boost controller  
Logic block diagram  
Logic block diagram  
EZ-PD™ CCG7S: single-port USB Type-C PD and buck-boost controller  
MCU subsystem  
I/O subsystem  
Integrated digital blocks  
CC  
Arm  
8x TCPWM  
Cortex-M0  
48MHz  
VCONN  
3x SCB  
13x GPIOs  
(I2C, SPI, UART, LIN)  
Flash (128 KB)  
SROM (32 KB)  
SRAM (16 KB)  
CRYPTO (TRNG)  
USBPD subsystem  
VCONN OCP, UV  
Baseband MAC & PHY  
V
Bus to CC short-  
Hi-Voltage LDO (24 V)  
8-bit SAR ADC  
circuit protection  
2x VCONN FETs  
System  
resources  
V
Bus OVP, OCP, SCP  
NFET load switch  
gate driver  
protection  
VBATT to GND short -  
circuit protection  
Buck-boost controller  
Functional block diagram  
COMP  
BST1  
HGT1  
SW1  
LG1  
BST2  
HGT2  
SW2 LG2  
CSPO  
CSNO  
VBUS_CTRL  
CSPI  
CSNI  
Input current  
sense amplifier  
(CSA), Slope  
Error  
amplifier  
(CV)  
Error  
amplifier  
(CC)  
GDRV (Buck)  
GDRV (Boost)  
Slew rate control  
NGATE driver  
High-side  
CSA  
High-side  
Low-side driver  
(LSDR)  
High-side  
Low-side driver  
(LSDR)  
driver (HSDR)  
driver (HSDR)  
compensation  
CSNO  
VBUS_C  
discharge discharge  
Zero crossing  
detect (ZCD)  
Zero crossing  
detect (ZCD)  
Charge control  
Charge control  
CC reference  
CC1  
V5V  
CC2  
HV regulator  
(VIN 5 V)  
BMC  
Reference  
and IDAC  
VIN  
VDDD  
VCCD  
VCONN  
PHY  
Pulse-width  
modulator  
(PWM)  
MCU subsystem  
Cortex-M0  
Charger  
detect  
DP  
DM  
2x 8-bit ADC  
13x GPIOs  
8x TCPWM  
LV regulator  
(5 V 1.8 V)  
3x SCB  
(I2C/SPI/  
UART/LIN)  
Flash  
(128 KB)  
SROM  
(32 KB)  
SRAM  
(16 KB)  
XRES  
POR/RESET  
Datasheet  
3
002-33534 Rev. *F  
2023-01-30  
EZ-PD™ CCG7S Automotive single-port USB Type-C with PD and  
buck-boost controller  
Table of contents  
Table of contents  
General description ...........................................................................................................................1  
Applications......................................................................................................................................1  
Features ...........................................................................................................................................1  
Logic block diagram ..........................................................................................................................3  
Functional block diagram...................................................................................................................3  
Table of contents...............................................................................................................................4  
1 Functional overview .......................................................................................................................5  
1.1 MCU subsystem.......................................................................................................................................................5  
1.2 USBPD subsystem...................................................................................................................................................5  
1.3 Buck-boost subsystem ...........................................................................................................................................8  
1.4 Buck-boost controller operation regions ............................................................................................................10  
1.5 Analog blocks ........................................................................................................................................................12  
1.6 Integrated digital blocks.......................................................................................................................................12  
1.7 I/O subsystem .......................................................................................................................................................13  
1.8 System resources..................................................................................................................................................14  
2 Power subsystem..........................................................................................................................15  
2.1 VIN under-voltage lockout (UVLO) .......................................................................................................................16  
2.2 Using external VDDD supply.................................................................................................................................16  
2.3 Power modes ........................................................................................................................................................16  
3 Pin list .........................................................................................................................................17  
4 EZ-PD™ CCG7S programming and bootloading ................................................................................20  
4.1 Programming the device flash over SWD interface.............................................................................................20  
5 Applications .................................................................................................................................21  
6 Electrical specifications.................................................................................................................28  
6.1 Absolute maximum ratings ..................................................................................................................................28  
6.2 Device-level specifications ...................................................................................................................................29  
6.3 Digital peripherals.................................................................................................................................................33  
6.4 System resources..................................................................................................................................................35  
7 Ordering information ....................................................................................................................41  
7.1 Ordering code definitions.....................................................................................................................................41  
8 Packaging ....................................................................................................................................42  
8.1 Package diagrams.................................................................................................................................................43  
9 Acronyms.....................................................................................................................................45  
10 Document conventions................................................................................................................46  
10.1 Units of measure .................................................................................................................................................46  
Revision history ..............................................................................................................................47  
Datasheet  
4
002-33534 Rev. *F  
2023-01-30  
EZ-PD™ CCG7S Automotive single-port USB Type-C with PD and  
buck-boost controller  
Functional overview  
1
Functional overview  
MCU subsystem  
CPU  
1.1  
1.1.1  
The Cortex-M0 in EZ-PD™ CCG7S devices is a 32-bit MCU, which is optimized for low-power operation with  
extensive clock gating. It mostly uses 16-bit instructions and executes a subset of the Thumb-2 instruction set. It  
also includes a hardware multiplier, which provides a 32-bit result in one cycle. It includes an Interrupt controller  
(the NVIC block) with 32 interrupt inputs and a wakeup interrupt controller (WIC), which can wake the processor  
up from deep sleep mode.  
1.1.2  
Flash ROM and SRAM  
EZ-PD™ CCG7S devices have 128-KB flash and 32-KB ROM for non-volatile storage. ROM stores libraries for  
authentication and device drivers such as I2C, SPI, and so on. That spares flash for user application. Flash provides  
the flexibility to store code for any customer feature and allows firmware upgrades to meet the latest USB power  
delivery specifications and application needs.  
The 16-KB RAM is used under software control to store the temporary status of system variables and parameters.  
A supervisory ROM that contains boot and configuration routines is provided.  
1.2  
USBPD subsystem  
This subsystem provides the interface to the Type-C USB port. This subsystem comprises:  
• USBPD physical layer  
• VCONN switches and 100mW VCONN source  
• Undervoltage protection (UVP), overvoltage protection (OVP) on VBUS  
• Output high-side current sense amplifier (HS CSA) for VBUS  
• VBUS discharge control  
• Gate driver for VBUS provider NFET  
• Charger detection block for legacy charging (for example: BC1.2, Apple charging, and so on)  
• VBAT to ground short-circuit protection  
• VBUS to CC short-circuit protection  
1.2.1  
USBPD physical layer  
The USBPD subsystem contains the USBPD physical layer block and supporting circuits. The USBPD physical  
layer consists of a transmitter and receiver that communicate BMC encoded data over the CC channel per the PD  
3.1 standard. All communication is half-duplex. The physical layer or PHY implements collision avoidance to  
minimize communication errors on the channel. The USBPD block includes all termination resistors (Rp and Rd)  
and their switches as required by the USB Type-C spec. Rp and Rd resistors are required to implement connection  
detection, plug orientation detection and for the establishment of the USB source/sink roles. The Rp resistor is  
implemented as a current source.  
The CCG7S device family along with the accompanying firmware is fully complaint with revision 3.1 of the USB  
Power delivery specification. The device supports programmable power supply (PPS) operation at all valid  
voltages from 3.3 V to 21 V.  
EZ-PD™ CCG7S devices support Rp under HW control in unconnected (standby) state to minimize standby power.  
EZ-PD™ CCG7S devices support USBPD extended messages containing data of up to 260 bytes. The extended  
messages are larger than expected by USBPD 2.0 hardware. As per the USBPD protocol specification, USBPD 3.1  
compliant devices implement a chunking mechanism; messages are limited to revision 2.0 sizes unless both  
source and sink confirm and negotiate compatibility with longer message lengths.  
Datasheet  
5
002-33534 Rev. *F  
2023-01-30  
EZ-PD™ CCG7S Automotive single-port USB Type-C with PD and  
buck-boost controller  
Functional overview  
1.2.2  
VCONN switches  
EZ-PD™ CCG7S’ internal LDO voltage regulator is capable of powering a 100mW VCONN supply for electronically  
marked cable assemblies (EMCA), VCONN-powered devices (VPD), and VCONN-powered accessories (VPA) as  
defined in the USB Type-C specification. All circuitry including VCONN switches and overcurrent protection is  
integrated in the device. In the event the VCONN current exceeds the VCONN OCP limit, CCG7S can be configured  
to shut down the Type-C port after a certain number of user configurable retries. The port can be re-enabled after  
a physical disconnect.  
1.2.3  
VBUS UVP and OVP  
VBUS under-voltage and overvoltage faults are monitored using internal resistor dividers. The fault thresholds  
and response times are user configurable. Refer to the EZ-PDconfiguration utility for more details. In the event  
of a UVP or OVP, EZ-PD™ CCG7S can be configured to shut down the Type-C port after a certain number of user  
configurable retries. The port can be re-enabled after a physical disconnect.  
1.2.4  
VBUS OCP and SCP  
VBUS overcurrent and short-circuit faults are monitored using internal current sense amplifiers. Similar to OVP  
and UVP, the OCP and SCP fault thresholds and response times are configurable as well. Refer to the  
EZ-PD™ configuration utility for more details. In the event of OCP or SCP, CCG7S can be configured to shut down  
the Type-C port after a certain number of user configurable retries. The port can be re-enabled after a physical  
disconnect.  
1.2.5  
HS-CSA for VBUS  
EZ-PD™ CCG7S device family supports VBUS current measurement and control using an external resistor (5mΩ)  
in series with the VBUS path. The voltage drop across this resistor is used to measure the average output current.  
The same resistor is also used to sense and precisely control the output current in the PPS current foldback mode  
of operation.  
1.2.6  
VBUS discharge control  
The chip supports high-voltage (21.5 V) VBUS discharge circuitry. Upon the detection of device disconnection,  
faults, or hard resets, the chip will discharge the output VBUS terminals to vSafe5V and/or vSafe0V within the time  
limits specified in the USBPD specification.  
1.2.7  
Gate driver for VBUS provider NFET  
EZ-PD™ CCG7S devices have an integrated high-voltage gate driver to drive the gate of an external high-side NFET  
on the VBUS provider path. The gate driver drives the load switch that controls the connection between CSNO  
and VBUS_C. VBUS_CTRL is the output of this gate driver. To turn off the external NFET, the gate driver drives  
CSNO low to 0 V. To turn on the external NFET, it drives the gate to CSNO + 8 V. There is an optional slow turn-on  
feature which reduces the high-current spikes on the output. For a typical gate capacitance of 3 nF, a slow turn-on  
time of 2 ms to 10 ms is configurable using firmware.  
1.2.8  
Legacy charge detection and support  
EZ-PD™ CCG7S implements battery charger emulation and detection (source and sink) for USB BC.1.2, legacy  
Apple charging, Qualcomm quick charge 2.0/3.0/4.0/5.0, and Samsung AFC protocols.  
Datasheet  
6
002-33534 Rev. *F  
2023-01-30  
EZ-PD™ CCG7S Automotive single-port USB Type-C with PD and  
buck-boost controller  
Functional overview  
1.2.9  
VBAT to ground short protection  
EZ-PD™ CCG7S devices can protect against high currents through the Type-C return (ground) path. A NFET and a  
current sense resistor are placed in series with the ground return path from the Type-C connector as shown in  
Figure 1. This resistor senses the current, and if it exceeds the firmware-configured threshold, the NFET is turned  
off to interrupt the current. This protects against overcurrent conditions caused by external faults (for example,  
if the Type-C connector ground is accidentally connected to the car’s battery). The current sense can be  
implemented with either a single-ended connection (referenced to internal ground) or with a true differential  
connection (see CSN connection in Figure 1). The differential connection provides better current measurement  
accuracy but uses an extra GPIO pin. In the event of VBAT to ground short protection, EZ-PD™ CCG7S can be  
configured to shut down the series FET between the Type-C receptacle ground and the system ground. The  
recovery and retry mechanism can be customized using application firmware.  
PGND  
CSN  
(optional)  
5 m  
GND  
CSP  
GPIO  
Figure 1  
VBUS to ground short circuit protection  
1.2.10  
VBUS to CC short protection  
CC pins have integrated protection from accidental shorts to high-voltage VBUS and VBAT. EZ-PD™ CCG7S  
devices can handle up to 24 V external voltage on its CC pins without damage. In the event, an overvoltage is  
detected on the CC pin, it can be configured to shut down the Type-C port completely. The port will resume  
normal operation once the CC voltage detected is within normal range.  
Datasheet  
7
002-33534 Rev. *F  
2023-01-30  
EZ-PD™ CCG7S Automotive single-port USB Type-C with PD and  
buck-boost controller  
Functional overview  
1.3  
Buck-boost subsystem  
The buck-boost subsystem in EZ-PD™ CCG7S devices can be configured to operate in buck-boost mode,  
buck-only mode or boost-only mode. While buck-boost mode requires four external switching FETs, buck-only  
and boost-only modes require only two FETs. Buck-only mode is useful when EZ-PD™ CCG7S device’s port is used  
for USB Type-A only applications. Figure 2 shows the buck-boost subsystem’s main external components and  
connections.  
5 m  
5 m  
VIN  
VOUT  
CSR1  
CSR2  
VDDD  
VDDD  
CYPD719X  
Figure 2  
Buck-boost schematic showing external components  
Buck-boost subsystem in EZ-PD™ CCG7S devices have the following key functional blocks:  
• High side (cycle-by-cycle) current sense amplifier  
• High side and low side gate driver  
• Pulse width modulator  
• Error amplifier  
1.3.1  
High side (cycle-by-cycle) current sense amplifier (CSA)  
EZ-PD™ CCG7S device’s buck-boost controller implements peak current control in both boost and buck modes.  
A high side current sense amplifier (CSA) is used for peak current sensing through an external resistor (5mΩ; see  
CSR1 in Figure 2) placed in series with the buck control FET. This current sense amplifier has a high bandwidth  
and a very wide common mode range. This current sense resistor is connected to the CSA block through pins CSPI  
and CSNI as shown in Figure 2. This block implements slope compensation to avoid sub-harmonic oscillation for  
the internal current loop. In addition to peak current sensing, it provides a current limit comparator for shutting  
off the buck-boost converter if the current hits an upper threshold which is programmable.  
1.3.2  
High-side gate driver and low-side gate driver (HG/LG)  
EZ-PD™ CCG7S’ buck-boost controller provides four N-channel MOSFET gate drivers: two floating high-side gate  
drivers at the HG1 and HG2 pins, and two ground referenced low-side drivers at the LG1 and LG2 pin. The high  
side gate drivers drive the high side external FET with a nominal VGS of 5V. The High-side gate driver has a  
programmable drive strength to drive external FET. An external capacitor and Schottky diode form a bootstrap  
network to collect and store the high voltage source (VIN + ~5 V for HG1 and VBUS + ~5 V for HG2) needed to drive  
the high-side FET. The low side gate driver drives the low side external FET with a nominal VGS of 5 V using energy  
sourced from EZ-PD™ CCG7S’ internal LDO regulator and stored in the capacitor between PVDD and PGND.  
Low-side gate driver has programmable drive strength to drive external FET. In addition to drive strength, the  
high-side gate driver and the low-side gate driver have programmable options for deadtime control and  
zero-crossing levels. High-side gate driver and low-side gate driver blocks include zero-crossing detector (ZCD)  
to implement discontinuous-conduction mode (DCM) mode with diode emulation.  
Datasheet  
8
002-33534 Rev. *F  
2023-01-30  
EZ-PD™ CCG7S Automotive single-port USB Type-C with PD and  
buck-boost controller  
Functional overview  
The gate drivers for the switching FETs function at their nominal drive voltage levels (5 V) provided the VIN voltage  
is between 4.5 V and 24 V.  
1.3.3  
Error amplifier (EA)  
EZ-PD™ CCG7S’ buck-boost controller contains two error amplifiers for output voltage and current regulation.  
The error amplifier is a trans-conductance type amplifier with single compensation pin (COMP) to ground for both  
the voltage and current loops. In voltage regulation, the output voltage is compared with the internal reference  
voltage and the output of EA is fed to the PWM block. In current regulation, the average current is sensed by VBUS  
high side current sense amplifier through the external resistor. The output of the VBUS CSA is compared with an  
internal reference in error amplifier block and EA output is fed to the PWM block. EZ-PD™ CCG7S firmware  
configures and controls the integrated programmable error amplifier circuit for achieving the required VBUS  
voltage output from the power section.  
1.3.4  
Pulse width modulator (PWM)  
EZ-PD™ CCG7S device family’s PWM block generates the control signals for the gate drivers driving the external  
FETs in peak current mode control. There are many programmable options for minimum/maximum pulse width,  
minimum/maximum period, frequency and pulse skip levels to optimize the system design.  
EZ-PD™ CCG7S devices have two firmware-selectable operating modes to optimize efficiency and reduce losses  
under light load conditions: pulse skipping mode (PSM) and forced continuous conduction mode (FCCM).  
1.3.5  
Pulse skipping mode (PSM)  
In pulse skipping mode, the controller reduces the total number of switching pulses without reducing the active  
switching frequency by working in "bursts" of normal nominal-frequency switching interspersed with intervals  
without switching. The output voltage thus increases during a switching burst and decreases during a quiet  
interval. This mode results in minimal losses at the cost of higher output voltage ripple. When in this mode,  
EZ-PD™ CCG7S devices monitor the voltage across the buck or boost sync FET to detect when the inductor current  
reaches zero; when this occurs, the EZ-PD™ CCG7S devices switch off the buck or boost sync FET to prevent  
reverse current flow from the output capacitors (i.e. diode emulation mode). Several parameters of this mode  
are programmable through firmware, allowing the user to strike their own balance between light load efficiency  
and output ripple.  
1.3.6  
Forced continuous conduction mode (FCCM)  
In Forced continuous conduction mode (FCCM), the nominal switching frequency is maintained at all times, with  
the inductor current going below zero (i.e. “backwards” or from the output to the input) for a portion of the  
switching cycle as necessary to maintain the output voltage and current. This keeps the output voltage ripple to  
a minimum at the cost of light-load efficiency.  
Datasheet  
9
002-33534 Rev. *F  
2023-01-30  
EZ-PD™ CCG7S Automotive single-port USB Type-C with PD and  
buck-boost controller  
Functional overview  
1.4  
Buck-boost controller operation regions  
The input-side CSA’s output is compared with the output of the error amplifier to determine the pulse width of  
the PWM. PWM block compares the input voltage and output voltage to determine the buck, boost, and  
buck-boost regions. The switching time/period of the four gate drivers (HG1, LG1, HG2, LG2) depends upon the  
region in which the block is operating as well as the mode such as DCM or FCCM. The exact VIN vs VOUT thresholds  
for transitions into and out of each region are adjustable in firmware including the hysteresis.  
1.4.1  
Buck region operation (VIN >> VBUS)  
When the VIN voltage is significantly higher than the required VBUS voltage, EZ-PD™ CCG7S devices operate in  
the buck region. In this region, the boost side FETs are inactivated, with the boost control FET (connected to LG2)  
turned off and the boost sync FET (connected to HG2) turned on. The buck side FETs are controlled as a buck  
converter with synchronous rectification as shown in Figure 3.  
ON  
HG1  
(Buck  
Control)  
OFF  
ON  
LG1 (Buck  
Sync)  
OFF  
ON  
LG2  
(Boost  
Control)  
OFF  
ON  
HG2  
(Boost  
Sync)  
OFF  
Inductor  
Current  
0
t
Figure 3  
Buck operation waveforms  
1.4.2  
Boost region operation (VIN << VBUS)  
When the VIN voltage is significantly lower than the required VBUS voltage, EZ-PD™ CCG7S devices operate in the  
boost region. In this region, the buck side FETs are inactivated, with the sync FET turned off and the buck control  
FET turned on. The boost side FETs are controlled as a boost converter with synchronous rectification as shown  
in Figure 4.  
ON  
HG1  
(Buck  
Control)  
OFF  
ON  
LG1 (Buck  
Sync)  
OFF  
ON  
LG2  
(Boost  
Control)  
OFF  
ON  
OFF  
Inductor  
Current  
0
t
Figure 4  
Boost operation waveforms  
Datasheet  
10  
002-33534 Rev. *F  
2023-01-30  
EZ-PD™ CCG7S Automotive single-port USB Type-C with PD and  
buck-boost controller  
Functional overview  
1.4.3  
Buck-boost region 1 operation (VIN ~> VBUS)  
When the VIN voltage is slightly higher than the required VBUS voltage, EZ-PD™ CCG7S devices operate in the  
buck-boost region 1. In this region, the boost side works at a fixed 20% duty cycle (programmable) while the buck  
side (LG1 / HG1) duty cycle is modulated to control the output voltage. All four FETs are switching every cycle in  
this operating region as shown in Figure 5.  
ON  
HG1  
(Buck  
Control)  
OFF  
ON  
LG1 (Buck  
Sync)  
OFF  
ON  
LG2  
(Boost  
Control)  
OFF  
ON  
HG2  
(Boost  
Sync)  
OFF  
Inductor  
Current  
0
t
Figure 5  
Buck-boost region 1 (VIN ~> VBUS) operation waveforms  
1.4.4  
Buck-boost region 2 operation (VIN ~< VBUS)  
When the VIN voltage is slightly lower than the required VBUS voltage, EZ-PD™ CCG7S devices operate in the  
buck-boost region 2. In this region, the buck side works at a fixed 80% duty cycle (programmable) while the boost  
side (LG2) duty cycle is modulated to control the output voltage. All four FETs are switching every cycle in this  
operating region as shown in Figure 6.  
ON  
HG1  
(Buck  
Control)  
OFF  
ON  
LG1 (Buck  
Sync)  
OFF  
ON  
LG2  
(Boost  
Control)  
OFF  
ON  
HG2  
(Boost  
Sync)  
OFF  
Inductor  
Current  
0
t
Figure 6  
Buck-boost region 2 (VIN ~< VBUS) operation waveforms  
Datasheet  
11  
002-33534 Rev. *F  
2023-01-30  
EZ-PD™ CCG7S Automotive single-port USB Type-C with PD and  
buck-boost controller  
Functional overview  
1.4.5  
Switching frequency and spread spectrum  
EZ-PD™ CCG7S devices offer programmable switching frequency between 150 kHz and 600 kHz. The controller  
supports spread spectrum clocking within the operating frequency range in all operating modes. Spread  
spectrum is essential for charging applications to meet EMC/EMI requirements by spreading emissions caused  
by switching over a wide spectrum instead of a fixed frequency, thereby reducing the peak energy at any  
particular frequency. Both the switching frequency and the spread spectrum span are firmware programmable.  
1.5  
Analog blocks  
ADC  
1.5.1  
EZ-PD™ CCG7S devices have two 8-bit SAR ADCs for general purpose A-D conversion applications in the chip. The  
ADCs can be accessed from the GPIOs through an on-chip analog mux. See Table 27 for detailed specs on the  
ADCs.  
1.6  
Integrated digital blocks  
1.6.1  
Serial communication block (SCB)  
EZ-PD™ CCG7S devices have three SCB blocks that can be configured for I2C, SPI, UART or LIN. These blocks  
implement full multi-master and slave I2C interfaces capable of multi-master arbitration. This I2C implemen-  
tation is compliant with the standard Philips I2C specification v3.0. These blocks operate at speeds of up to 1  
Mbps and have flexible buffering options to reduce interrupt overhead and latency for the CPU. The SCB blocks  
support 8-byte deep FIFOs for receive and transmit, which, by increasing the time given for the CPU to read data,  
greatly reduces the need for clock stretching caused by the CPU not having read data on time. The I2C port I/Os  
for SCB0 are overvoltage tolerant (OVT). The I2C ports for SCB1-2 are not OVT tolerant.  
1.6.2  
Timer, counter, pulse-width modulator (TCPWM)  
The TCPWM block of EZ-PD™ CCG7S devices support eight timers or counters or pulse-width modulators. These  
timers are available for internal timer use by firmware or for providing PWM-based functions on the GPIOs.  
Datasheet  
12  
002-33534 Rev. *F  
2023-01-30  
EZ-PD™ CCG7S Automotive single-port USB Type-C with PD and  
buck-boost controller  
Functional overview  
1.7  
I/O subsystem  
The EZ-PD™ CCG7S devices have 13 GPIOs including the I2C and SWD pins which can also be used as GPIOs. The  
GPIO block implements the following:  
• Eight output drive modes  
- Input only  
- Weak pull-up with strong pull-down  
- Strong pull-up with weak pull-down  
- Open drain with strong pull-down  
- Open drain with strong pull-up  
- Strong pull-up with strong pull-down  
- Disabled  
- Weak pull-up with weak pull-down  
• Input threshold select (CMOS or LVTTL)  
• Individual control of input and output disables  
• Hold mode for latching previous state (used for retaining I/O state in deep sleep mode)  
• Selectable slew rates for dV/dt related noise control.  
• Overvoltage tolerance (OVT) on one pair of GPIOs  
During power-on and reset, the blocks are forced to the disable state so as not to crowbar any inputs and/or cause  
excess turn-on current. A multiplexing network known as a high-speed I/O matrix (HSIOM) is used to multiplex  
between various signals that may connect to an I/O pin. Pin locations for fixed-function peripherals such as USB  
Type-C port are also fixed in order to reduce internal multiplexing complexity. Data output registers and pin state  
register store, respectively, the values to be driven on the pins and the states of the pins themselves.  
The configuration of the pins can be done by the programming of registers through software for each digital I/O  
port. Every I/O pin can generate an interrupt if so enabled and each I/O port has an interrupt request (IRQ) and  
interrupt service routine (ISR) vector associated with it.  
The I/O ports can retain their state during deep sleep mode or remain ON. If the operation is restored using reset,  
then the pins shall go the high-Z state. If operation is restored by an interrupt event, then the pin drivers shall  
retain their state until firmware chooses to change it. The IOs (on data bus) do not draw current on power down.  
Datasheet  
13  
002-33534 Rev. *F  
2023-01-30  
EZ-PD™ CCG7S Automotive single-port USB Type-C with PD and  
buck-boost controller  
Functional overview  
1.8  
System resources  
Watchdog timer  
1.8.1  
EZ-PD™ CCG7S devices have a watchdog timer running from the internal low-speed oscillator (ILO). This allows  
Watchdog operation during Deep sleep and generate a watchdog reset if not serviced before the timeout occurs.  
The watchdog reset is recorded in the reset cause register.  
1.8.2  
Reset  
EZ-PD™ CCG7S devices can be reset from a variety of sources including a software reset. Reset events are  
asynchronous and guarantee reversion to a known state. The reset cause is recorded in a register, which is  
preserved through reset and allows application firmware to determine the cause of the reset. XRES pin is the  
dedicated pin for asserting an external hardware reset.  
1.8.3  
Clock system  
EZ-PD™ CCG7S devices have a fully integrated clock with no external crystal required. EZ-PD™ CCG7S device’s  
clock system is responsible for providing clocks to all sub-systems that require clocks (SCB and PD) and for  
switching between different clock sources.  
The HFCLK signal can be divided down as shown to generate synchronous clocks for the digital peripherals. The  
clock dividers have 8-bit, 16-bit and 16-bit fractional divide capability. The 16-bit capability allows a lot of  
flexibility in generating fine-grained frequency values. The clock dividers generate either enabled clocks (that is,  
1 in N clocking where N is the divisor) or an approximately 50% duty cycle clock (exactly 50% for even divisors,  
one clock difference in the high and low values for odd divisors).  
In Figure 7, PERXYZ_CLK represents the clocks for different peripherals.  
IMO  
HFCLK  
Pre-divider  
ILO  
LFCLK  
HFCLK  
Prescaler  
SYSCLK  
HALFSYSCLK  
/2  
Peripheral  
dividers  
PERXYZ_CLK  
Figure 7  
Clocking architecture of EZ-PD™ CCG7S devices  
1.8.4  
IMO clock source  
The internal main oscillator is the primary source of internal clocking in EZ-PD™ CCG7S devices. IMO default  
frequency for EZ-PD™ CCG7S devices is 48 MHz+/-2%.  
1.8.5  
ILO clock source  
The internal low-power oscillator is a very low power, relatively inaccurate, oscillator, which is primarily used to  
generate clocks for peripheral operation in USB suspend (deep sleep) mode.  
Datasheet  
14  
002-33534 Rev. *F  
2023-01-30  
EZ-PD™ CCG7S Automotive single-port USB Type-C with PD and  
buck-boost controller  
Power subsystem  
2
Power subsystem  
Figure 8 shows an overview of the power subsystem architecture for EZ-PD™ CCG7S devices. The power  
subsystem of EZ-PD™ CCG7S devices operate from VIN supply which can vary from 4 V to 24 V. The VDDD pin, the  
output of an internal 5V LDO, gets input from VIN supply. The current capability of the VDDD pin is up to 75mA  
including internal as well as external loads. EZ-PD™ CCG7S devices have two different power modes: Active and  
Deep sleep, transitions between which are managed by the power system. The VCCD pin, the output of the core  
(1.8 V) regulator, is brought out for connecting a 0.1-µF capacitor for the regulator stability only. This pin is not  
supported as a power supply for external load.  
CSNO  
VBUS_C  
PVDD  
Buck-boost  
LS driver  
NGDO  
1µF  
PGND  
VIN  
VDDD  
CC2  
LDO  
10 µF  
CC1  
Core regulator  
VCCD  
GND  
0.1 µF  
1 x CC  
Tx/Rx  
GPIOs  
Core  
Figure 8  
Power system requirement block diagram  
Datasheet  
15  
002-33534 Rev. *F  
2023-01-30  
EZ-PD™ CCG7S Automotive single-port USB Type-C with PD and  
buck-boost controller  
Power subsystem  
2.1  
VIN under-voltage lockout (UVLO)  
EZ-PD™ CCG7S supports UVLO to allow the device to shut down when the input voltage is below the reliable level.  
It guarantees predictable behavior when the device is up and running.  
2.2  
Using external VDDD supply  
By default, external VDDD is not supported for EZ-PD™ CCG7S devices. However, usage of external VDDD supply  
can be enabled using firmware. The prerequisite for enabling external forcing of VDDD is to always maintain VIN  
higher than VDDD.  
2.3  
Power modes  
The Power modes of the device accessible and observable by the user are listed in Table 1.  
Table 1  
Power modes  
Description  
Mode  
Power is valid and XRES is not asserted. An internal reset source is asserted or Sleep controller is  
sequencing the system out of reset.  
RESET  
ACTIVE  
SLEEP  
Power is valid and CPU is executing instructions.  
Power is valid and CPU is not executing instructions. All logic that is not operating is clock gated to save  
power.  
Main regulator and most hard-IP are shut off. Deep sleep regulator powers logic, but only low-frequency  
clock is available.  
DEEP SLEEP  
XRES  
Power is valid and XRES is asserted. Core is powered down.  
Datasheet  
16  
002-33534 Rev. *F  
2023-01-30  
EZ-PD™ CCG7S Automotive single-port USB Type-C with PD and  
buck-boost controller  
Pin list  
3
Pin list  
Table 2  
Automotive 40-QFN package pinout  
Absolute  
Absolute  
Sl# Pin name  
minimum  
(V)  
Description  
maximum (V)  
Buck high side gate driver output.  
Connect to the buck (input) side control (high side) FET gate. Use a wide  
trace to minimize inductance of this connection. Absolute min and max  
are with respect to SW1 pin.  
[1, 2, 3]  
1
2
HG1  
SW1  
-0.5  
PVDD+0.5  
Negative power rail of the buck high side gate driver.  
This is also connected to one input terminal of zero current detection  
of buck low side gate driver.  
-0.7  
35  
Connect to the switch node (inductor) on the buck (input) side. Use a  
short and wide trace to minimize the inductance and resistance of this  
connection.  
Buck low side gate driver output.  
[1]  
3
4
5
6
LG1  
PGND  
PVDD  
LG2  
-0.5  
-0.3  
PVDD+0.5  
Connect to the buck (input) side sync (low side) FET gate. Use a wide  
trace to minimize inductance of this connection.  
Ground of low side gate driver. This is also connected to one input  
terminal of zero current detection of buck low side gate driver.  
Connect directly to the port’s board ground plane.  
0.3  
Supply of low side gate driver.  
VDDD  
Connect to VDDD. Use 1 μF and 0.1 μF bypass capacitors as close to the  
EZ-PD™ CCG7S IC as possible.  
Boost low side gate driver output.  
[1]  
-0.5  
PVDD+0.5  
Connect to the boost (output) side control (low side) FET gate. Use a  
wide trace to minimize inductance of this connection.  
Output of the Buck-boost converter. This is also connected to one input  
terminal of reverse current protection of Boost high side gate driver.  
Connect to the boost sync (high side) FET’s drain. Use a dedicated  
(Kelvin) trace for this connection.  
7
8
VOUT  
SW2  
-0.3  
24  
24  
Negative power rail of the boost high side gate driver. This is also  
connected to one input terminal of reverse current protection of boost  
high side gate driver.  
-0.3  
-0.5  
Connect to the switch node (inductor) on the boost (output) side. Use a  
short and wide trace to minimize the inductance and resistance of this  
connection.  
Boost high side gate driver output.  
[1, 4]  
9
HG2  
PVDD+0.5  
Connect to the boost (output) side sync (high side) FET gate. Use a wide  
trace to minimize inductance of this connection.  
Boosted power supply of the boost high side gate driver. Bootstrap  
capacitor node. Connect Schottky diode from VDDD to BST2. Also,  
connect a bootstrap capacitor from this pin to SW2.  
[1, 4]  
10  
BST2  
PVDD+0.5  
11 VBUS_CTRL  
-0.5  
-0.5  
32  
VBUS NFET gate driver output. Connect to the provider NFET’s gate.  
Error amplifier output pin. Connect a compensation network to GND.  
Contact Infineon® for assistance in designing the compensation  
network.  
[1]  
12  
13  
COMP  
PVDD+0.5  
Type-C connector VBUS voltage.  
VBUS_C  
CSNO  
-0.3  
-0.3  
24  
24  
Connect to the Type-C connector’s VBUS pin.  
Negative input of output current sensing amplifier.  
14  
Connect to negative terminal of the output current sense resistor.  
Notes  
1. Maximum voltage must not exceed 6 V.  
2. Maximum absolute voltage w.r.t GND must not exceed 40 V.  
3. The absolute maximum value is with respect to SW1.  
4. The absolute maximum value is with respect to SW2.  
Datasheet  
17  
002-33534 Rev. *F  
2023-01-30  
EZ-PD™ CCG7S Automotive single-port USB Type-C with PD and  
buck-boost controller  
Pin list  
Table 2  
Automotive 40-QFN package pinout (continued)  
Absolute  
Absolute  
Sl# Pin name  
minimum  
(V)  
Description  
maximum (V)  
Positive input of output current sensing amplifier. Connect to positive  
terminal of the output current sense resistor.  
15  
16  
CSPO  
CC2  
-0.3  
24  
Type-C connector configuration channel 2. Connect directly to the CC2  
pin on the port’s Type-C connector. Also connect a 390-pF capacitor to  
ground.  
-0.5  
24  
24  
Type-C connector configuration channel 1. Connect directly to the CC1  
pin on the port’s Type-C connector. Also connect a 390-pF capacitor to  
ground.  
17  
CC1  
-0.5  
-0.5  
USB D+/GPIO: D+ for implementing BC 1.2, AFC, QC or Apple charging.  
EZ-PD™ CCG7S does not support USB data transmission on this pin.  
[1]  
18 DP_GPIO0  
19 DM_GPIO1  
PVDD+0.5  
USB D-/GPIO: D- for implementing BC 1.2, AFC, QC or Apple charging.  
EZ-PD™ CCG7S does not support USB data transmission on this pin.  
[1]  
-0.5  
PVDD+0.5  
20  
VDDD  
6
5-V LDO output. Connect a 1-μF ceramic bypass capacitor to this pin.  
GPIO/ positive input terminal of VBAT – GND protection circuit.  
Connect to the positive terminal of the VBAT – GND short protection  
current sense resistor.  
[1]  
21 CSP_GPIO2  
-0.5  
PVDD+0.5  
GPIO/negative input terminal of VBAT – GND protection circuit/hot plug  
detect.  
Connect to the negative terminal of the VBAT – GND short protection  
current sense resistor. For single-ended current sensing, this pin need  
not be connected to the current sense resistor. For applications  
supporting DisplayPort (for example, Rear seat entertainment (RSE)),  
this is the Hotplug Detect output pin.  
[1]  
22 CSN_GPIO3  
-0.5  
PVDD+0.5  
[1]  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
GPIO4  
CGND  
GPIO5  
GPIO6  
GPIO7  
GPIO8  
GPIO9  
GPIO10  
XRES  
-0.5  
-0.3  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
PVDD+0.5  
GPIO/VBAT to GND protection FET gate drive.  
0.5  
CC block ground. Connect to the exposed pad (EPAD).  
[1]  
PVDD+0.5  
GPIO  
[1]  
PVDD+0.5  
GPIO  
[1]  
PVDD+0.5  
GPIO  
[1]  
PVDD+0.5  
GPIO/SWD programming and debug data signal.  
[1]  
PVDD+0.5  
GPIO/SWD programming and debug clock signal.  
[1]  
PVDD+0.5  
GPIO  
[1]  
PVDD+0.5  
External reset – active low. Contains a 3.5-KΩ to 8.5-KΩ internal pull-up.  
[1]  
GPIO11  
GPIO12  
GND  
PVDD+0.5  
GPIO  
[1]  
PVDD+0.5  
GPIO  
6
Chip ground. Connect to the exposed pad (EPAD).  
5-V LDO output. Connect a 10-μF bypass capacitor to this pin.  
VDDD  
1.8-V core LDO output. Connect a 0.1-μF bypass capacitor to ground. Do  
36  
37  
VCCD  
VIN  
not connect anything else to this pin.  
4V–24V input supply. Connect a ceramic bypass capacitor to GND close  
to this pin.  
-0.3  
40  
Positive input of input current sense amplifier. Connect to the positive  
terminal of the input current sense resistor. Use a dedicated (Kelvin)  
connection.  
38  
CSPI  
-0.3  
40  
Notes  
1. Maximum voltage must not exceed 6 V.  
2. Maximum absolute voltage w.r.t GND must not exceed 40 V.  
3. The absolute maximum value is with respect to SW1.  
4. The absolute maximum value is with respect to SW2.  
Datasheet  
18  
002-33534 Rev. *F  
2023-01-30  
EZ-PD™ CCG7S Automotive single-port USB Type-C with PD and  
buck-boost controller  
Pin list  
Table 2  
Automotive 40-QFN package pinout (continued)  
Absolute  
Absolute  
Sl# Pin name  
minimum  
(V)  
Description  
maximum (V)  
Negative input of Input current sense amplifier.  
Connect to the negative terminal of the input current sense resistor. Use  
a dedicated (Kelvin) connection.  
39  
40  
CSNI  
-0.3  
40  
Boosted power supply of the buck high side gate driver. Bootstrap  
capacitor node.  
[1, 2, 3]  
BST1  
EPAD  
PVDD+0.5  
Connect Schottky diode from VDDD to BST1. Also, connect a bootstrap  
capacitor from this pin to SW1.  
Exposed ground pad. Connect directly to pin 36 and pin 22.  
Notes  
1. Maximum voltage must not exceed 6 V.  
2. Maximum absolute voltage w.r.t GND must not exceed 40 V.  
3. The absolute maximum value is with respect to SW1.  
4. The absolute maximum value is with respect to SW2.  
1
2
3
4
5
6
7
8
9
10  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
GPIO10  
GPIO9  
GPIO8  
HG1  
SW1  
LG1  
PGND  
PVDD  
LG2  
VOUT  
SW2  
GPIO7  
GPIO6  
GPIO5  
EPAD  
CGND  
GPIO4  
CSN_GPIO3  
CSP_GPIO2  
HG2  
BST2  
Figure 9  
EZ-PD™ CCG7S 40-QFN pinout  
Datasheet  
19  
002-33534 Rev. *F  
2023-01-30  
EZ-PD™ CCG7S Automotive single-port USB Type-C with PD and  
buck-boost controller  
EZ-PD™ CCG7S programming and bootloading  
4
EZ-PD™ CCG7S programming and bootloading  
There are two ways to program application firmware into a EZ-PD™ CCG7S device:  
1. Programming the device flash over SWD Interface  
2. Application firmware update over specific interfaces (CC, I2C)  
Generally, the EZ-PD™ CCG7S devices are programmed over SWD interface only during development or during  
the manufacturing process of the end-product. Once the end-product is manufactured, the EZ-PD™ CCG7S  
device's application firmware can be updated via the appropriate bootloader interface. By default, the EZ-PD™  
CCG7S devices ship with a combined I2C/CC bootloader. Infineon® strongly recommends customers to use the  
EZ-PDconfiguration utility to turn off the application FW update over CC or I2C interface in the firmware that  
is updated into EZ-PD™ CCG7S's flash before mass production. This prevents unauthorized firmware from being  
updated over CC interface in the field. If you desire to retain the application firmware update over CC/ I2C inter-  
faces feature post-production for on-field firmware updates, contact Infineon Sales for further guidelines.  
4.1  
Programming the device flash over SWD interface  
The EZ-PD™ CCG7S family of devices can be programmed using the SWD interface. Infineon® provides  
programming hardware called CY8CKIT-005 MiniProg4 kit, which can be used to program the flash as well as  
debug firmware. The flash is programmed by downloading the information from a hex file.  
As shown in the block diagram (see Figure 10), the SWD_DAT and SWD_CLK pins are connected to the host  
programmer’s SWDIO (data) and SWDCLK (clock) pins respectively. During SWD programming, the device can be  
powered by the host programmer by connecting its VTARG (power supply to the target device) to VDDD pins of  
EZ-PD™ CCG7S device. If the EZ-PD™ CCG7S device is powered using an on-board power supply, it can be  
programmed using the “reset programming” option. For more details, refer the CCGx (CYPDxxxx) programming  
specifications.  
3.3 V  
VDD  
Host Programmer  
VTARG  
VDDD  
VDDD  
10µF  
1µF  
0.1µF  
0.1µF  
SWDCLK  
SWDIO  
XRES  
SWD_CLK  
SWD_DAT  
XRES  
VCCD  
0.1µF  
GND  
GND  
GND  
Figure 10  
Connecting the programmer to CYPD7XXX device  
Datasheet  
20  
002-33534 Rev. *F  
2023-01-30  
EZ-PD™ CCG7S Automotive single-port USB Type-C with PD and  
buck-boost controller  
Applications  
5
Applications  
Figure 11 shows a typical head unit charger application block diagram using the EZ-PD™ CCG7S device. A head  
unit charger (also known as center stack) is located prominently in the center of the dashboard or console. They  
are powered by the car battery and are used for charging the mobile/tablet and for media transfer using USB data  
communications. In this application, EZ-PD™ CCG7S is always in DFP role supporting the charging of the device.  
It negotiates the power with the connected device and uses the integrated buck-boost controller to supply the  
required voltage and current.  
The DP/DM lines of the Type-C receptacles are connected to the host processor/hub, for data connectivity to the  
head unit. These pins are also connected to EZ-PD™ CCG7S to support legacy charging protocol BC v1.2 CDP. The  
I2C interface is used to interface with the host processor/hub, to support host processor interface (HPI)  
commands, provide status to the head unit, and support FW updates. Note that per the battery charging specifi-  
cation 1.2, other legacy charging protocols other than BC v1.2 CDP cannot be supported in conjunction with USB  
data communication.  
EZ-PD™ CCG7S measures various temperatures using external NTC thermistors. EZ-PD™ CCG7S throttles the  
output power based on temperature and/or shuts off the power under critical conditions. It also monitors the  
battery voltage and lowers the output power if the battery voltage is lower than the user-configured threshold.  
When no load is connected to the USB Type-C port, EZ-PD™ CCG7S remains in standby mode without switching  
on the buck-boost controller.  
(USB PD, 3.3-21 V,  
5A)  
Battery input  
(9 V-18 V)  
5 m  
5 m  
VIN  
VBUS  
VDDD  
VDDD  
0.1 μF  
1
40  
2
3
6
10  
8
9
7
15  
HG1  
VOUT  
CSPO  
14  
11  
13  
17  
CSNO  
39  
CSNI  
38  
37  
VBUS_CTRL  
VBUS_C  
CC1  
CSPI  
VIN  
36  
CC1  
VCCD  
0.1 μF  
390-pF  
390-pF  
16  
18  
CC2  
CC2  
VDDD  
NTC  
DP  
DP_GPIO0  
22  
CSN_GPIO3  
DM  
19  
23  
21  
DM_GPIO1  
GPIO4  
CYPD7191-40LDXS  
25  
26  
27  
GPIO5  
GPIO6  
GPIO7  
CE  
GND  
CSP_GPIO2  
5 m  
41  
24  
GND (EPAD)  
CGND  
20  
35  
VDDD  
VDDD  
VDDD  
0.1 μF  
10 μF  
1
2
VDDD  
AGND  
34  
0.1 μF  
1 μF  
GND  
31  
28  
29  
3
XRES  
XRES  
GPIO8  
GPIO9  
HPI_CLK  
HPI_DAT  
SWD_CLK  
SWD_DAT  
4
5
PVDD PGND  
COMP  
12  
GPIO12 GPIO11 GPIO10  
HPI_CLK  
HPI_DAT  
Programming header  
– not needed for final  
production  
5
4
33  
32  
30  
HPI_INT  
VDDD  
Host procesor  
1μF  
HPI_ADDR  
Figure 11  
EZ-PD™ CCG7S head unit (HU) charger application diagram  
Datasheet  
21  
002-33534 Rev. *F  
2023-01-30  
EZ-PD™ CCG7S Automotive single-port USB Type-C with PD and  
buck-boost controller  
Applications  
Table 3 provides the head unit GPIO pin mapping for the application diagram in Figure 11.  
Table 3  
Pin #  
Head unit (HU) GPIO pin mapping  
Pin name  
GPIO  
HU  
Function  
18  
19  
DP_GPIO0 USB DP of Type-C port. Supports BC 1.2, QC, Apple charging and AFC  
P0.0  
DP  
DM_GPIO1 USB DM of Type-C port. Supports BC 1.2, QC, Apple charging and AFC  
P0.1  
DM  
CSP pin on ground side to implement VBAT to GND short circuit  
21  
22  
CSP_GPIO2  
protection  
P0.2  
P0.3  
VBATT_CSP  
NTC  
CSN_GPIO3 Thermistor  
23  
GPIO4  
GPIO to control the FET for VBAT to GND short circuit protection  
P0.5  
VBATT_FET  
25  
26  
27  
GPIO5  
GPIO6  
GPIO7  
Free GPIO  
P1.4  
P1.3  
P1.2  
GPIO  
CE  
Chip enable from external hardware  
Free GPIO  
GPIO  
Connect to the host programmer’s SWDCLK (clock) for programming the  
EZ-PD™ CCG7S device. This pin is also connected to the HPI CLK pin of  
the external host processor.  
28  
GPIO8  
P1.1  
HPI_SCL  
Connect to the host programmer’s SWDIO (data) for programming the  
EZ-PD™ CCG7S device. This pin is also connected to the HPI DATA pin of  
the external host processor.  
29  
30  
GPIO9  
P1.0  
P2.2  
HPI_SDA  
HPI_INT  
GPIO10  
HPI interrupt  
32  
33  
GPIO11  
GPIO12  
Free GPIO  
P3.0  
P3.1  
GPIO  
HPI address detection pin  
HPI_ADDR  
Datasheet  
22  
002-33534 Rev. *F  
2023-01-30  
EZ-PD™ CCG7S Automotive single-port USB Type-C with PD and  
buck-boost controller  
Applications  
Figure 12 shows a typical rear seat charger (RSC) application block diagram using EZ-PD™ CCG7S device. This  
application is similar to the head unit charger application without the hub and data communications. There is no  
host processor/hub in this application. This application can be configured to support the legacy charging  
protocols - BC1.2 DCP, Qualcomm QC2.0/3.0, Apple charging, and Samsung AFC.  
See Figure 14 for an example of an RSC application in which only step-down (buck) conversion is required. The  
boost side FETs are removed and the boost side pins are terminated as required.  
(USB PD, 3.3-21 V, 5 A)  
5 m  
5 m  
Battery input  
(9 V-18 V)  
VIN  
VBUS  
VDDD  
VDDD  
0.1 μF  
40  
2
3
6
10  
8
9
7
15  
1
HG1  
14  
11  
13  
17  
CSNO  
39  
CSNI  
38  
37  
VBUS_CTRL  
VBUS_C  
CC1  
CSPI  
VIN  
36  
CC1  
VCCD  
0.1 μF  
390 pF  
390 pF  
16  
18  
CC2  
CC2  
VDDD  
NTC  
DP  
DP_GPIO0  
22  
CSN_GPIO3  
DM  
19  
23  
21  
DM_GPIO1  
GPIO4  
CYPD7191-40LDXS  
LIN_TXR_EN  
LIN_RX  
25  
26  
27  
GPIO5  
GPIO6  
GPIO7  
LIN  
transceiver  
GND  
CSP_GPIO2  
LIN_TX  
5 m  
41  
24  
GND (EPAD)  
CGND  
20  
35  
VDDD  
VDDD  
VDDD  
0.1 μF  
10 μF  
1
2
VDDD  
AGND  
34  
0.1 μF  
1 μF  
GND  
31  
28  
29  
3
XRES  
XRES  
GPIO8  
GPIO9  
HPI_CLK  
HPI_DAT  
SWD_CLK  
SWD_DAT  
4
5
PVDD PGND  
COMP  
12  
GPIO12 GPIO11 GPIO10  
33 32 30  
Programming header  
– not needed for final  
production  
5
4
VDDD  
HPI_INT  
1 μF  
I2CM_SCL  
Figure 12  
EZ-PD™ CCG7S rear seat charger (RSC) application diagram  
Datasheet  
23  
002-33534 Rev. *F  
2023-01-30  
EZ-PD™ CCG7S Automotive single-port USB Type-C with PD and  
buck-boost controller  
Applications  
Table 4 provides the RSC GPIO pin mapping for the application diagram in Figure 12 and Figure 14.  
Table 4  
Pin #  
Rear seat charger (RSC) GPIO pin mapping  
Pin name  
GPIO  
RSC  
Function  
USB DP of Type-C port. Supports BC 1.2, QC, Apple charging  
and AFC  
18  
19  
DP_GPIO0  
DM_GPIO1  
P0.0  
DP  
USB DM of Type-C port. Supports BC 1.2, QC, Apple charging  
and AFC  
P0.1  
DM  
CSP pin on ground side to implement VBAT to GND short  
circuit protection  
21  
22  
23  
CSP_GPIO2  
CSN_GPIO3  
GPIO4  
P0.2  
P0.3  
P0.5  
VBATT_CSP  
NTC  
Thermistor  
GPIO to control the FET for VBAT to GND short circuit  
protection  
VBATT_FET  
25  
26  
27  
GPIO5  
GPIO6  
GPIO7  
LIN trans receiver enable  
LIN RX pin  
P1.4  
P1.3  
P1.2  
LIN_TXR_EN  
LIN_RX  
LIN TX pin  
LIN_TX  
Connect to the host programmer’s SWDCLK (clock) for  
programming the EZ-PD™ CCG7S device. This is also the HPI  
slave SCL pin for implementing load sharing between two  
EZ-PD™ CCG7S devices.  
Connect to the host programmer’s SWDDAT (data) for  
programming the EZ-PD™ CCG7S device. This is also the HPI  
slave SDA pin for implementing load sharing between two  
EZ-PD™ CCG7S devices.  
28  
29  
GPIO8  
GPIO9  
P1.1  
P1.0  
HPI_SCL  
HPI_SDA  
30  
32  
GPIO10  
GPIO11  
HPI interrupt  
P2.2  
P3.0  
HPI_INT  
Master I2C SDA for implementing load sharing between two  
EZ-PD™ CCG7S devices  
I2CM_SDA  
Master I2C SCL for implementing load sharing between two  
EZ-PD™ CCG7S devices  
33  
GPIO12  
P3.1  
I2CM_SCL  
Figure 13 shows the connections required for implementing load sharing between the two EZ-PD™ CCG7S  
devices for the RSC application.  
VDDD  
28  
29  
28  
29  
GPIO8  
GPIO9  
GPIO8  
GPIO9  
CYPD7191-40LDXS  
CYPD7191-40LDXS  
(Slave)  
(Master)  
30  
32  
33  
HPI_INT  
HPI_DAT  
30  
32  
33  
GPIO10  
GPIO11  
GPIO10  
GPIO11  
GPIO12  
HPI_CLK  
GPIO12  
Figure 13  
Load sharing between two EZ-PD™ CCG7S devices  
Datasheet  
24  
002-33534 Rev. *F  
2023-01-30  
EZ-PD™ CCG7S Automotive single-port USB Type-C with PD and  
buck-boost controller  
Applications  
(USB PD, 3.3-21 V, 5 A)  
VBUS  
Battery input  
(9 V-18 V)  
5 m  
5 m  
VIN  
VDDD  
VDDD  
10  
0.1 μF  
40  
2
3
8
7
15  
1
14  
11  
13  
17  
CSNO  
39  
CSNI  
38  
37  
VBUS_CTRL  
VBUS_C  
CSPI  
VIN  
36  
CC1  
CC2  
CC1  
CC2  
VCCD  
0.1 μF  
390 pF  
390 pF  
16  
18  
VDDD  
NTC  
DP  
DP_GPIO0  
22  
CSN_GPIO3  
DM  
19  
23  
21  
DM_GPIO1  
GPIO4  
CYPD7191-40LDXS  
LIN_TXR_EN  
LIN_RX  
25  
26  
27  
GPIO5  
GPIO6  
GPIO7  
LIN  
transceiver  
GND  
CSP_GPIO2  
LIN_TX  
5 m  
41  
24  
GND (EPAD)  
CGND  
20  
35  
VDDD  
VDDD  
VDDD  
0.1μF  
10 μF  
1
2
VDDD  
AGND  
34  
0.1μF  
1 μF  
GND  
31  
28  
29  
3
XRES  
XRES  
GPIO8  
GPIO9  
HPI_CLK  
HPI_DAT  
SWD_CLK  
SWD_DAT  
4
5
PVDD PGND  
COMP  
12  
GPIO12 GPIO11 GPIO10  
33 32 30  
Programming header  
– not needed for final  
production  
5
4
VDDD  
HPI_INT  
1 μF  
I2CM_SCL  
Figure 14  
EZ-PD™ CCG7S rear seat charger (RSC) application diagram - Step-down (buck) conversion  
only  
Datasheet  
25  
002-33534 Rev. *F  
2023-01-30  
EZ-PD™ CCG7S Automotive single-port USB Type-C with PD and  
buck-boost controller  
Applications  
Figure 15 shows the rear seat entertainment (RSE) application block diagram using EZ-PD™ CCG7S. In this appli-  
cation, the port is used for charging and streaming video content from a DisplayPort source (for example, a  
mobile phone, PC, or a tablet) to a monitor. EZ-PD™ CCG7S supports DisplayPort Alternate mode as a sink and  
controls the external DisplayPort Multiplexer through I2C. EZ-PD™ CCG7S also communicates with the system’s  
SoC over I2C.  
(USB PD, 3.3-21 V, 5 A)  
5 m  
5 m  
Battery Input  
(9V-18V)  
VIN  
VBUS  
VDDD  
VDDD  
0.1 μF  
40  
2
3
6
10  
8
9
7
15  
1
HG1  
VOUT  
CSPO  
14  
11  
13  
17  
CSNO  
39  
CSNI  
38  
37  
VBUS_CTRL  
VBUS_C  
CC1  
CSPI  
VIN  
36  
CC1  
VCCD  
0.1 μF  
390 pF  
390 pF  
16  
18  
CC2  
CC2  
22  
HPD  
CSN_GPIO3  
DM_GPIO1  
VDDD  
NTC  
DP  
DP_GPIO0  
19  
25  
DM  
CYPD7191-40LDXS  
LIN_TXR_EN  
23  
21  
GPIO5  
GPIO6  
GPIO7  
GPIO4  
LIN  
transceiver  
LIN_RX  
LIN_TX  
26  
27  
GND  
CSP_GPIO2  
5 m  
41  
24  
GND (EPAD)  
CGND  
20  
35  
VDDD  
VDDD  
VDDD  
0.1 μF  
10 μF  
1
2
VDDD  
AGND  
34  
0.1 μF  
1 μF  
GND  
31  
28  
29  
3
XRES  
XRES  
GPIO8  
GPIO9  
HPI_CLK  
HPI_DAT  
SWD_CLK  
SWD_DAT  
4
5
PVDD PGND  
COMP  
12  
GPIO12 GPIO11 GPIO10  
HPI_CLK  
HPI_DAT  
Programming header  
– not needed for final  
production  
5
4
33  
32  
30  
HPI_INT  
VDDD  
Host procesor  
1 μF  
Display port  
Mux  
Figure 15  
EZ-PD™ CCG7S rear seat entertainment (RSE) application diagram  
Datasheet  
26  
002-33534 Rev. *F  
2023-01-30  
EZ-PD™ CCG7S Automotive single-port USB Type-C with PD and  
buck-boost controller  
Applications  
Table 5 provides the RSE GPIO pin mapping for the application diagram in Figure 15.  
Table 5  
Pin #  
18  
Rear seat entertainment (RSE) GPIO pin mapping  
Pin name  
GPIO  
P0.0  
P0.1  
RSE  
GPIO  
NTC  
Function  
Free GPIO  
Thermistor  
DP_GPIO0  
DM_GPIO1  
19  
CSP pin on ground side to implement VBAT to GND short  
circuit protection  
21  
22  
23  
CSP_GPIO2  
CSN_GPIO3  
GPIO4  
P0.2  
P0.3  
P0.5  
VBATT_CSP  
HPD  
Hot Plug Detect  
GPIO to disable the FET for VBAT to GND short circuit  
protection  
VBATT_FET  
25  
26  
27  
GPIO5  
GPIO6  
GPIO7  
LIN transceiver enable  
LIN RX pin  
P1.4  
P1.3  
P1.2  
LIN_TXR_EN  
LIN_RX  
LIN TX pin  
LIN_TX  
Connect to the host programmer’s SWDCLK (clock) for  
programming the EZ-PD™ CCG7S  
28  
29  
GPIO8  
GPIO9  
P1.1  
P1.0  
HPI_SCL  
HPI_SDA  
Connect to the host programmer’s SWDIO (data) for  
programming the EZ-PD™ CCG7S  
30  
32  
33  
GPIO10  
GPIO11  
GPIO12  
HPI Interrupt  
P2.2  
P3.0  
P3.1  
HPI_INT  
I2CM_SDA  
I2CM_SCL  
Master I2C SDA to control the display port mux  
Master I2C SCL to control the display port mux  
Datasheet  
27  
002-33534 Rev. *F  
2023-01-30  
EZ-PD™ CCG7S Automotive single-port USB Type-C with PD and  
buck-boost controller  
Electrical specifications  
6
Electrical specifications  
6.1  
Table 6  
Absolute maximum ratings  
Absolute maximum ratings[5]  
Parameter  
Description  
Maximum input supply voltage  
Min Typ  
Max  
40  
6
Unit Details/conditions  
V
IN_MAX  
V
Maximum supply voltage relative to V  
Maximum supply voltage relative to V  
DDD_MAX  
SS  
V
6
5V_MAX  
SS  
V
Max V  
(P0/P1) voltage relative to Vss  
BUS_C  
24  
24  
V
BUS_C_MAX  
CC_PIN_ABS  
V
Max voltage on CC1 and CC2 pins  
Inputs to GPIO  
V
–0.5  
–0.5  
–25  
V
+ 0.5  
GPIO_ABS  
DDD  
V
OVT GPIO voltage  
6
GPIO_OVT_ABS  
I
Maximum current per GPIO  
25  
GPIO_ABS  
mA  
V
GPIO injection current, max for V > V  
,
DDD  
Absolute max,  
IH  
I
–0.5  
0.5  
GPIO_INJECTION  
and min for V < V  
current injected per pin  
IL  
SS  
ESD_HBM  
Electrostatic discharge human body model 2000  
All pins.  
Electrostatic discharge charged device  
Charged device model  
ESD  
ESD_CDM  
LU  
500  
model  
Pin current for latch-up  
Junction temperature  
–100  
–40  
100  
125  
mA  
°C  
T
J
Note  
5. Usage above the absolute maximum conditions listed in Table 6 may cause permanent damage to the device. Exposure  
to absolute maximum conditions for extended periods of time may affect device reliability. The maximum storage tem-  
perature is 150°C in compliance with JEDEC Standard JESD22-A103, high temperature storage life. When used below  
absolute maximum conditions but above normal operating conditions, the device may not operate to specification.  
Datasheet  
28  
002-33534 Rev. *F  
2023-01-30  
EZ-PD™ CCG7S Automotive single-port USB Type-C with PD and  
buck-boost controller  
Electrical specifications  
6.2  
Device-level specifications  
All specifications are valid for –40°C TA 105°C and TJ 125°C, except where noted. Specifications are valid for  
3.0 V to 5.5 V except where noted.  
6.2.1  
DC specifications  
Table 7  
DC Specifications (Operating conditions)  
Spec ID  
Parameter  
Description  
Min  
Typ Max Unit Details/conditions  
SID.PWR#1  
V
Input supply voltage  
4.0  
24  
IN  
Buck-boost operating  
input supply voltage  
SID.PWR#1A  
V
4.5  
24  
IN_BB  
VDDD output with  
VIN 5.5 V to 24 V,  
max load = 75 mA  
SID.PWR#2  
V
4.6  
5.5  
5.5  
DDD_REG  
VDDD output with  
VIN 4.5 V to 5.5 V,  
max load = 75 mA  
V
SID.PWR#2A  
V
V -0.7  
IN  
DDD_BYPASS  
VDDD output with VIN 4 V to  
4.5 V, max load = 20mA  
SID.PWR#3  
SID.PWR#20  
SID.PWR#5  
V
V - 0.2  
21.5  
DDD_MIN  
IN  
VBUS  
VBUS_C valid range  
3.3  
Regulated output voltage  
(for core Logic)  
V
1.8  
CCD  
External regulator voltage  
bypass for VCCD  
SID.PWR#16  
SID.PWR#17  
SID.PWR#18  
C
80  
100  
10  
120  
nF  
µF  
EFC_VCCD  
EXC_VDDD  
Power supply decoupling  
C
X5R ceramic  
capacitor for V  
DDD  
Bootstrap supply capacitor  
(BST1, BST2)  
C
0.1  
EXV  
T = 25 °C, VIN = 12 V. CC IO IN  
A
transmit or receive, no I/O  
sourcing current, No VCONN  
Supply current at 0.4 MHz  
switching frequency  
SID.PWR#24  
I
50  
mA load current, CPU at 24 MHz,  
PD port active. Buck-boost  
converter on, 3-nF gate driver  
capacitance.  
DD_ACT  
Deep Sleep mode  
Type-C not attached, CC  
enabled for wakeup. R  
p
V
= 12 V. CC wakeup on,  
IN  
connection should be enabled  
SID_DS1  
I
I
Type-C not connected,  
Source mode  
80  
50  
DD_DS1  
DD_DS2  
for the PD port. T = 25°C. All  
A
faults disabled including  
VBAT-GND short protection.  
USBPD disabled. Wake-up  
SID_DS2  
SID_DS3  
VIN = 12 V, GPIO wake-up  
from GPIO.T = 25 °C. All faults  
A
µA  
disabled.  
Type-C not attached, CC  
enabled for wakeup. R  
p
VIN = 12 V. CC wakeup on,  
Type-C not connected,  
Source mode  
connection should be enabled  
for the PD port.  
I
300  
DD_DS3  
T = 25°C. All faults disabled  
A
except VBAT-GND short  
protection.  
Datasheet  
29  
002-33534 Rev. *F  
2023-01-30  
EZ-PD™ CCG7S Automotive single-port USB Type-C with PD and  
buck-boost controller  
Electrical specifications  
6.2.2  
CPU  
Table 8  
CPU specifications  
Spec ID  
Parameter  
Min  
Typ Max Unit  
Details/conditions  
Description  
–40°C T +105°C,  
A
SID.CLK#4  
F
CPU input frequency  
48  
MHz  
CPU  
all V  
DDD  
SID.PWR#19  
SYS.XRES#5  
T
Wake-up from Deep Sleep mode  
External reset pulse width  
5
35  
DEEPSLEEP  
µs  
T
XRES  
6.2.3  
GPIO  
Table 9  
GPIO DC specifications  
Spec ID  
Parameter  
Min  
Typ  
Max  
Unit  
Description  
Details/conditions  
SID.GIO#9  
SID.GIO#10  
SID.GIO#11  
SID.GIO#12  
V
Input voltage high threshold  
Input voltage low threshold  
LVTTL input  
0.7 × V  
0.3 × V  
IH_CMOS  
DDD  
CMOS input  
V
2.0  
IL_CMOS  
DDD  
V
–40°C TA +105°C  
–40°C TA +105°C  
IH_TTL  
V
LVTTL input  
0.8  
V
IL_TTL  
I
= –4 mA,  
OH  
SID.GIO#7  
V
Output voltage high level  
V
– 0.6  
OH_3V  
DDD  
–40°C T +105°C  
A
I
= 10 mA,  
OL  
SID.GIO#8  
SID.GIO#2  
SID.GIO#3  
V
Output voltage low level  
0.6  
8.5  
8.5  
OL_3V  
–40°C T +105°C  
A
Rpu  
Pull-up resistor when enabled  
3.5  
3.5  
5.6  
5.6  
k–40°C T +105°C  
A
Pull-down resistor when  
enabled  
Rpd  
Input leakage current  
(absolute value)  
SID.GIO#4  
SID.GIO#5  
SID.GIO#6  
I
3
2
22  
7
nA +25 °C T , 3-V V  
A DDD  
IL  
–40°C T +105°C,  
A
C
Max pin capacitance  
capacitance on DP, DM  
pins  
PIN_A  
pF  
–40°C T +105°C,  
A
C
Max pin capacitance  
PIN  
all V , all other I/Os  
DDD  
Input hysteresis, LVTTL,  
DDD  
SID.GIO#13  
SID.GIO#14  
V
100  
V
> 2.7 V  
DDD  
HYSTTL  
V
> 2.7 V  
mV  
V
Input hysteresis CMOS  
0.1 × V  
DDD  
HYSCMOS  
Table 10  
GPIO AC specifications  
Spec ID  
Parameter  
Description  
Min  
Typ Max Unit Details/conditions  
SID.GIO#16  
SID.GIO#17  
SID.GIO#18  
SID.GIO#19  
T
Rise time in fast strong mode  
Fall time in fast strong mode  
Rise time in slow strong mode  
Fall time in slow strong mode  
2
2
12  
12  
60  
60  
RISEF  
FALLF  
RISES  
FALLS  
T
T
T
ns  
10  
10  
C
= 25 pF,  
load  
–40°C T +105°C  
A
GPIO F ; 3.0 V V  
5.5 V.  
OUT  
DDD  
SID.GIO#20  
SID.GIO#21  
SID.GIO#22  
F
F
16  
7
GPIO_OUT1  
Fast strong mode.  
GPIO F ; 3.0 V V  
5.5 V.  
OUT  
DDD  
MHz  
GPIO_OUT2  
Slow strong mode.  
GPIO input operating frequency;  
3.0 V V 5.5 V.  
F
16  
–40°C T +105°C  
A
GPIO_IN  
DDD  
Datasheet  
30  
002-33534 Rev. *F  
2023-01-30  
EZ-PD™ CCG7S Automotive single-port USB Type-C with PD and  
buck-boost controller  
Electrical specifications  
Table 11  
GPIO OVT DC specifications  
Parameter  
Details/  
Spec ID  
Description  
Min  
Typ Max Unit  
conditions  
Max / min current in  
to any input or  
GPIO_20VT latch up  
current limits  
SID.GPIO_20VT_GIO#4  
GPIO_20VT_I_LU  
-140  
140 mA  
8.5  
output, pin-to-pin,  
pin-to-supply  
GPIO_20VT pull-up  
resistor value  
–40°C T +105°C,  
A
SID.GPIO_20VT_GIO#5  
SID.GPIO_20VT_GIO#6  
GPIO_20VT_RPU  
GPIO_20VT_RPD  
3.5  
3.5  
all V  
DDD  
kΩ  
GPIO_20VT  
pull-down resistor  
value  
–40°C T +105°C,  
A
8.5  
all V  
DDD  
GPIO_20VT input  
leakage current  
(absolute value)  
SID.GPIO_20VT_GIO#16  
GPIO_20VT_IIL  
2
nA +25°C T , 3-V V  
A DDD  
GPIO_20VT pin  
capacitance  
–40°C T +105°C,  
A
SID.GPIO_20VT_GIO#17  
SID.GPIO_20VT_GIO#33  
SID.GPIO_20VT_GIO#36  
GPIO_20VT_CPIN  
GPIO_20VT_Voh  
GPIO_20VT_Vol  
10  
pF  
all V  
DDD  
GPIO_20VT output  
voltage high level  
VDDD-0.6  
I
I
= -4 mA  
= 8 mA  
OH  
GPIO_20VT output  
voltage low level  
2
0.6  
OL  
V
GPIO_20VT LVTTL  
input  
–40°C T +105°C,  
A
SID.GPIO_20VT_GIO#41 GPIO_20VT_Vih_LVTTL  
SID.GPIO_20VT_GIO#42 GPIO_20VT_Vil_LVTTL  
SID.GPIO_20VT_GIO#43 GPIO_20VT_Vhysttl  
all V  
DDD  
GPIO_20VT LVTTL  
input  
–40°C T +105°C,  
A
0.8  
all V  
DDD  
GPIO_20VT input  
hysteresis LVTTL  
–40°C T +105°C,  
A
100  
mV  
all V  
DDD  
GPIO_20VT  
V (GPIO_20VT pin) >  
DDD  
SID.GPIO_20VT_GIO#45 GPIO_20VT_ITOT_GPIO maximum total sink  
pin current to ground  
95 mA  
V
Datasheet  
31  
002-33534 Rev. *F  
2023-01-30  
EZ-PD™ CCG7S Automotive single-port USB Type-C with PD and  
buck-boost controller  
Electrical specifications  
Table 12  
GPIO OVT AC specifications  
Parameter  
Details/  
Spec ID  
Description  
Min Typ Max Unit  
conditions  
GPIO_20VT rise time in  
fast strong mode  
SID.GPIO_20VT_70  
SID.GPIO_20VT_71  
GPIO_20VT_TriseF  
GPIO_20VT_TfallF  
GPIO_20VT_TriseS  
GPIO_20VT_TfallS  
1
1
15  
15  
70  
70  
GPIO_20VT fall time in  
fast strong mode  
ns  
GPIO_20VT rise time in  
slow strong mode  
SID.GPIO_20VT_GIO#46  
SID.GPIO_20VT_GIO#47  
10  
10  
All V  
load  
,
DDD  
GPIO_20VT Fall time in  
slow strong mode  
C
= 25 pF  
GPIO_20VT GPIO Fout;  
SID.GPIO_20VT_GIO#48 GPIO_20VT_FGPIO_OUT1 3 V V  
5.5 V. Fast  
33  
7
DDD  
strong mode.  
GPIO_20VT GPIO Fout;  
SID.GPIO_20VT_GIO#50 GPIO_20VT_FGPIO_OUT3 3 VV 5.5V. Slow  
MHz  
DDD  
strong mode.  
GPIO_20VT GPIO input  
SID.GPIO_20VT_GIO#52 GPIO_20VT_FGPIO_IN operating frequency;  
8
All V  
DDD  
3 V V  
5.5 V  
DDD  
Datasheet  
32  
002-33534 Rev. *F  
2023-01-30  
EZ-PD™ CCG7S Automotive single-port USB Type-C with PD and  
buck-boost controller  
Electrical specifications  
6.2.4  
XRES  
Table 13  
XRES DC specifications  
Details/  
Spec ID  
Parameter Description  
Min  
Typ  
Max  
Unit  
conditions  
Input voltage high  
SID.XRES#1  
SID.XRES#2  
SID.XRES#3  
SID.XRES#4  
V
0.7 × V  
IH_XRES  
DDD  
threshold on XRES pin  
V
CMOS input  
Input voltage low  
V
0.3 × V  
IL_XRES  
IN_XRES  
HYSXRES  
DDD  
threshold on XRES pin  
Input capacitance on  
XRES pin  
C
7
pF  
Input voltage hysteresis  
on XRES pin  
V
0.05 × V  
mV  
DDD  
6.3  
Digital peripherals  
The following specifications apply to the timer/counter/PWM peripherals in the timer mode.  
6.3.1  
Pulse width modulation (PWM) for GPIO pins  
Table 14  
PWM AC specifications  
Spec ID  
Parameter  
Min Typ Max Unit  
Description  
Details/conditions  
SID.TCPWM.1 TCPWM  
Operating frequency  
Fc  
MHz Fc max = CLK_SYS  
FREQ  
Minimum possible width of  
overflow, underflow, and CC  
(Counter equals compare value)  
outputs  
SID.TCPWM.3  
T
Output trigger pulse width 2/Fc  
PWMEXT  
ns  
Minimum time between successive  
counts  
SID.TCPWM.4  
SID.TCPWM.5  
T
Resolution of counter  
PWM resolution  
1/Fc  
1/Fc  
CRES  
Minimum pulse width of PWM  
output  
PWM  
RES  
6.3.2  
Table 15  
I2C  
Fixed I2C AC specifications  
Spec ID  
Parameter  
Min Typ Max Unit  
Mbps –  
Description  
Bit rate  
Details/conditions  
SID153  
F
1
I2C1  
6.3.3  
UART  
Table 16  
Fixed UART AC specifications  
Spec ID  
Parameter  
Min Typ Max Unit  
Mbps –  
Description  
Bit rate  
Details/conditions  
SID162  
F
1
UART  
Datasheet  
33  
002-33534 Rev. *F  
2023-01-30  
EZ-PD™ CCG7S Automotive single-port USB Type-C with PD and  
buck-boost controller  
Electrical specifications  
6.3.4  
SPI  
Table 17  
Fixed SPI AC specifications  
Spec ID  
Parameter  
Min Typ Max Unit  
MHz –  
Description  
SPI operating frequency  
(master; 6X oversampling)  
Details/conditions  
SID166  
F
8
SPI  
Table 18  
Spec ID  
Fixed SPI master mode AC specifications  
Parameter  
Min Typ Max Unit  
Description  
Details/conditions  
MOSI valid after SClock  
driving edge  
SID167  
SID168  
SID169  
T
20  
0
15  
DMO  
MISO valid before SClock  
capturing edge  
T
ns Full clock, late MISO sampling  
Referred to slave capturing edge  
DSI  
Previous MOSI data hold  
time  
T
HMO  
Table 19  
Spec ID  
Fixed SPI Slave Mode AC Specifications  
Details/  
Parameter  
Min Typ  
Max  
Unit  
Description  
conditions  
MOSI valid before Sclock capturing  
edge  
SID170  
SID171  
SID171A  
T
40  
48 + (3 × T  
48  
DMI  
T
MISO valid after Sclock driving edge  
)
T
= 1/F  
CPU CPU  
DSO  
CPU  
MISO valid after Sclock driving edge  
in ext clk mode  
ns  
T
T
DSO_EXT  
SID172  
T
Previous MISO data hold time  
SSEL valid to first SCK valid edge  
0
HSO  
SID172A  
100  
SSELSCK  
6.3.5  
Memory  
Table 20  
Flash AC specifications  
Spec ID  
Parameter  
Description  
Min Typ Max Unit Details/conditions  
Row (block) write time (Erase and  
program)  
SID.MEM#2  
SID.MEM#1  
FLASH_WRITE  
20  
–40°C T +85°C,  
A
all V  
FLASH_ERASE Row erase time  
15.5  
7
DDD  
ms  
SID.MEM#5 FLASH_ROW_PGM Row program time after erase  
SID178  
SID180  
T
Bulk erase time (32 KB)  
35  
BULKERASE  
-
T
Total device program time  
7.5  
s
DEVPROG  
25°C T 55°C,  
A
SID.MEM#6  
SID182  
FLASH_  
Flash write endurance  
100k  
20  
cycles  
ENPB  
all V  
DDD  
Flash retention, T 55°C,  
A
F
F
RET1  
100K P/E cycles  
years  
Flash retention, T 85°C,  
A
SID182A  
10  
RET2  
10K P/E cycles  
Datasheet  
34  
002-33534 Rev. *F  
2023-01-30  
EZ-PD™ CCG7S Automotive single-port USB Type-C with PD and  
buck-boost controller  
Electrical specifications  
6.4  
System resources  
6.4.1  
Power-on-reset (POR) with brown out  
Table 21  
Imprecise power-on reset (IPOR)  
Spec ID  
Parameter  
Min Typ Max Unit  
Description  
Details/conditions  
Power-on reset (POR) rising trip  
voltage  
SID185  
SID186  
V
V
0.80  
0.70  
1.50  
1.4  
RISEIPOR  
FALLIPOR  
–40°C T +105°C,  
A
V
all V  
DDD  
POR falling trip voltage  
Table 22  
Precise POR  
Parameter  
Spec ID  
Min Typ Max Unit  
Description  
Details/conditions  
Brown-out detect (BOD) trip  
voltage in active/sleep modes  
SID190  
V
1.48  
1.1  
1.62  
1.5  
FALLPPOR  
–40°C T +105°C,  
A
V
all V  
DDD  
BOD trip voltage in deep sleep  
mode  
SID192  
V
FALLDPSLP  
6.4.2  
SWD interface  
Table 23  
SWD interface specifications  
Details/  
Spec ID  
Parameter  
F_SWDCLK1 3.0 V V  
Min  
Typ  
Max Unit  
Description  
conditions  
SID.SWD#1  
SID.SWD#2  
SID.SWD#3  
SID.SWD#4  
SID.SWD#5  
5.5 V  
14  
MHz –  
DDIO  
T_SWDI_SETUP T = 1/f SWDCLK  
T_SWDI_HOLD T = 1/f SWDCLK  
T_SWDO_VALID T = 1/f SWDCLK  
T_SWDO_HOLD T = 1/f SWDCLK  
0.25 × T  
0.25 × T  
0.50 × T  
ns  
1
6.4.3  
Internal main oscillator  
Table 24  
IMO AC specifications  
Spec ID  
Parameter  
Description  
Min Typ Max Unit Details/conditions  
Frequency variation at 48 MHz  
(trimmed)  
3.0 V V  
< 5.5 V.  
DDD  
A
SID.CLK#13  
F
±2  
%
IMOTOL  
–40°C T 105°C  
SID226  
T
IMO start-up time  
IMO frequency  
7
µs  
STARTIMO  
–40°C T +105°C,  
A
all V  
DDD  
SID.CLK#1  
F
24  
48  
MHz  
IMO  
6.4.4  
Internal low-speed oscillator  
Table 25  
ILO AC specifications  
Details/  
Spec ID  
Parameter  
Min  
Typ Max Unit  
Description  
conditions  
SID234  
SID238  
T
ILO start-up time  
ILO duty cycle  
ILO frequency  
2
ms  
%
STARTILO1  
–40°C T +105°C,  
A
all V  
DDD  
T
40  
20  
50  
40  
60  
80  
ILODUTY  
SID.CLK#5  
F
kHz  
ILO  
Datasheet  
35  
002-33534 Rev. *F  
2023-01-30  
EZ-PD™ CCG7S Automotive single-port USB Type-C with PD and  
buck-boost controller  
Electrical specifications  
6.4.5  
PD  
Table 26  
PD DC specifications  
Details/  
Spec ID  
Parameter  
Description  
Min  
Typ Max Unit  
conditions  
SID.DC.cc_shvt.1  
SID.DC.cc_shvt.2  
SID.DC.cc_shvt.3  
SID.DC.cc_shvt.4  
vSwing  
vSwing_low  
zDriver  
Transmitter output high voltage  
Transmitter output low voltage  
Transmitter output impedance  
Receiver input impedance  
1.05  
1.2  
0.075  
75  
V
33  
10  
W
zBmcRx  
M  
Source current for USB standard  
advertisement  
SID.DC.cc_shvt.5  
SID.DC.cc_shvt.6  
SID.DC.cc_shvt.7  
Idac_std  
Idac_1p5a  
Idac_3a  
64  
96  
Source current for 1.5A at 5V  
advertisement  
166  
304  
194  
356  
µA  
Source current for 3A at 5V adver-  
tisement  
Pull down termination resistance  
when acting as UFP (upstream  
facing port)  
SID.DC.cc_shvt.8  
SID.DC.cc_shvt.10  
Rd  
4.59  
5.61  
k  
CC impedance to ground when  
disabled  
zOPEN  
108  
CC voltages on DFP side-standard  
USB  
SID.DC.cc_shvt.11 DFP_default_0p2  
0.15  
0.25  
SID.DC.cc_shvt.12  
SID.DC.cc_shvt.13  
SID.DC.cc_shvt.14  
DFP_1.5A_0p4 CC voltages on DFP side-1.5A  
0.35  
0.75  
2.45  
0.45  
0.85  
2.75  
DFP_3A_0p8  
DFP_3A_2p6  
CC voltages on DFP side-3A  
CC voltages on DFP side-3A  
V
CC voltages on UFP side-standard  
USB  
SID.DC.cc_shvt.15 UFP_default_0p66  
0.61  
0.7  
SID.DC.cc_shvt.16 UFP_1.5A_1p23 CC voltages on UFP side-1.5A  
1.16  
0.3  
10  
1.31  
0.6  
SID.DC.cc_shvt.17  
SID.DC.cc_shvt.18  
SID.DC.cc_shvt.19  
Vattach_ds  
Rattach_ds  
VTX_step  
Deep sleep attach threshold  
Deep sleep pull-up resistor  
TX drive voltage step size  
%
50  
k  
mV  
80  
120  
6.4.6  
Analog-to-digital converter  
Table 27  
ADC DC specifications  
Spec ID  
Parameter  
Resolution ADC resolution  
Min  
Typ  
Max  
Unit  
Description  
Details/conditions  
SID.ADC.1  
8
Bits –  
Reference voltage generated  
from bandgap.  
SID.ADC.2  
SID.ADC.3  
SID.ADC.4  
SID.ADC.5  
SID.ADC.6  
INL  
Integral non-linearity  
Differential non-linearity  
–1.5  
–2.5  
–1.5  
1.5  
Reference voltage generated  
DNL  
2.5  
1.5  
LSB  
V
from V  
.
DDD  
Reference voltage generated  
from bandgap.  
Gain Error Gain error  
Reference voltage generated  
VREF_ADC1 Reference voltage of ADC V  
VREF_ADC2 Reference voltage of ADC  
V
DDDmax  
DDDmin  
from V  
.
DDD  
Reference voltage generated  
from Deep sleep reference.  
1.96  
2.0  
2.04  
Datasheet  
36  
002-33534 Rev. *F  
2023-01-30  
EZ-PD™ CCG7S Automotive single-port USB Type-C with PD and  
buck-boost controller  
Electrical specifications  
6.4.7  
HS CSA  
Table 28  
HS CSA DC specifications  
Details/  
Spec ID  
Parameter  
Description  
Min Typ Max Unit  
conditions  
SID.HSCSA.1  
SID.HSCSA.2  
SID.HSCSA.3  
SID.HSCSA.4  
Csa_Acc1  
Csa_Acc2  
Csa_Acc3  
Csa_Acc4  
CSA accuracy 5 mV < Vsense < 10 mV –15  
CSA accuracy 10 mV < Vsense < 15 mV –10  
CSA accuracy 15 mV < Vsense < 25 mV –5  
15  
10  
5
CSA accuracy 25 mV < Vsense  
–3  
3
CSA SCP at 6A with 5-mΩ sense  
SID.HSCSA.7  
SID.HSCSA.8  
SID.HSCSA.9  
SID.HSCSA.10  
Csa_SCP_Acc1  
Csa_SCP_Acc2  
Csa_OCP_1A  
Csa_OCP_5A  
–10  
10  
10  
resistor  
%
Active mode  
CSA SCP at 10A with 5-mΩ sense  
–10  
resistor  
CSA OCP at 1A with 5-mΩ sense  
104 130 156  
123 130 137  
resistor  
CSA OCP for 5A with 5-mΩ sense  
resistor  
Table 29  
Spec ID  
HS CSA AC specifications  
Parameter  
Min Typ Max Unit  
Description  
Details/conditions  
Delay from SCP threshold trip to  
external NFET power gate turn  
off  
SID.HSCSA.AC.1  
SID.HSCSA.AC.2  
T
3.5  
8
1nF NFET gate  
3nF NFET gate  
SCP_GATE  
µs  
Delay from SCP threshold trip to  
external NFET power gate turn  
off  
T
SCP_GATE_1  
6.4.8  
UV/OV  
Table 30  
UV/OV specifications  
Spec ID  
Parameter  
Min Typ Max Unit  
Description  
Details/conditions  
Overvoltage threshold Accuracy,  
4 V to 11 V  
SID.UVOV.1  
SID.UVOV.2  
SID.UVOV.3  
SID.UVOV.4  
SID.UVOV.5  
VTHOV1  
–3  
–3.2  
–4  
3
3.2  
4
Overvoltage threshold Accuracy,  
11 V to 21.5 V  
VTHOV2  
VTHUV1  
VTHUV2  
VTHUV3  
Undervoltage threshold  
Accuracy, 3 V to 3.3 V  
%
Active mode  
Undervoltage threshold  
Accuracy, 3.3 V to 4.0 V  
–3.5  
–3  
3.5  
3
Undervoltage threshold  
Accuracy, 4.0 V to 21.5 V  
Datasheet  
37  
002-33534 Rev. *F  
2023-01-30  
EZ-PD™ CCG7S Automotive single-port USB Type-C with PD and  
buck-boost controller  
Electrical specifications  
6.4.9  
VCONN switch  
Table 31  
VCONN switch DC specifications  
Spec ID  
Parameter  
Min Typ Max Unit  
Description  
Details/conditions  
VCONN output voltage with 20 mA  
load current  
DC.VCONN.1  
DC.VCONN.2  
DC.VCONN.3  
VCONN_OUT  
4.5  
5.5  
10  
V
I
Connector side pin leakage current  
µA  
LEAK  
VCONN overcurrent protection  
threshold  
I
22.5 30 42.5 mA  
OCP  
Table 32  
VCONN switch AC specifications  
Spec ID  
Parameter  
Min Typ Max Unit  
Description  
Details/conditions  
AC.VCONN.1  
AC.VCONN.2  
T
VCONN switch turn-on time  
VCONN switch turn-off time  
600  
10  
ON  
µs  
T
OFF  
6.4.10  
Table 33  
Spec ID  
VBUS  
VBUS discharge specifications  
Parameter  
Min Typ Max Unit  
Details/conditions  
Description  
20-V NMOS ON resistance for  
DS = 1  
SID.VBUS.DISC.1  
SID.VBUS.DISC.2  
SID.VBUS.DISC.3  
SID.VBUS.DISC.4  
SID.VBUS.DISC.5  
R1  
500  
250  
125  
62.5  
31.25  
2000  
1000  
500  
250  
125  
10  
20-V NMOS ON resistance for  
DS = 2  
R2  
R4  
20-V NMOS ON resistance for  
DS = 4  
Measured at 0.5 V.  
20-V NMOS ON resistance for  
DS = 8  
R8  
20-V NMOS ON resistance for  
DS = 16  
R16  
Error percentage of final VBUS  
value from setting  
When VBUS is  
SID.VBUS.DISC.6 Vbus_stop_error  
%
discharged to 5 V.  
6.4.11  
Voltage regulation  
Table 34  
Voltage regulation DC specifications  
Spec ID  
Parameter  
Min Typ Max Unit  
Description  
Details/conditions  
SID.DC.VR.1  
VOUT  
CSNO output voltage range  
3.3  
21.5  
V
CSNO voltage regulation  
accuracy  
SID.DC.VR.2  
VR  
±3  
±5  
%
VIN supply below which chip  
will get reset  
SID.DC.VR.3  
VIN_UVLO  
1.7  
3.0  
V
Table 35  
Voltage regulator specifications  
Spec ID  
Parameter  
Description  
Total startup time for the  
regulator supply outputs  
Min Typ Max Unit Details/conditions  
200 µs  
SID.VREG.1  
T
START  
Datasheet  
38  
002-33534 Rev. *F  
2023-01-30  
EZ-PD™ CCG7S Automotive single-port USB Type-C with PD and  
buck-boost controller  
Electrical specifications  
6.4.12  
VBUS gate driver  
Table 36  
VBUS gate driver DC specifications  
Details/  
Spec ID  
Parameter  
Description  
Min Typ Max Unit  
conditions  
Gate to source overdrive during ON  
condition  
SID.GD.1  
GD_VGS  
4.5  
5
10  
2
V
NFET driver is ON.  
Applicable on  
SID.GD.2  
GD_RPD  
GD_drv  
Resistance when pull-down enabled  
Programmable typical gate current  
kVBUS_CTRL to turn  
off external NFET.  
SID.GD.5  
Table 37  
Spec ID  
0.3  
9.75 µA  
VBUS gate Driver AC specifications  
Details/  
Parameter  
Min Typ Max Unit  
Description  
conditions  
VBUS_CTRL low to high (1V to VBUS + 1 V)  
with 3 nF external capacitance  
SID.GD.3  
SID.GD.4  
T
2
5
7
10  
ms CSNO = 5 V  
ON  
VBUS_CTRL high to low (90% to 10%)  
with 3 nF external capacitance  
T
µs CSNO = 21.5 V  
OFF  
6.4.13  
PWM controller  
Table 38  
Buck-boost PWM controller specifications  
Details/  
Spec ID  
PWM.1  
PWM.2  
Parameter  
Min Typ Max Unit  
Description  
conditions  
F
Switching frequency  
150  
600 kHz –  
SW  
Spread spectrum frequency dithering  
span  
FSS  
10  
%
PWM.3  
PWM.4  
Ratio_buck_BB Buck to buck boost ratio  
Ratio_boost_BB Boost to buck boost ratio  
1.16  
0.84  
V/V  
6.4.14  
NFET gate driver  
Table 39  
Buck-boost NFET gate driver specifications  
Details/  
Spec ID  
DR.1  
Parameter  
R_HS_PU  
R_HS_PD  
R_LS_PU  
R_LS_PD  
Min Typ Max Unit  
Description  
conditions  
Top-side gate driver on-resistance-gate  
pull-up  
2
Top-side gate driver on-resistance-gate  
pull-down  
DR.2  
1.5  
2
Ω
Bottom-side gate driver on-resis-  
tance-gate pull-up  
DR.3  
Bottom-side gate driver on-resis-  
tance-gate pull-down  
DR.4  
1.5  
DR.5  
DR.6  
DR.7  
DR.8  
DR.9  
DR.10  
Dead_HS  
Dead_LS  
Tr_HS  
Dead time before high-side rising edge  
Dead time before low-side rising edge  
Top-side gate driver rise time  
30  
30  
25  
20  
25  
20  
ns  
Tf_HS  
Top-side gate driver fall time  
Tr_LS  
Bottom-side gate driver rise time  
Bottom-side gate driver fall time  
Tf_LS  
Datasheet  
39  
002-33534 Rev. *F  
2023-01-30  
EZ-PD™ CCG7S Automotive single-port USB Type-C with PD and  
buck-boost controller  
Electrical specifications  
6.4.15  
LS-SCP  
Table 40  
LS-SCP DC specifications  
Spec ID  
SID.LSSCP.DC.1  
Parameter  
Min Typ Max Unit  
Description  
Short circuit current detect  
@ 6A  
Details/conditions  
Using differential inputs  
(CSP_GPIO2, CSN_GPIO3)  
SCP_6A  
5.4  
4.5  
9
6
6.6  
7.5  
11  
Using single ended inputs  
(CSP_GPIO2) and internal  
ground  
Short circuit current detect  
@ 6A  
SID.LSSCP.DC.1A SCP_6A_SE  
6
A
Short circuit current detect  
@10A  
Using differential inputs  
(CSP_GPIO2, CSN_GPIO3)  
SID.LSSCP.DC.2  
SCP_10A  
10  
Using single ended inputs  
(CSP_GPIO2) and internal  
ground  
Short circuit current detect  
@10A  
SID.LSSCP.DC.2A SCP_10A_SE  
7.5  
10 12.5  
6.4.16  
Thermal  
Table 41  
Thermal specifications  
Spec ID  
SID.OTP.1  
Parameter  
Min Typ Max Unit  
120 125 130 °C  
Description  
Thermal shutdown  
Details/conditions  
OTP  
Datasheet  
40  
002-33534 Rev. *F  
2023-01-30  
EZ-PD™ CCG7S Automotive single-port USB Type-C with PD and  
buck-boost controller  
Ordering information  
7
Ordering information  
Table 42 lists the EZ-PD™ CCG7S part numbers and features.  
Table 42  
EZ-PD™ CCG7S ordering information  
Termination  
Switching  
frequency  
MPN  
Application  
Role  
Package type  
resistor  
CYPD7191-40LDXS  
CYPD7191-40LDXST  
Rear-seat and  
DFP  
R
150 kHz–600 kHz  
40-pin QFN  
P
head unit charger  
(Power source only)  
7.1  
Ordering code definitions  
CY  
PD  
XX  
-
X
X
X
XX XX  
X
X
T = Tape and reel (Optional)  
Temperature grade: S = Automotive grade  
Lead: X = Pb-free  
Package type: LD = QFN wettable flank  
Number of pins in the package  
Application and feature combination designation  
Number of Type-C ports: 1 = 1 Port  
Product type: 7 = Seventh-generation product family  
Marketing code: PD = Power delivery product family  
Company ID: CY = CYPRESS (an Infineon Company)  
Datasheet  
41  
002-33534 Rev. *F  
2023-01-30  
EZ-PD™ CCG7S Automotive single-port USB Type-C with PD and  
buck-boost controller  
Packaging  
8
Packaging  
Table 43  
Package characteristics  
Parameter Description  
Operating junction temperature  
Conditions  
Min  
–40  
Typ  
25  
Max  
125  
Unit  
T
°C  
J
T
T
Package   
Package   
15.45  
4.4  
JA  
JC  
JA  
JC  
°C/W  
Table 44  
Table 45  
Solder reflow peak temperature  
Maximum time within 5°C  
of peak temperature  
Package  
Maximum peak temperature  
40-QFN  
260°C  
30 seconds  
Package moisture sensitivity level (MSL), IPC/JEDEC J-STD-2  
Package  
MSL  
40-QFN  
MSL 3  
Datasheet  
42  
002-33534 Rev. *F  
2023-01-30  
EZ-PD™ CCG7S Automotive single-port USB Type-C with PD and  
buck-boost controller  
Packaging  
8.1  
Package diagrams  
NOTES:  
DIMENSIONS  
SYMBOL  
e
N
ND  
1. ALL DIMENSIONS ARE IN MILLIMETERS.  
2. N IS THE TOTAL NUMBER OF TERMINALS.  
MIN.  
0.30  
NOM.  
0.50 BSC  
40  
10  
0.40  
MAX.  
0.50  
3
DIMENSION "b" APPLIES TO METALLIZED TERMINAL AND IS MEASURED  
BETWEEN 0.15 AND 0.30mm FROM TERMINAL TIP. IF THE TERMINAL HAS  
THE OPTIONAL RADIUS ON THE OTHER END OF THE TERMINAL, THE  
DIMENSION "b" SHOULD NOT BE MEASURED IN THAT RADIUS AREA.  
ND REFERS TO THE NUMBER OF TERMINALS ON D SIDE.  
L
b
D2  
E2  
D
0.18  
4.50  
4.50  
0.25  
4.60  
4.60  
0.30  
4.70  
4.70  
4
5
6
PIN #1 ID ON TOP WILL BE LOCATED WITHIN THE INDICATED ZONE.  
COPLANARITY ZONE APPLIES TO THE EXPOSED HEAT SINK  
SLUG AS WELL AS THE TERMINALS.  
6.00 BSC  
E
A
A1  
A3  
R
6.00 BSC  
7. PLEASE REFER TO WETTABLE FLANK DESIGN BETWEEN OPTION 1 AND  
OPTION 2.  
8. JEDEC SPECIFICATION NO. REF. : N/A.  
-
-
-
0.60  
0.05  
0.00  
0.152 REF  
0.20 TYP  
0.20 MIN  
0.125  
K
0.115  
0.135  
L1  
002-33635 *A  
Figure 16  
40-QFN package outline  
Datasheet  
43  
002-33534 Rev. *F  
2023-01-30  
EZ-PD™ CCG7S Automotive single-port USB Type-C with PD and  
buck-boost controller  
Packaging  
4.00 0.10  
(Po)  
0.30 0.05  
(T)  
2.00 0.10  
(P2)  
+0.10  
-0.00  
1.50  
(Do)  
12.00 0.10  
(P1)  
1.60 0.10(D1)  
"A"  
0.18  
6.30 0.10  
(Ao/BOTTOM)  
R0.25  
DETAIL "A" (5/1)  
002-19972 **  
Figure 17  
Carrier Tape dimensions  
Datasheet  
44  
002-33534 Rev. *F  
2023-01-30  
EZ-PD™ CCG7S Automotive single-port USB Type-C with PD and  
buck-boost controller  
Acronyms  
9
Acronyms  
Table 46  
Acronyms used in this document  
Acronym  
Description  
ADC  
AFC  
Arm  
analog-to-digital converter  
Samsung adaptive fast charging  
advanced RISC machine, a CPU architecture  
central processing unit  
CPU  
CSA  
current sense amplifier  
DAC  
digital-to-analog converter  
forced continuous current/conduction mode  
general-purpose input/output  
high-side driver  
FCCM  
GPIO  
HSDR  
2
I C, or IIC  
inter-integrated circuit, a communications protocol  
current DAC  
IDAC  
I/O  
input/output, see also GPIO  
low-side driver  
LSDR  
MCU  
OCP  
OVP  
microcontroller unit  
overcurrent protection  
overvoltage protection  
PD  
power delivery  
POR  
PSoC  
PSM  
PWM  
RAM  
SPI  
power-on reset  
programmable system-on-chip  
pulse skipping mode  
pulse-width modulator  
random-access memory  
serial peripheral interface, a communications protocol  
static random access memory  
timer/counter/PWM  
SRAM  
TCPWM  
a new standard with a slimmer USB connector and a reversible cable, capable of sourcing up to 100 W of  
power  
Type-C  
UART  
UFP  
UVP  
USB  
UVLO  
VPA  
universal asynchronous transmitter receiver, a communications protocol  
upstream facing port  
undervoltage protection  
universal serial bus  
under-voltage lockout  
VCONN powered accessories  
zero crossing detector  
ZCD  
Datasheet  
45  
002-33534 Rev. *F  
2023-01-30  
EZ-PD™ CCG7S Automotive single-port USB Type-C with PD and  
buck-boost controller  
Document conventions  
10  
Document conventions  
10.1  
Units of measure  
Table 47  
Units of measure  
Symbol  
Unit of measure  
°C  
degrees Celsius  
hertz  
Hz  
KB  
kHz  
k  
Mbps  
MHz  
M  
Msps  
µA  
1024 bytes  
kilohertz  
kilo ohm  
megabits per second  
megahertz  
mega-ohm  
megasamples per second  
microampere  
microfarad  
microsecond  
microvolt  
µF  
µs  
µV  
µW  
mA  
m  
ms  
mV  
nA  
microwatt  
milliampere  
milliohm  
millisecond  
millivolt  
nanoampere  
nanosecond  
ohm  
ns  
pF  
picofarad  
ppm  
ps  
parts per million  
picosecond  
second  
s
sps  
samples per second  
Datasheet  
46  
002-33534 Rev. *F  
2023-01-30  
EZ-PD™ CCG7S Automotive single-port USB Type-C with PD and  
buck-boost controller  
Revision history  
Revision history  
Document  
Date  
Description of changes  
revision  
*F  
2023-01-30  
Post to external web.  
Datasheet  
47  
002-33534 Rev. *F  
2023-01-30  
Please read the Important Notice and Warnings at the end of this document  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
Please read the Important Notice and Warnings at the end of this document  
IMPORTANT NOTICE  
For further information on the product, technology,  
delivery terms and conditions and prices please  
contact your nearest Infineon Technologies office  
(www.infineon.com).  
Edition 2023-01-30  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
The information given in this document shall in no  
event be regarded as a guarantee of conditions or  
characteristics (“Beschaffenheitsgarantie”).  
With respect to any examples, hints or any typical  
values stated herein and/or any information  
WARNINGS  
regarding the application of the product, Infineon Due to technical requirements products may contain  
Technologies hereby disclaims any and all dangerous substances. For information on the types  
warranties and liabilities of any kind, including in question please contact your nearest Infineon  
without limitation warranties of non-infringement of Technologies office.  
© 2023 Infineon Technologies AG.  
All Rights Reserved.  
intellectual property rights of any third party.  
Except as otherwise explicitly approved by Infineon  
In addition, any information given in this document Technologies in  
is subject to customer’s compliance with its authorized  
a written document signed by  
Do you have a question about this  
document?  
Go to www.infineon.com/support  
representatives  
of  
Infineon  
obligations stated in this document and any Technologies, Infineon Technologies’ products may  
applicable legal requirements, norms and standards not be used in any applications where a failure of the  
concerning customer’s products and any use of the product or any consequences of the use thereof can  
product of Infineon Technologies in customer’s reasonably be expected to result in personal injury.  
applications.  
Document reference  
002-33534 Rev. *F  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer’s technical departments  
to evaluate the suitability of the product for the  
intended application and the completeness of the  
product information given in this document with  
respect to such application.  

相关型号:

CYPD7191-40LDXST

EZ-PD™ CCG7S CYPD7191-40LDXST is the tape and reel packing type option belonging to EZ-PD™ CCG7S family of Infineon’s highly integrated single-port USB-C Power Delivery (PD) with integrated buck-boost controller for automotive in-cabin charger applications.
INFINEON

CYPD7271-68LQXQ

EZ-PD™ CCG7DC CYPD7271-68LQXQ is the tray packing type option belonging to the CCG7DC family of highly integrated dual-port USB-C Power Delivery solutions with integrated buck-boost controllers.
INFINEON

CYPD7271-68LQXQT

EZ-PD™ CCG7DC CYPD7271-68LQXQT is the tape and reel packing type option belonging to the CCG7DC family of highly integrated dual-port USB-C Power Delivery solutions with integrated buck-boost controllers.
INFINEON

CYPD7291-68LDXS

EZ-PD™ CCG7D CYPD7291-68LDXS is the tray packing type option belonging to EZ-PD™ CCG7D family of Infineon’s highly integrated dual-port USB-C Power Delivery (PD) with integrated buck-boost controller for automotive in-cabin charger applications.
INFINEON

CYPD7291-68LDXST

EZ-PD™ CCG7D CYPD7291-68LDXST is the tape and reel packing type option belonging to EZ-PD™ CCG7D family of Infineon’s highly integrated dual-port USB-C Power Delivery (PD) with integrated buck-boost controller for automotive in-cabin charger applications.
INFINEON

CYPD7299-68LDXS

EZ-PD™ CCG7D CYPD7299-68LDXS is the tray packing type option belonging to EZ-PD™ CCG7D family of Infineon’s highly integrated dual-port USB-C Power Delivery (PD) with integrated buck-boost controller for automotive in-cabin charger and video applications.
INFINEON

CYPD7299-68LDXST

EZ-PD™ CCG7D CYPD7299-68LDXST is the tape and reel packing type option belonging to EZ-PD™ CCG7D family of Infineon’s highly integrated dual-port USB-C Power Delivery (PD) with integrated buck-boost controller for automotive in-cabin charger and video applications.
INFINEON

CYPM1115-48LQXI

EZ-PD™ PMG1-B1 CYPM1115-48LQXI因其Rp 和Rd 终端电阻和托盘包装而与众不同。它是EZ-PD™ PMG1-B1系列高度集成的单端口USB-C电力传输(PD)解决方案的一部分,集成了降压-升压控制器。
INFINEON

CYPM1115-48LQXIT

EZ-PD™ PMG1-B1 CYPM1115-48LQXIT因其Rp 和Rd 终端电阻和卷带包装而与众不同。它是EZ-PD™ PMG1-B1系列高度集成的单端口USB-C电力传输(PD)解决方案的一部分,集成了降压-升压控制器。
INFINEON

CYPM1116-48LQXI

EZ-PD™ PMG1-B1 CYPM1116-48LQXI因其Rp 和Rd 终端电阻和托盘包装而与众不同。它是EZ-PD™ PMG1-B1系列高度集成的单端口USB-C电力传输(PD)解决方案的一部分,集成了降压-升压控制器。
INFINEON

CYPM1116-48LQXIT

EZ-PD™ PMG1-B1 CYPM1116-48LQXIT因其Rp 和Rd 终端电阻和卷带封装而与众不同。它是EZ-PD™ PMG1-B1系列高度集成的单端口USB-C电力传输(PD)解决方案的一部分,集成了降压-升压控制器。
INFINEON

CYPM1211-40LQXI

EZ-PD™ PMG1-S2 CYPM1211-40LQXI是PMG1-S2的托盘包装类型选项,它支持双角色端口(DRP)USB-C PD应用并集成了一个USB全速设备控制器。
INFINEON