CYPD7299-68LDXS [INFINEON]

EZ-PD™ CCG7D CYPD7299-68LDXS is the tray packing type option belonging to EZ-PD™ CCG7D family of Infineon’s highly integrated dual-port USB-C Power Delivery (PD) with integrated buck-boost controller for automotive in-cabin charger and video applications.;
CYPD7299-68LDXS
型号: CYPD7299-68LDXS
厂家: Infineon    Infineon
描述:

EZ-PD™ CCG7D CYPD7299-68LDXS is the tray packing type option belonging to EZ-PD™ CCG7D family of Infineon’s highly integrated dual-port USB-C Power Delivery (PD) with integrated buck-boost controller for automotive in-cabin charger and video applications.

光电二极管
文件: 总56页 (文件大小:581K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CYPD7291  
EZ-PD™ CCG7D Automotive USB Type-C and  
Buck-boost Controller  
Dual-port  
General description  
EZ-PD™ CCG7D is Infineon’s highly integrated dual-port USB Type-C Power Delivery (PD) solution with integrated  
buck-boost controllers. It complies with the latest USB Type-C and PD specifications, and is targeted for  
automotive applications such as infotainment head unit charger, rear seat chargers as well as rear seat enter-  
tainment. Integration offered by CCG7D not only reduces the BOM but also provides a footprint optimized  
solution for automotive charging needs. It also includes hardware-controlled protection features on the VBUS.  
CCG7D supports a wide input voltage range (4 to 24 V with 40 V tolerance) and programmable switching  
frequency (150 to 600 kHz) in an integrated PD solution.  
CCG7D is the most programmable USB-PD solution with an on-chip 32-bit Arm® Cortex®-M0 processor, 128-KB  
flash, 16-KB RAM and 32-KB ROM that leaves most flash available for user application use. It also includes various  
analog and digital peripherals such as ADC, PWMs and Timers. The inclusion of a fully programmable MCU with  
analog and digital peripherals allows the implementation of custom system management functions such as  
power throttling, load sharing, temperature monitoring, and fault logging.  
Applications  
• Head unit charger  
• Rear seat charger (RSC)  
• Rear seat entertainment (RSE)  
Features  
• USB-PD  
- Supports two USB-PD ports  
- Supports USB-PD revision 3.1 including programmable power supply (PPS) mode  
- Extended data messaging  
• Type-C  
- Configurable resistors RP and RD  
- VBUS provider NFET gate driver  
- Integrated 100-mW VCONN power supply and control  
• 2x Buck-boost controller  
- 150 to 600 kHz switching frequency  
- 5.5 to 24 V input, 40 V tolerant  
- 3.3 to 21.5 V output  
- 20-mV voltage and 50-mA current steps for PPS  
- Supports selectable pulse-skipping mode (PSM) and forced continuous current/conduction mode (FCCM)  
- Supports soft start  
- Programmable spread spectrum frequency modulation for low EMI  
- Programmable phase shift across two ports to further reduce the EMI  
• 2x Legacy/proprietary charging blocks  
- Supports QC 2.0/3.0/4.0/5.0, Apple charging 2.4A, Samsung adaptive fast charging (AFC), USB BC 1.2  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 1  
002-28172 Rev. *N  
2023-01-31  
EZ-PD™ CCG7D Automotive USB Type-C and Buck-boost Controller  
Dual-port  
Features  
• System-level fault protection  
- On-chip VBUS overvoltage protection (OVP), overcurrent protection (OCP), undervoltage protection (UVP)  
- VBUS to CC short protection  
- VBAT to GND protection FET gate driver  
- Under-voltage lockout (UVLO)  
- Supports over-temperature protection through integrated ADC circuit and internal temperature sensor  
- Supports connector and board temperature measurement using external thermistors  
• 32-bit MCU subsystem  
- 48-MHz Arm® Cortex®-M0 CPU  
- 128-KB Flash  
- 16-KB SRAM  
- 32-KB ROM  
• Peripherals and GPIOs  
- 19 GPIOs  
- Two over-voltage GPIOs  
- 3x 8-bit ADC  
- 4x 16-bit timer/counter/PWMs (TCPWM)  
• Communication interfaces  
- 4x SCBs (I2C/SPI/UART/LIN)  
• Clocks and oscillators  
- Integrated oscillator eliminating the need for an external clock  
• Power supply  
- 4 to 24 V input (40-V tolerant)  
- 3.3 to 21.5 V output  
- Integrated LDO capable of 5 V @ 150 mA  
• Packages  
- 68-pin QFN, wettable flank, AEC-Q100  
- Supports automotive ambient temperature range (–40°C to +105°C) with 125°C operating junction  
temperature  
Datasheet  
2
002-28172 Rev. *N  
2023-01-31  
EZ-PD™ CCG7D Automotive USB Type-C and Buck-boost Controller  
Dual-port  
Logic block diagram  
Logic block diagram  
CCG7D: Dual Port USB Type-C PD and Buck-Boost Controller  
MCU Subsystem  
I/O Subsystem  
Integrated Digital Blocks  
CC  
4x TCPWM  
4x SCB  
Cortex-M0  
48MHz  
VCONN  
(I2C, SPI, UART, LIN)  
19x GPIOs  
Crypto (TRNG)  
Flash  
(128 KB)  
-
SROM  
(32 KB)  
USB PD Subsystem x2  
Baseband MAC &  
PHY  
VCONN OCP, UV  
SRAM  
(16 KB)  
Hi-Voltage LDO  
(24 V)  
VBUS to CC Short -  
Circuit Protection  
8-bit SAR ADC  
2x V  
FETs  
CONN  
V
BUS OVP, OCP, SCP  
NFET Load Switch  
Gate Driver  
System  
Protection  
Resources  
VBATT to GND Short-  
Circuit Protection  
Buck-Boost  
Controller  
Functional block diagram  
COMP_0  
BST1_0 HGT1_0 SW1_0 LGT1_0 BST2_0 HGT2_0 SW2_0 LGT2_0 CSPO_0 CSNO_0  
VBUS_CTRL_0  
CSPI_0 CSNI_0  
Input Sense  
Amplifier (CSA),  
Slope  
GDRV (Buck)  
GDRV (Boost)  
Error  
Amplifier  
(CV)  
Error  
Amplifier  
(CC)  
Slew Rate Control  
NGATE Driver  
High-Side  
CSA  
High-Side  
Low-Side  
High-Side  
Low-Side  
Compensation  
Driver (HSDR)  
Driver (LSDR)  
Driver (HSDR)  
Driver (LSDR)  
VBUS_IN  
VBUS_C  
Discharge Discharge  
Zero-Crossing  
Detector (ZCD)  
Charge  
Control  
Zero-Crossing  
Detector (ZCD)  
Charge  
Control  
CC  
HV  
regulator  
(VIN → 5V)  
Reference  
CC1_0  
V5V_0  
CC2_0  
BMC  
Reference  
and IDAC  
VIN  
VDDD  
VCCD  
VCONN  
PHY  
Pulse-Width  
Modulator  
(PWM)  
Charger  
Detect  
DP_0  
DM_0  
MCU Subsystem  
Cortex-M0  
3x 8-bit ADC  
19 GPIOs  
4x TCPWM  
LV  
4x SCB  
(I2C/SPI/  
UART/LIN)  
Flash  
SROM  
(32KB)  
SRAM  
(16KB)  
regulator  
(5V → 1.8V)  
DP_1  
DM_1  
Charger  
Detect  
(128KB)  
Pulse-Width  
Modulator  
(PWM)  
CC1_1  
V5V_1  
CC2_1  
Reference  
and IDAC  
BMC  
VCONN  
PHY  
XRES  
POR/RESET  
CC  
Reference  
Zero-Crossing  
Detector (ZCD)  
Zero-Crossing  
Detector (ZCD)  
Charge Control  
Charge Control  
VBUS_IN  
VBUS_C  
Discharge Discharge  
High-Side  
Low-Side  
High-Side  
Low-Side  
Error  
Amplifier  
(CV)  
Error  
Amplifier  
(CC)  
Driver (HSDR)  
Driver (LSDR)  
Driver (HSDR)  
Driver (LSDR)  
CSA, Slope  
Compensation  
High-Side  
CSA  
Slew Rate Control  
NGATE Driver  
GDRV (Buck)  
GDRV (Boost)  
COMP_1  
BST1_1 HGT1_1 SW1_1 LGT1_1 BST2_1 HGT1_2 SW1_2 LGT1_2 CSPO_1 CSNO_1 VBUS_CTRL_1  
CSPI_1  
CSNI_1  
Datasheet  
3
002-28172 Rev. *N  
2023-01-31  
EZ-PD™ CCG7D Automotive USB Type-C and Buck-boost Controller  
Dual-port  
Table of contents  
Table of contents  
General description ...........................................................................................................................1  
Applications......................................................................................................................................1  
Features ...........................................................................................................................................1  
Logic block diagram ..........................................................................................................................3  
Functional block diagram...................................................................................................................3  
Table of contents...............................................................................................................................4  
1 Functional overview .......................................................................................................................5  
1.1 MCU subsystem.......................................................................................................................................................5  
1.2 USB-PD subsystem .................................................................................................................................................5  
1.3 Buck-boost subsystem ...........................................................................................................................................8  
1.4 Buck-boost controller operation regions ............................................................................................................10  
1.5 Analog blocks ........................................................................................................................................................12  
1.6 Integrated digital blocks.......................................................................................................................................13  
1.7 I/O subsystem .......................................................................................................................................................13  
1.8 System resources..................................................................................................................................................14  
2 Power subsystem..........................................................................................................................15  
2.1 VIN under-voltage lockout (UVLO) .......................................................................................................................16  
2.2 Using external VDDD supply.................................................................................................................................16  
2.3 Power modes ........................................................................................................................................................16  
3 Pin list .........................................................................................................................................17  
4 CCG7D programming and bootloading............................................................................................21  
4.1 Programming the device flash over SWD interface.............................................................................................21  
5 Applications .................................................................................................................................22  
6 Electrical specifications.................................................................................................................30  
6.1 Absolute maximum ratings ..................................................................................................................................30  
6.2 Device-level specifications ...................................................................................................................................33  
6.3 Digital peripherals.................................................................................................................................................37  
6.4 System resources..................................................................................................................................................39  
7 Ordering information ....................................................................................................................47  
7.1 Ordering code definitions.....................................................................................................................................47  
8 Packaging ....................................................................................................................................48  
9 Acronyms.....................................................................................................................................51  
10 Document conventions................................................................................................................53  
10.1 Units of measure .................................................................................................................................................53  
Revision history ..............................................................................................................................54  
Datasheet  
4
002-28172 Rev. *N  
2023-01-31  
EZ-PD™ CCG7D Automotive USB Type-C and Buck-boost Controller  
Dual-port  
Functional overview  
1
Functional overview  
MCU subsystem  
CPU  
1.1  
1.1.1  
The Cortex®-M0 in CCG7D devices is a 32-bit MCU, which is optimized for low-power operation with extensive  
clock gating. It mostly uses 16-bit instructions and executes a subset of the Thumb-2 instruction set. It also  
includes a hardware multiplier, which provides a 32-bit result in one cycle. It includes an interrupt controller (the  
NVIC block) with 32 interrupt inputs and a wakeup interrupt controller (WIC), which can wake the processor up  
from Deep Sleep mode.  
1.1.2  
Flash ROM and SRAM  
CCG7D devices have 128-KB Flash and 32-KB ROM for non-volatile storage. ROM stores libraries for authentication  
and device drivers such as I2C, SPI, and so on. That spares flash for user application. Flash provides the flexibility  
to store code for any customer feature and allows firmware upgrades to meet the latest USB-PD specifications  
and application needs.  
The 16-KB RAM is used under software control to store the temporary status of system variables and parameters.  
A supervisory ROM that contains boot and configuration routines is provided.  
1.2  
USB-PD subsystem  
This subsystem provides the interface to the Type-C USB port. This subsystem comprises:  
• USB-PD physical layer  
• VCONN switches and 100 mW VCONN source  
• UVP, OVP on VBUS  
• Output high-side current sense amplifier (CSA) for VBUS  
• VBUS discharge control  
• Gate driver for VBUS provider NFET  
• Charger detection block for legacy charging (for example: BC1.2, Apple charging, and so on)  
• VBAT to ground short-circuit protection  
• VBUS to CC short-circuit protection  
1.2.1  
USB-PD physical layer  
The USB-PD subsystem contains the USB-PD physical layer block and supporting circuits. The USB-PD physical  
layer consists of a transmitter and receiver that communicate BMC encoded data over the CC channel per the  
PD 3.1 standard. All communication is half-duplex. The physical layer or PHY implements collision avoidance to  
minimize communication errors on the channel.  
The USB-PD block includes all termination resistors (Rp and Rd) and their switches as required by the USB Type-C  
spec. Rp and Rd resistors are required to implement connection detection, plug orientation detection and for the  
establishment of the USB source/sink roles. The Rp resistor is implemented as a current source.  
CCG7D device family with accompanying firmware is fully complaint with revisions 3.1 and 2.0 of the USB-PD  
specification. The device supports PPS operation at all valid voltages from 3.3 to 21 V.  
CCG7D devices support Rp under HW control in unconnected (standby) state to minimize standby power.  
CCG7D devices support USB-PD Extended Messages containing data of up to 260 bytes. The extended messages  
are larger than expected by USB-PD 2.0 hardware. As per the USB-PD protocol specification, devices compliant  
with USB-PD revision 3.0 and later implement a chunking mechanism; messages are limited to Revision 2.0 sizes  
unless both source and sink confirm and negotiate compatibility with longer message lengths.  
Datasheet  
5
002-28172 Rev. *N  
2023-01-31  
EZ-PD™ CCG7D Automotive USB Type-C and Buck-boost Controller  
Dual-port  
Functional overview  
1.2.2  
VCONN switches  
CCG7D’s internal LDO voltage regulator is capable of powering a 100 mW VCONN supply for electronically marked  
cable assemblies (EMCA), VCONN-powered devices (VPD), and VCONN-powered accessories (VPA) as defined in  
the USB Type-C specification. All circuitry including VCONN switches and OCP is integrated in the device. In the  
event the VCONN current exceeds the VCONN OCP limit, CCG7D can be configured to shut down the Type-C port  
after a certain number of user configurable retries. The port can be re-enabled after a physical disconnect.  
1.2.3  
VBUS UVP and OVP  
VBUS undervoltage and overvoltage faults are monitored using internal resistor dividers. The fault thresholds  
and response times are user configurable. Refer to the EZ-PD Configuration Utility for more details. In the event  
of a UVP or OVP, CCG7D can be configured to shut down the Type-C port after a certain number of user  
configurable retries. The port can be re-enabled after a physical disconnect.  
1.2.4  
VBUS OCP and SCP  
VBUS overcurrent and short-circuit faults are monitored using internal current sense amplifiers. Similar to OVP  
and UVP, the OCP and SCP fault thresholds and response times are configurable as well. Refer to the EZ-PD  
Configuration Utility for more details. In the event of OCP or SCP, CCG7D can be configured to shut down the  
Type-C port after a certain number of user configurable retries. The port can be re-enabled after a physical  
disconnect.  
1.2.5  
High-side CSA for VBUS  
CCG7D device family supports VBUS current measurement and control using an external resistor (5 mΩ) in series  
with the VBUS path. The voltage drop across this resistor is used to measure the average output current. The  
same resistor is also used to sense and precisely control the output current in the PPS current foldback mode of  
operation.  
1.2.6  
VBUS discharge control  
The chip supports high-voltage (21.5 V) VBUS discharge circuitry. Upon the detection of device disconnection,  
faults, or hard resets, the chip will discharge the output VBUS terminals to vSafe5V and/or vSafe0V within the time  
limits specified in the USB-PD Specification.  
1.2.7  
Gate driver for VBUS provider NFET  
CCG7D devices have an integrated high-voltage gate driver to drive the gate of an external high-side NFET on the  
VBUS provider path. The gate driver drives the load switch that controls the connection between VBUS_IN and  
VBUS_C. VBUS_CTRL is the output of this gate driver. To turn off the external NFET, the gate driver drives VBUS_IN  
low to 0 V. To turn on the external NFET, it drives the gate to VBUS_IN + 8 V. There is an optional slow turn-on  
feature which reduces the high-current spikes on the output. For a typical gate capacitance of 3 nF, a slow turn-on  
time of 2 ms to 10 ms is configurable using firmware.  
1.2.8  
Legacy charge detection and support  
CG7D implements battery charger emulation and detection (source and sink) for USB BC.1.2, legacy Apple  
charging, Qualcomm Quick Charge 2.0/3.0, and Samsung AFC protocols.  
Datasheet  
6
002-28172 Rev. *N  
2023-01-31  
EZ-PD™ CCG7D Automotive USB Type-C and Buck-boost Controller  
Dual-port  
Functional overview  
1.2.9  
VBAT to ground short protection  
CCG7D devices can protect against high currents through the Type-C return (ground) path. A NFET and a current  
sense resistor are placed in series with the ground return path from the Type-C connector as shown in Figure 1.  
This resistor senses the current, and if it exceeds the firmware-configured threshold, the NFET is turned off to  
interrupt the current. This protects against overcurrent conditions caused by external faults (for example, if the  
Type-C connector ground is accidentally connected to the car’s battery). The current sense can be implemented  
with either a single-ended connection (referenced to internal ground) or with a true differential connection (see  
CSN connection in Figure 1). The differential connection provides better current measurement accuracy but uses  
an extra pin that can otherwise be repurposed as a GPIO. In the event of VBAT to ground short protection, CCG7D  
can be configured to shut down the series FET between the Type-C receptacle ground and the system ground.  
The recovery and retry mechanism can be customized using application firmware.  
PGND  
CSN  
(optional)  
5 m  
GND  
CSP  
GPIO  
Figure 1  
VBUS to ground short circuit protection  
1.2.10  
VBUS to CC short protection  
CCG7D’s CC pins have integrated protection from accidental shorts to high-voltage VBUS and VBAT. CCG7D  
devices can handle up to 24 V external voltage on its CC pins without damage. In the event an over-voltage is  
detected on the CC pin, CCG7D can be configured to shut down the Type-C port completely. The port will resume  
normal operation once the CC voltage detected is within normal range.  
Datasheet  
7
002-28172 Rev. *N  
2023-01-31  
EZ-PD™ CCG7D Automotive USB Type-C and Buck-boost Controller  
Dual-port  
Functional overview  
1.3  
Buck-boost subsystem  
The buck-boost subsystem in CCG7D devices can be configured to operate in buck-boost mode, buck-only mode  
or boost-only mode. While buck-boost mode requires four external switching FETs, buck-only and boost-only  
modes require only two FETs. Buck-only mode is useful when CCG7D device’s port is used for USB Type-A only  
applications. Figure 2 shows the buck-boost subsystem’s main external components and connections.  
5 m  
5 m  
VIN  
VOUT  
CSR1  
CSR2  
VDDD  
VDDD  
CYPD729x  
Figure 2  
Buck-boost schematic showing external components  
Buck-boost subsystem in CCG7D devices have the following key functional blocks:  
• High side (cycle-by-cycle) CSA  
• High side and low side gate driver  
• Pulse width modulator (PWM)  
• Error amplifier (EA)  
1.3.1  
High side (cycle-by-cycle) CSA  
CCG7D device’s buck-boost controller implements peak current control in both boost and buck modes. A  
high-side CSA is used for peak current sensing through an external resistor (5 mΩ; see CSR1 in Figure 2) placed  
in series with the buck control FET. This current sense amplifier has a high bandwidth and a very wide common  
mode range. This current sense resistor is connected to the CSA block through pins CSPI and CSNI as shown in  
Figure 2. This block implements slope compensation to avoid sub-harmonic oscillation for the internal current  
loop. In addition to peak current sensing, it provides a current limit comparator for shutting off the buck-boost  
converter if the current hits an upper threshold which is programmable.  
1.3.2  
High-side gate driver and low-side gate driver  
CCG7D’s buck-boost controller provides four N-channel MOSFET gate drivers: two floating high-side gate drivers  
at the HG1 and HG2 pins, and two ground referenced low-side drivers at the LG1 and LG2 pin. The high side gate  
drivers drive the high side external FET with a nominal VGS of 5 V. The high-side gate driver has a programmable  
drive strength to drive external FET. An external capacitor and Schottky diode form a bootstrap network to collect  
and store the high voltage source (VIN + ~5 V for HG1 and VBUS + ~5 V for HG2) needed to drive the high-side FET.  
The low side gate driver drives the low side external FET with a nominal VGS of 5 V using energy sourced from  
CCG7D’s internal LDO regulator and stored in the capacitor between PVDD and PGND. Low-side gate driver has  
programmable drive strength to drive external FET.  
In addition to drive strength, the high-side gate driver and the low-side gate driver have programmable options  
for deadtime control and zero-crossing levels. High-side gate driver and low-side gate driver blocks include  
zero-crossing detector (ZCD) to implement discontinuous-conduction mode (DCM) mode with diode emulation.  
Datasheet  
8
002-28172 Rev. *N  
2023-01-31  
EZ-PD™ CCG7D Automotive USB Type-C and Buck-boost Controller  
Dual-port  
Functional overview  
The gate drivers for the switching FETs function at their nominal drive voltage levels (5 V) provided the VIN voltage  
is between 5.5 V and 24 V.  
1.3.3  
Error amplifier (EA)  
CCG7D’s buck-boost controller contains two error amplifiers for output voltage and current regulation. The error  
amplifier is a trans-conductance type amplifier with single compensation pin (COMP) to ground for both the  
voltage and current loops. In voltage regulation, the output voltage is compared with the internal reference  
voltage and the output of EA is fed to the PWM block. In current regulation, the average current is sensed by VBUS  
high side current sense amplifier through the external resistor. The output of the VBUS CSA is compared with an  
internal reference in error amplifier block and EA output is fed to the PWM block. CCG7D’s firmware configures  
and controls the integrated programmable error amplifier circuit for achieving the required VBUS voltage output  
from the power section.  
1.3.4  
Pulse width modulator (PWM)  
CCG7D device family’s PWM block generates the control signals for the gate drivers driving the external FETs in  
peak current mode control. There are many programmable options for minimum/maximum pulse width,  
minimum/maximum period, frequency and pulse skip levels to optimize the system design.  
CCG7D devices have two firmware-selectable operating modes to optimize efficiency and reduce losses under  
light load conditions: PSM and FCCM.  
1.3.5  
Pulse-skipping mode (PSM)  
In pulse-skipping mode, the controller reduces the total number of switching pulses without reducing the active  
switching frequency by working in “bursts” of normal nominal-frequency switching interspersed with intervals  
without switching. The output voltage thus increases during a switching burst and decreases during a quiet  
interval. This mode results in minimal losses at the cost of higher output voltage ripple. When in this mode,  
CCG7D devices monitor the voltage across the buck or boost sync FET to detect when the inductor current  
reaches zero; when this occurs, the CCG7D devices switch off the buck or boost sync FET to prevent reverse  
current flow from the output capacitors (i.e. diode emulation mode). Several parameters of this mode are  
programmable through firmware, allowing the user to strike their own balance between light load efficiency and  
output ripple.  
1.3.6  
Forced-continuous-conduction mode (FCCM)  
In FCCM, the nominal switching frequency is maintained at all times, with the inductor current going below zero  
(i.e. “backwards” or from the output to the input) for a portion of the switching cycle as necessary to maintain  
the output voltage and current. This keeps the output voltage ripple to a minimum at the cost of light-load  
efficiency.  
Datasheet  
9
002-28172 Rev. *N  
2023-01-31  
EZ-PD™ CCG7D Automotive USB Type-C and Buck-boost Controller  
Dual-port  
Functional overview  
1.4  
Buck-boost controller operation regions  
The input-side CSA’s output is compared with the output of the error amplifier to determine the pulse width of  
the PWM. PWM block compares the Input voltage and output voltage to determine the buck, boost, and  
buck-boost regions. The switching time/period of the four gate drivers (HG1, LG1, HG2, LG2) depends upon the  
region in which the block is operating as well as the mode such as DCM or FCCM. The exact Vin vs Vout thresholds  
for transitions into and out of each region are adjustable in firmware including the hysteresis.  
1.4.1  
Buck region operation (VIN >> VBUS)  
When the VIN voltage is significantly higher than the required VBUS voltage, CCG7D devices operate in the buck  
region. In this region, the boost side FETs are inactivated, with the boost control FET (connected to LG2) turned  
off and the boost sync FET (connected to HG2) turned on. The buck side FETs are controlled as a buck converter  
with synchronous rectification as shown in Figure 3.  
ON  
HG1  
(Buck  
Control)  
OFF  
ON  
LG1  
(Buck  
Sync)  
OFF  
ON  
LG2  
(Boost  
Control)  
OFF  
ON  
HG2  
(Boost  
Sync)  
OFF  
Inductor  
Current  
0
t
Figure 3  
Buck operation waveforms  
Datasheet  
10  
002-28172 Rev. *N  
2023-01-31  
EZ-PD™ CCG7D Automotive USB Type-C and Buck-boost Controller  
Dual-port  
Functional overview  
1.4.2  
Boost region operation (VIN << VBUS)  
When the VIN voltage is significantly lower than the required VBUS voltage, CCG7D devices operate in the boost  
region. In this region, the buck side FETs are inactivated, with the sync FET turned off and the buck control FET  
turned on. The boost side FETs are controlled as a boost converter with synchronous rectification as shown in  
Figure 4.  
ON  
HG1  
(Buck  
Control)  
OFF  
ON  
LG1  
(Buck  
Sync)  
OFF  
ON  
LG2  
(Boost  
Control)  
OFF  
ON  
HG2  
(Boost  
Sync)  
OFF  
Inductor  
Current  
0
t
Figure 4  
Boost operation waveforms  
1.4.3  
Buck-boost region 1 operation (VIN ~> VBUS)  
When the VIN voltage is slightly higher than the required VBUS voltage, CCG7D devices operate in the buck-boost  
region 1. In this region, the boost side works at a fixed 20% duty cycle (programmable) while the buck side (LG1  
/ HG1) duty cycle is modulated to control the output voltage. All four FETs are switching every cycle in this  
operating region as shown in Figure 5.  
ON  
HG1  
(Buck  
Control)  
OFF  
ON  
LG1  
(Buck  
Sync)  
OFF  
ON  
LG2  
(Boost  
Control)  
OFF  
ON  
HG2  
(Boost  
Sync)  
OFF  
Inductor  
Current  
0
t
Figure 5  
Buck-boost region 1 (VIN ~> VBUS) operation waveforms  
Datasheet  
11  
002-28172 Rev. *N  
2023-01-31  
EZ-PD™ CCG7D Automotive USB Type-C and Buck-boost Controller  
Dual-port  
Functional overview  
1.4.4  
Buck-boost region 2 operation (VIN ~< VBUS)  
When the VIN voltage is slightly lower than the required VBUS voltage, CCG7D devices operate in the buck-boost  
region 2. In this region, the buck side works at a fixed 80% duty cycle (programmable) while the boost side (LG2)  
duty cycle is modulated to control the output voltage. All four FETs are switching every cycle in this operating  
region as shown in Figure 6.  
ON  
HG1  
(Buck  
Control)  
OFF  
ON  
LG1  
(Buck  
Sync)  
OFF  
ON  
LG2  
(Boost  
Control)  
OFF  
ON  
HG2  
(Boost  
Sync)  
OFF  
Inductor  
Current  
0
t
Figure 6  
Buck-boost region 2 (VIN ~< VBUS) operation waveforms  
1.4.5  
Switching frequency and spread spectrum  
CCG7D devices offer programmable switching frequency between 150 kHz and 600 kHz. The controller supports  
spread spectrum clocking within the operating frequency range in all operating modes. Spread spectrum is  
essential for charging applications to meet EMC/EMI requirements by spreading emissions caused by switching  
over a wide spectrum instead of a fixed frequency, thereby reducing the peak energy at any particular frequency.  
Both the switching frequency and the spread spectrum span are firmware programmable.  
1.5  
Analog blocks  
ADC  
1.5.1  
CCG7D devices family has three 8-bit SAR ADCs available for general purpose analog-to-digital conversion  
applications in the chip. The ADCs can be accessed from the GPIOs through an on-chip analog mux. See Table 29  
for detailed specs on the ADCs.  
Datasheet  
12  
002-28172 Rev. *N  
2023-01-31  
EZ-PD™ CCG7D Automotive USB Type-C and Buck-boost Controller  
Dual-port  
Functional overview  
1.6  
Integrated digital blocks  
1.6.1  
Serial communication block (SCB)  
CCG7D devices have four SCB blocks that can be configured for I2C, SPI, UART or LIN. These blocks implement full  
multi-master and slave I2C interfaces capable of multi-master arbitration. This I2C implementation is compliant  
with the standard NXP I2C Specification V3.0. These blocks operate at speeds of up to 1 Mbps and have flexible  
buffering options to reduce interrupt overhead and latency for the CPU. The SCB blocks support 8-byte deep  
FIFOs for Receive and Transmit, which, by increasing the time given for the CPU to read data, greatly reduces the  
need for clock stretching caused by the CPU not having read data on time. The I2C port I/Os for SCB0 are  
overvoltage tolerant (OVT). The I2C ports for SCB1-3 are not OVT tolerant.  
1.6.2  
Timer, counter, pulse-width modulator (TCPWM)  
The TCPWM block of CCG7D devices support four timers or counters or pulse-width modulators. These timers are  
available for internal timer use by firmware or for providing PWM-based functions on the GPIOs.  
1.7  
I/O subsystem  
The CCG7D devices have 19 GPIOs including the I2C and SWD pins which can also be used as GPIOs. The GPIO  
block implements the following:  
• Eight output drive modes  
- Input only  
- Weak pull-up with strong pull-down  
- Strong pull-up with weak pull-down  
- Open drain with strong pull-down  
- Open drain with strong pull-up  
- Strong pull-up with strong pull-down  
- Disabled  
- Weak pull-up with weak pull-down  
• Input threshold select (CMOS or LVTTL)  
• Individual control of input and output disables  
• Hold mode for latching previous state (used for retaining I/O state in Deep Sleep mode)  
• Selectable slew rates for dV/dt related noise control.  
• OVT on one pair of GPIOs  
During power-on and reset, the blocks are forced to the disable state so as not to crowbar any inputs and/or cause  
excess turn-on current. A multiplexing network known as a high-speed I/O matrix (HSIOM) is used to multiplex  
between various signals that may connect to an I/O pin. Pin locations for fixed-function peripherals such as USB  
Type-C port are also fixed in order to reduce internal multiplexing complexity. Data output registers and pin state  
register store, respectively, the values to be driven on the pins and the states of the pins themselves. The config-  
uration of the pins can be done by the programming of registers through software for each digital I/O port.  
Every I/O pin can generate an interrupt if so enabled and each I/O port has an interrupt request (IRQ) and interrupt  
service routine (ISR) vector associated with it.  
The I/O ports can retain their state during Deep Sleep mode or remain ON. If the operation is restored using reset,  
then the pins shall go the High-Z state. If operation is restored by an interrupt event, then the pin drivers shall  
retain their state until firmware chooses to change it. The IOs (on data bus) do not draw current on power down.  
Datasheet  
13  
002-28172 Rev. *N  
2023-01-31  
EZ-PD™ CCG7D Automotive USB Type-C and Buck-boost Controller  
Dual-port  
Functional overview  
1.8  
System resources  
1.8.1  
Watchdog timer (WDT)  
CCG7D devices have a watchdog timer running from the internal low-speed oscillator (ILO). This allows watchdog  
operation during Deep Sleep and generate a watchdog reset if not serviced before the timeout occurs. The  
watchdog reset is recorded in the Reset Cause register.  
1.8.2  
Reset  
CCG7D devices can be reset from a variety of sources including a Software Reset. Reset events are asynchronous  
and guarantee reversion to a known state. The Reset cause is recorded in a Register, which is sticky through Reset  
and allows software to determine the cause of the reset. XRES pin is the dedicated pin for reset to apply hardware  
reset.  
1.8.3  
Clock system  
CCG7D devices have a fully integrated clock with no external crystal required. CCG7D device’s clock system is  
responsible for providing clocks to all sub-systems that require clocks (SCB and PD) and for switching between  
different clock sources, without glitches.  
The HFCLK signal can be divided down as shown to generate synchronous clocks for the digital peripherals. The  
clock dividers have 8-bit, 16-bit and 16-bit fractional divide capability. The 16-bit capability allows a lot of flexi-  
bility in generating fine-grained frequency values. The clock dividers generate either enabled clocks (that is, 1 in  
N clocking where N is the divisor) or an approximately 50% duty cycle clock (exactly 50% for even divisors, one  
clock difference in the high and low values for odd divisors).  
In Figure 7, PERXYZCLK represents the clocks for different peripherals.  
IMO  
HFCLK  
Pre-Divider  
ILO  
LFCLK  
HFCLK  
Prescaler  
SYSCLK  
HALFSYSCLK  
/2  
Peripheral  
Dividers  
PERXYZ_CLK  
Figure 7  
Clocking architecture of CCG7D devices  
1.8.4  
Internal main oscillator (IMO) clock source  
The IMO is the primary source of internal clocking in CCG7D devices. IMO default frequency for CCG7D devices is  
48 MHz 2%.  
1.8.5  
ILO clock source  
The internal low-speed oscillator is a very low power, relatively inaccurate, oscillator, which is primarily used to  
generate clocks for peripheral operation in USB suspend (Deep Sleep) mode.  
Datasheet  
14  
002-28172 Rev. *N  
2023-01-31  
EZ-PD™ CCG7D Automotive USB Type-C and Buck-boost Controller  
Dual-port  
Power subsystem  
2
Power subsystem  
Figure 8 shows an overview of the power subsystem architecture for CCG7D devices. The power subsystem of  
CCG7D devices operate from VIN supply which can vary from 4 V to 24 V. The VDDD pin, the output of 5 V LDO gets  
input from VIN supply. The VDDD pin can also be used as a power supply for external loads up to 150 mA. CCG7D  
devices have two different power modes: Active and Deep Sleep, transitions between which are managed by the  
power system. The VCCD pin, the output of the core (1.8 V) regulator, is brought out for connecting a 0.1-µF  
capacitor for the regulator stability only. This pin is not supported as a power supply for external load.  
VBUS_IN_0 VBUS_C_0 VBUS_IN_1 VBUS_C_1  
NGDO  
NGDO  
PVDD  
PVDD  
Buck-Boost LS  
Driver_P0  
Buck-Boost LS  
Driver_P1  
1µF  
1µF  
PGND  
VIN  
PGND  
VDDD  
LDO  
10µF  
CC1_1  
CC2_1  
CC2_0  
CC1_0  
Core Regulator  
VCCD  
GND  
0.1µF  
2 x CC  
Tx/Rx  
GPIOs  
Core  
Figure 8  
Power system requirement block diagram  
Datasheet  
15  
002-28172 Rev. *N  
2023-01-31  
EZ-PD™ CCG7D Automotive USB Type-C and Buck-boost Controller  
Dual-port  
Power subsystem  
2.1  
VIN under-voltage lockout (UVLO)  
CCG7D supports UVLO to allow the device to shut down when the input voltage is below the reliable level. It  
guarantees predictable behavior when the device is up and running.  
2.2  
Using external VDDD supply  
By default, external VDDD is not supported for CCG7D devices. However, usage of external VDDD supply can be  
enabled using firmware. The pre-requisite for enabling external forcing of VDDD is to always maintain Vin higher  
than VDDD and the external load on VDDD pin of CCG7D devices should never be higher than prescribed load  
capability of internal VDDD LDO.  
2.3  
Power modes  
Table 1 lists the power modes of the device accessible and observable by the user.  
Table 1  
Mode  
Power modes  
Description  
Power is valid and XRES is not asserted. An internal reset source is asserted or sleep controller is  
sequencing the system out of reset  
Power is valid and CPU is executing instructions.  
Power is valid and CPU is not executing instructions. All logic that is not operating is clock gated  
to save power.  
RESET  
ACTIVE  
SLEEP  
Main regulator and most hard-IP are shut off. Deep Sleep regulator powers logic, but only  
low-frequency clock is available.  
Power is valid and XRES is asserted. Core is powered down.  
DEEP SLEEP  
XRES  
Datasheet  
16  
002-28172 Rev. *N  
2023-01-31  
EZ-PD™ CCG7D Automotive USB Type-C and Buck-boost Controller  
Dual-port  
Pin list  
3
Pin list  
Table 2  
CCG7D pinout table  
GPIO port  
Pin#  
Pin name  
Description  
assignment  
Negative power rail of port 0 buck high side gate driver. This is also connected to one  
input terminal of zero current detection of buck low side gate driver.  
1
SW1_0  
Connect to the switch node (inductor) on the buck (input) side. Use a short and wide  
trace to minimize the inductance and resistance of this connection.  
Buck low side gate driver output of Port 0.  
2
3
4
5
LG1_0  
PGND_0  
PVDD_0  
LG2_0  
Connect to the buck (input) side sync (low side) FET gate. Use a wide trace to minimize  
inductance of this connection.  
Ground of low side gate driver of Port 0. This is also connected to one input terminal  
of zero current detection (ZCD) of buck low side gate driver.  
Connect directly to Port 0’s board ground plane.  
Supply of low side gate driver of Port 0.  
Connect to VDDD. Use 1 µF and 0.1 µF bypass capacitors as close to the CCG7D IC as  
possible.  
Boost low side gate driver output of Port 0.  
Connect to the boost (output) side control (low side) FET gate. Use a wide trace to  
minimize inductance of this connection.  
Output of the buck-boost converter of Port 0. This is also connected to one input  
terminal of reverse current protection (RCP) of Boost high side gate driver.  
Connect to the boost sync (high side) FET’s drain. Use a dedicated (Kelvin) trace for  
this connection.  
6
7
VOUT_0  
SW2_0  
Negative power rail of Port 0 boost high side gate driver. This is also connected to one  
input terminal of RCP of boost high side gate driver  
Connect to the switch node (inductor) on the boost (output) side. Use a short and wide  
trace to minimize the inductance and resistance of this connection.  
Boost high side gate driver output of Port 0.  
8
9
HG2_0  
Connect to the boost (output) side sync (high side) FET gate. Use a wide trace to  
minimize inductance of this connection.  
Boosted power supply of Port 0 boost high side gate driver. Bootstrap capacitor node.  
Connect Schottky diode from VDDD to BST2_0. Also, connect a bootstrap capacitor  
from this pin to SW2_0.  
BST2_0  
EA output pin of Port 0. Connect a compensation network to GND. Contact Infineon  
for assistance in designing the compensation network.  
10  
11  
12  
COMP_0  
CSPO_0  
CSNO_0  
Positive input of output current sensing amplifier of Port 0.  
Connect to positive terminal of the output current sense resistor.  
Negative input of output current sensing amplifier of Port 0.  
Connect to negative terminal of the output current sense resistor.  
Input of feedback voltage of error amplifier of Port 0.  
Connect to the VBUS node between the output current sense resistor and the VBUS  
provider NFET.  
13  
14  
15  
VBUS_IN_0  
VBUS_C_0  
CC1_0  
Type-C connector VBUS voltage of Port 0.  
Connect to the Type-C connector’s VBUS pin.  
Type-C connector configuration channel 1 of Port 0.  
Connect directly to the CC1 pin on the port’s Type-C connector. Also connect a 390-pF  
capacitor to ground.  
Type-C connector configuration channel 2 of Port 0.  
Connect directly to the CC2 pin on the port’s Type-C connector. Also connect a 390-pF  
capacitor to ground.  
16  
17  
18  
CC2_0  
VBUS NFET gate driver output of Port 0.  
Connect to the provider NFET’s gate.  
VBUS_CTRL_0  
GPIO / negative input terminal of Port 0’s VBAT – GND protection circuit.  
Connect to the negative terminal of the VBAT – GND short protection current sense  
resistor.  
CSN_0_GPIO0  
CSP_0_GPIO1  
P0.0  
P0.1  
GPIO/ positive input terminal of Port 0’s VBAT – GND protection circuit.  
Connect to the positive terminal of the VBAT – GND short protection current sense  
resistor.  
19  
Datasheet  
17  
002-28172 Rev. *N  
2023-01-31  
EZ-PD™ CCG7D Automotive USB Type-C and Buck-boost Controller  
Dual-port  
Pin list  
Table 2  
CCG7D pinout table (continued)  
GPIO port  
Pin#  
Pin name  
Description  
assignment  
GPIO. This GPIO is pulled-down during reset/power-up, as it is used to disable the FET  
for the Vbat to GND short circuit protection for Port 0. Set the correct drive mode, if  
the Vbat to GND short circuit protection is not required in the design.  
20  
GPIO2  
P0.2  
21  
22  
GPIO3  
GPIO4  
P0.3  
P0.4  
GPIO  
USB D+ of Port 0 / GPIO: D+ for implementing BC 1.2, AFC, QC or Apple charging.  
CCG7D does not support USB data transmission on this pin.  
23  
24  
25  
26  
27  
DP_0_GPIO5  
DM_0_GPIO6  
VDDD  
P1.0  
P1.1  
USB D- of Port 0 / GPIO: D- for implementing BC 1.2, AFC, QC or Apple charging.  
CCG7D does not support USB data transmission on this pin.  
5-V LDO output. Connect a 1-µF ceramic bypass capacitor to this pin. Also, connect  
this pin directly to pin 63.  
USB D- of port 1/GPIO: D- for implementing BC 1.2, AFC, QC or Apple charging. CCG7D  
does not support USB data transmission on this pin.  
DM_1_GPIO7  
DP_1_GPIO8  
P1.2  
P1.3  
USB D+ of port 1/ GPIO: D+ for implementing BC 1.2, AFC, QC or Apple charging. CCG7D  
does not support USB data transmission on this pin.  
28  
29  
30  
XRES  
GPIO9  
GPIO10  
External reset – Active low. Contains a 3.5 Kto 8.5 Kinternal pull-up.  
P2.0  
P2.1  
GPIO  
GPIO. This GPIO is pulled-down during reset/power-up, as it is used to disable the FET  
for the Vbat to GND short circuit protection for Port 1. Set the correct drive mode, if  
the Vbat to GND short circuit protection is not required in the design.  
31  
32  
33  
GPIO11  
P1.4  
P1.5  
P1.6  
GPIO / positive terminal of low-side current sense amplifier (LS CSA) of Port 1.  
Connect to the positive terminal of the VBAT – GND short protection current sense  
resistor.  
CSP_1_GPIO12  
CSN_1_GPIO13  
GPIO / negative terminal of low-side CSA of Port 1.  
Connect to the negative terminal of the VBAT – GND short protection current sense  
resistor.  
34  
35  
GND  
Chip ground. Connect directly to the exposed pad (EPAD) and to pin 64.  
VBUS NFET gate driver output of Port 1.  
Connect to the provider NFET’s gate.  
VBUS_CTRL_1  
Type-C connector configuration channel 2 of Port 1.  
Connect directly to the CC2 pin on the port’s Type-C connector. Also connect a 390-pF  
capacitor to ground.  
36  
CC2_1  
Type-C connector configuration channel 1 of Port 1.  
Connect directly to the CC1 pin on the port’s Type-C connector. Also connect a 390-pF  
capacitor to ground.  
37  
38  
39  
CC1_1  
Type-C connector BUS voltage of Port 1.  
VBUS_C_1  
VBUS_IN_1  
Connect to the Type-C connector’s VBUS pin.  
Input of feedback voltage of error amplifier of Port 1.  
Connect to the VBUS node between the output current sense resistor and the VBUS  
provider NFET.  
Negative input of output CSA of Port 1.  
40  
41  
42  
CSNO_1  
CSPO_1  
COMP_1  
Connect to negative terminal of the output current sense resistor.  
Positive input of output CSA of Port 1.  
Connect to positive terminal of the output current sense resistor.  
EA output pin of Port 1. Connect a compensation network to GND. Contact Infineon  
for assistance in designing the compensation network.  
Boosted power supply of Port 1 boost high side gate driver. Connect Schottky diode  
from VDDD to BST2_1. Bootstrap capacitor node. Also, connect a bootstrap capacitor  
from this pin to SW2_1.  
43  
44  
BST2_1  
HG2_1  
Boost high side gate driver output of Port 1.  
Connect to the boost (output) side sync (high side) FET gate. Use a wide trace to  
minimize inductance of this connection.  
Datasheet  
18  
002-28172 Rev. *N  
2023-01-31  
EZ-PD™ CCG7D Automotive USB Type-C and Buck-boost Controller  
Dual-port  
Pin list  
Table 2  
CCG7D pinout table (continued)  
GPIO port  
Pin#  
Pin name  
Description  
assignment  
Negative power rail of Port 1 boost high side gate driver. This is also connected to one  
input terminal of RCP of boost high side gate driver.  
45  
46  
SW2_1  
Connect to the switch node (inductor) on the boost (output) side. Use a short and wide  
trace to minimize the inductance and resistance of this connection.  
Output of the buck-boost converter of Port 1. This is also connected to one input  
terminal of RCP of boost high side gate driver.  
VOUT_1  
Connect to the boost sync (high side) FET’s drain. Use a dedicated (Kelvin) trace for  
this connection.  
Boost low side gate driver output of Port 1.  
47  
48  
49  
50  
LG2_1  
PVDD_1  
PGND_1  
LG1_1  
Connect to the boost (output) side control (low side) FET gate. Use a wide trace to  
minimize inductance of this connection.  
Supply of low side gate driver of Port 1.  
Connect to VDDD. Use a 1 µF and 0.1 µF bypass capacitors as close to the CCG7D device  
as possible.  
Ground of low-side gate driver of port 1. This is also connected to one input terminal  
of zero current detection of buck low side gate driver.  
Connect directly to Port 0’s board ground plane.  
Buck Low side gate driver output of Port 1.  
Connect to the buck (input) side sync (low side) FET gate. Use a wide trace to minimize  
inductance of this connection.  
Negative power rail of Port 1 buck high side gate driver. This is also connected to one  
input terminal of zero current detection of buck low side gate driver.  
51  
SW1_1  
Connect to the switch node (inductor) on the buck (input) side. Use a short and wide  
trace to minimize the inductance and resistance of this connection.  
Buck high side gate driver output of Port 1.  
52  
53  
54  
HG1_1  
BST1_1  
CSNI_1  
Connect to the buck (input) side control (high side) FET gate. Use a wide trace to  
minimize inductance of this connection.  
Boosted power supply of Port 1 buck high side gate driver. Connect Schottky diode  
from VDDD to BST1_1. Bootstrap capacitor node.  
Negative input of input CSA of Port 1.  
Connect to the negative terminal of the input current sense resistor. Use a dedicated  
(Kelvin) connection.  
Positive input of input CSA of Port 1.  
55  
CSPI_1  
Connect to the positive terminal of the input current sense resistor. Use a dedicated  
(Kelvin) connection.  
56  
57  
58  
59  
60  
61  
GPIO14/SWD_DAT  
GPIO15/SWD_CLK  
GPIO16  
P3.0  
P3.1  
P3.2  
P3.3  
P3.4  
GPIO/SWD programming and debug data signal  
GPIO/SWD programming and debug clock signal  
GPIO17  
GPIO  
GPIO18  
VIN  
4 V–24 V Input supply. Connect a ceramic bypass capacitor to GND close to this pin.  
1.8-V core LDO output. Connect a 0.1-µF bypass capacitor to ground. Do not connect  
anything else to this pin.  
62  
VCCD  
63  
64  
VDDD  
GND  
5-V LDO output. Connect to pin 25. Also connect a 10-µF bypass capacitor to this pin.  
Chip ground. Connect to the EPAD and to pin 34.  
Positive input of input CSA of Port 0. Connect to the positive terminal of the input  
current sense resistor. Use a dedicated (Kelvin) connection.  
65  
CSPI_0  
Negative input of input CSA of Port 0.  
66  
CSNI_0  
Connect to the negative terminal of the input current sense resistor. Use a dedicated  
(Kelvin) connection.  
Boosted power supply of Port 0 buck high side gate driver. Bootstrap capacitor node.  
Connect Schottky diode from VDDD to BST1_0. Also, connect a bootstrap capacitor  
from this pin to SW1_0.  
67  
68  
BST1_0  
Buck high side gate driver output of Port 0.  
HG1_0  
EPAD  
Connect to the buck (input) side control (high side) FET gate. Use a wide trace to  
minimize inductance of this connection.  
Exposed ground pad. Connect directly to pins 34 and 64.  
Datasheet  
19  
002-28172 Rev. *N  
2023-01-31  
EZ-PD™ CCG7D Automotive USB Type-C and Buck-boost Controller  
Dual-port  
Pin list  
1
2
3
4
5
6
7
8
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
SW1_1  
LG1_1  
PGND_1  
PVDD_1  
LG2_1  
VOUT_1  
SW2_1  
HG2_1  
BST2_1  
COMP_1  
CSPO_1  
CSNO_1  
SW1_0  
LG1_0  
PGND_0  
PVDD_0  
LG2_0  
VOUT_0  
SW2_0  
HG2_0  
EPAD  
9
BST2_0  
COMP_0  
CSPO_0  
CSNO_0  
VBUS_IN_0  
VBUS_C_0  
CC1_0  
10  
11  
12  
13  
14  
15  
16  
VBUS_IN_1  
VBUS_C_1  
CC1_1  
CC2_1  
CC2_0  
17  
35  
VBUS_CTRL_1  
VBUS_CTRL_0  
Figure 9  
CCG7D 68-QFN pinout  
Datasheet  
20  
002-28172 Rev. *N  
2023-01-31  
EZ-PD™ CCG7D Automotive USB Type-C and Buck-boost Controller  
Dual-port  
CCG7D programming and bootloading  
4
CCG7D programming and bootloading  
There are two ways to program application firmware into a CCG7D device:  
1. Programming the device flash over SWD interface  
2. Application firmware update over specific interfaces (CC, I2C)  
Generally, the CCG7D devices are programmed over SWD interface only during development or during the  
manufacturing process of the end-product. Once the end-product is manufactured, the CCG7D device’s  
application firmware can be updated via the appropriate bootloader interface. Infineon strongly recommends  
customers to use the EZ-PD Configuration Utility to turn off the application firmware update over CC or I2C  
interface in the firmware that is updated into CCG7D’s flash before mass production. This prevents unauthorized  
firmware from being updated over CC interface in the field. If you desire to retain the application firmware update  
over CC/ I2C interfaces feature post-production for on-field firmware updates, contact Infineon Sales for further  
guidelines.  
4.1  
Programming the device flash over SWD interface  
The CCG7D family of devices can be programmed using the SWD interface. Infineon provides programming kits  
(CY8CKIT-002 MiniProg3 Kit) called MiniProg3 and (CY8CKIT-005 MiniProg4 Kit) MiniProg4 which can be used  
to program the flash as well as debug firmware. The flash is programmed by downloading the information from  
a hex file. This hex file is a binary file generated as an output of building the firmware project in PSoC™ Creator  
Software. Click here for more information on how to use the MiniProg3 programmer. Click here for more  
information on how to use the MiniProg4 programmer. There are many third-party programmers that support  
mass programming in a manufacturing environment.  
As shown in the block diagram in Figure 10, the SWD_DAT and SWD_CLK pins are connected to the host  
programmer’s SWDIO (data) and SWDCLK (clock) pins respectively. During SWD programming, the device can be  
powered by the host programmer by connecting its VTARG (power supply to the target device) to VDDD pins of  
CCG7D device. If the CCG7D device is powered using an on-board power supply, it can be programmed using the  
“Reset Programming” option. For more details, refer the CYPDXXXX Programming Specifications.  
3.3 V  
VDD  
Host Programmer  
VTARG  
CYPD7XXX  
VDDD  
VDDD  
10µF  
1µF  
0.1µF  
0.1µF  
SWDCLK  
SWDIO  
XRES  
SWD_CLK  
SWD_DAT  
XRES  
VCCD  
0.1µF  
GND  
GND  
GND  
Figure 10  
Connecting the programmer to CYPD7XXX device  
Datasheet  
21  
002-28172 Rev. *N  
2023-01-31  
EZ-PD™ CCG7D Automotive USB Type-C and Buck-boost Controller  
Dual-port  
Applications  
5
Applications  
Figure 11 shows a typical head unit charger application block diagram using CCG7D. A head unit charger (also  
known as center stack) is located prominently in the center of the dashboard or console. They are powered by  
the car battery and are used for charging the mobile/tablet and for media transfer using USB data  
communications. In this application, CCG7D will always be in DFP role supporting the charging of the device. It  
negotiates the power with the connected device and uses the integrated buck-boost controller to supply the  
required voltage and current.  
The DP/DM lines of the Type-C receptacles are connected to the host processor/hub, for data connectivity to the  
head unit (HU). These pins are also connected to CCG7D to support legacy charging protocol BC v1.2 CDP. The  
I2C interface is used to interface with the host processor/hub, to support host processor interface (HPI)  
commands, provide status to the Head Unit, and support FW updates. Note that per the Battery Charging Speci-  
fication 1.2, other legacy charging protocols other than BC v1.2 CDP cannot be supported in conjunction with USB  
data communication.  
CCG7D measures various temperatures using external NTC thermistors. CCG7D throttles the output power based  
on temperature and/or shuts off the power under critical conditions. It also monitors the battery voltage and  
lowers the output power if the battery voltage is lower than the user-configured threshold. When no load is  
connected to the USB Type-C port, CCG7D remains in standby mode without switching on the buck-boost  
controller.  
(USB PD, 3.3-21V, 5A)  
5 m  
5 m  
VIN  
VBUS  
Battery Input  
(9V-18V)  
VDDD  
VDDD  
0.1μF  
0.1μF  
68  
67  
1
2
5
9
7
8
6
11 12  
13  
17  
14  
VDDD  
1μF  
4
3
PVDD_0  
PGND_0  
66  
CSNI_0  
65  
61  
62  
CSPI_0  
VIN  
18  
CSN_0_GPIO0  
5 m  
19  
20  
GND  
CC1  
CSP_0_GPIO1  
GPIO2  
VCCD  
0.1μF  
10  
COMP_0  
15  
16  
CC1_0  
CC2_0  
390pF  
69  
64  
34  
GND (EPAD)  
CC2  
390pF  
GND  
GND  
AGND  
HPI_SDA  
HPI_SCL  
HPI_INT  
DP  
29  
30  
21  
22  
23  
24  
DP_0_GPIO5  
DM_0_GPIO6  
GPIO9  
GPIO10  
GPIO3  
GPIO4  
DM  
Host Processor  
VDDD  
63  
25  
VDDD  
VDDD  
VDDD  
CYPD7291-68LDXS  
0.1μF  
10μF  
1μF  
48  
49  
VDDD  
AGND  
1
2
3
4
PVDD_1  
PGND_1  
0.1μF 1μF  
33  
XRES  
28  
57  
XRES  
CSN_1_GPIO13  
5 m  
SWD_CLK  
GPIO15  
32  
31  
GND  
CSP_1_GPIO12  
GPIO11  
SWD_DAT  
CHIP_EN  
56  
58  
5
GPIO14  
GPIO16  
Programming Header  
– not needed for final  
production  
CC1  
CC2  
37  
36  
P1_NTC[0]  
59  
60  
CC1_1  
CC2_1  
GPIO17  
GPIO18  
390pF  
390pF  
P0_NTC[0]  
42  
COMP_1  
27  
26  
DP  
DP_1_GPIO8  
DM_1_GPIO7  
DM  
55  
54  
CSPI_1  
CSNI_1  
52  
53 51 50  
47 43  
45 44 46 41 40  
VDDD  
39  
35  
38  
VDDD  
0.1μF  
0.1μF  
VBUS  
VIN  
5 m  
5 m  
(USB PD, 3.3-21V, 5A)  
Figure 11  
CCG7D head unit charger application diagram  
Datasheet  
22  
002-28172 Rev. *N  
2023-01-31  
EZ-PD™ CCG7D Automotive USB Type-C and Buck-boost Controller  
Dual-port  
Applications  
Table 3  
Pin #  
Head unit (HU) GPIO pin mapping for application diagram in Figure 11  
Pin name  
Function  
GPIO  
HU  
Port 0: CSN pin on ground side to implement VBAT  
to GND short circuit protection  
18  
19  
20  
CSN_0_GPIO0  
P0.0  
P0_VBAT_CSN  
Port 0: CSP pin on ground side to implement VBAT  
to GND short circuit protection  
CSP_0_GPIO1  
GPIO2  
P0.1  
P0.2  
P0_VBAT_CSP  
P0_VBAT_FET  
Port 0: GPIO to disable the FET for VBAT to GND short  
circuit protection  
21  
22  
GPIO3  
GPIO4  
HPI Interrupt  
P0.3  
P0.4  
HPI_INT  
GPIO  
GPIO, available for system level function  
Port 0: USB DP of Type-C port.  
23  
24  
26  
27  
DP_0_GPIO5  
DM_0_GPIO6  
DM_1_GPIO7  
DP_1_GPIO8  
P1.0  
P1.1  
P1.2  
P1.3  
P0_DP  
P0_DM  
P1_DM  
P1_DP  
Supports BC 1.2, QC, Apple Charging and AFC  
Port 0: USB DM of Type-C port.  
Supports BC 1.2, QC, Apple Charging and AFC  
Port 1: USB DM of Type-C port.  
Supports BC 1.2, QC, Apple Charging and AFC  
Port 1: USB DP of Type-C port.  
Supports BC 1.2, QC, Apple Charging and AFC  
29  
30  
GPIO9  
HPI data (SDA)  
HPI clock (SCL)  
P2.0  
P2.1  
HPI_SDA  
HPI_SCL  
GPIO10  
Port 1: GPIO to disable the FET for VBAT to GND short  
circuit protection  
31  
32  
33  
56  
GPIO11  
CSP_1_GPIO12  
CSN_1_GPIO13  
GPIO14  
P1.4  
P1.5  
P1.6  
P3.0  
P1_VBAT_FET  
P1_VBAT_CSP  
P1_VBAT_CSN  
GPIO  
Port 1: CSP pin on ground side to implement VBAT  
to GND short circuit protection  
Port 1: CSN pin on ground side to implement VBAT  
to GND short circuit protection  
Connect to the host programmer’s SWDIO (data) for  
programming the CCG7D device  
Connect to the host programmer’s SWDCLK (clock)  
for programming the CCG7D  
Chip Enable pin  
57  
GPIO15  
P3.1  
CHIP_EN  
58  
59  
60  
GPIO16  
GPIO17  
GPIO18  
GPIO, available for system level function  
Port 1: Thermistor  
Port 0: Thermistor  
P3.2  
P3.3  
P3.4  
GPIO  
P1_NTC[0]  
P0_NTC[0]  
Datasheet  
23  
002-28172 Rev. *N  
2023-01-31  
EZ-PD™ CCG7D Automotive USB Type-C and Buck-boost Controller  
Dual-port  
Applications  
Figure 12 shows a typical rear seat charger application block diagram using CCG7D. This application is similar to  
the head unit charger application without the hub and data communications. There is no host processor/hub in  
this application. This application can be configured to support the legacy charging protocols – BC1.2 DCP,  
Qualcomm QC2.0/3.0, Apple charging, and Samsung AFC.  
(USB PD, 3.3-21V, 5A)  
5 m  
5 m  
VIN  
VBUS  
Battery Input  
(9V-18V)  
VDDD  
VDDD  
0.1μF  
0.1μF  
68  
67  
1
2
5
9
7
8
6
11  
12  
13  
17  
14  
1μF  
4
3
PVDD_0  
PGND_0  
66  
CSNI_0  
65  
61  
62  
CSPI_0  
VIN  
18  
CSN_0_GPIO0  
5 m  
19  
20  
GND  
CC1  
CSP_0_GPIO1  
GPIO2  
VCCD  
0.1μF  
10  
COMP_0  
15  
16  
CC1_0  
CC2_0  
390pF  
69  
64  
34  
GND (EPAD)  
GND  
GND  
CC2  
390pF  
AGND  
29  
30  
21  
22  
DP  
GPIO9  
23  
24  
DP_0_GPIO5  
DM_0_GPIO6  
GPIO10  
DM  
GPIO3  
GPIO4  
63  
25  
VDDD  
10μF  
VDDD  
VDDD  
CYPD7291-68LDXS  
0.1μF  
1μF  
48  
49  
1
2
3
VDDD  
AGND  
PVDD_1  
PGND_1  
0.1μF 1μF  
33  
28  
57  
56  
XRES  
CSN_1_GPIO13  
XRES  
5 m  
LIN_RX  
LIN_TX  
SWD_CLK  
4
5
32  
31  
GND  
GPIO15  
GPIO14  
CSP_1_GPIO12  
GPIO11  
SWD_DAT  
LIN_TXR_EN  
Programming Header  
– not needed for final  
production  
58  
GPIO16  
CC1  
CC2  
37  
36  
P1_NTC[0]  
P0_NTC[0]  
59  
60  
CC1_1  
CC2_1  
GPIO17  
GPIO18  
390pF  
390pF  
42  
COMP_1  
27  
26  
DP  
DP_1_GPIO8  
DM_1_GPIO7  
LIN_RX  
DM  
55  
54  
CSPI_1  
CSNI_1  
LIN  
LIN_TX  
Transceiver  
LIN_TXR_EN  
52  
39  
35  
38  
53 51 50  
47 43  
45 44  
46 41 40  
VDDD  
VDDD  
0.1μF  
0.1μF  
VBUS  
VIN  
5 m  
5 m  
(USB PD, 3.3-21V, 5A)  
Figure 12  
CCG7D RSC application diagram  
Datasheet  
24  
002-28172 Rev. *N  
2023-01-31  
EZ-PD™ CCG7D Automotive USB Type-C and Buck-boost Controller  
Dual-port  
Applications  
Table 4  
Pin #  
RSC GPIO pin mapping for application diagram in Figure 12  
Pin name  
Function  
GPIO  
RSC  
Port 0: CSN pin on ground side to implement VBAT  
to GND short circuit protection  
18  
19  
20  
CSN_0_GPIO0  
P0.0  
P0_VBAT_CSN  
Port 0: CSP pin on ground side to implement VBAT  
to GND short circuit protection  
CSP_0_GPIO1  
GPIO2  
P0.1  
P0.2  
P0_VBAT_CSP  
P0_VBAT_FET  
Port 0: GPIO to disable the FET for VBAT to GND short  
circuit protection  
21  
22  
GPIO3  
GPIO4  
GPIO, available for system level function  
GPIO, available for system level function  
P0.3  
P0.4  
GPIO  
GPIO  
Port 0: USB DP of Type-C port. Supports BC 1.2, QC,  
Apple Charging and AFC  
23  
24  
26  
27  
DP_0_GPIO5  
DM_0_GPIO6  
DM_1_GPIO7  
DP_1_GPIO8  
P1.0  
P1.1  
P1.2  
P1.3  
P0_DP  
P0_DM  
P1_DM  
P1_DP  
Port 0: USB DM of Type-C port. Supports BC 1.2, QC,  
Apple Charging and AFC  
Port 1: USB DM of Type-C port. Supports BC 1.2, QC,  
Apple Charging and AFC  
Port 1: USB DP of Type-C port. Supports BC 1.2, QC,  
Apple Charging and AFC  
29  
30  
GPIO9  
GPIO, available for system level function  
GPIO, available for system level function  
P2.0  
P2.1  
GPIO  
GPIO  
GPIO10  
Port 1: GPIO to disable the FET for VBAT to GND short  
circuit protection  
31  
32  
33  
GPIO11  
P1.4  
P1.5  
P1.6  
P1_VBAT_FET  
P1_VBAT_CSP  
P1_VBAT_CSN  
Port 1: CSP pin on ground side to implement VBAT  
to GND short circuit protection  
CSP_1_GPIO12  
CSN_1_GPIO13  
Port 1: CSN pin on ground side to implement VBAT  
to GND short circuit protection  
LIN TX pin  
56  
57  
GPIO14  
GPIO15  
Connect to the host programmer’s SWDIO (data) for  
programming the CCG7D device  
P3.0  
P3.1  
LIN_TX  
LIN_RX  
LIN RX pin  
Connect to the host programmer’s SWDCLK (clock)  
for programming the CCG7D  
58  
59  
60  
GPIO16  
GPIO17  
GPIO18  
LIN Transceiver enable  
Port 1: Thermistor  
Port 0: Thermistor  
P3.2  
P3.3  
P3.4  
LIN_TXR_EN  
P1_NTC[0]  
P0_NTC[0]  
Datasheet  
25  
002-28172 Rev. *N  
2023-01-31  
EZ-PD™ CCG7D Automotive USB Type-C and Buck-boost Controller  
Dual-port  
Applications  
Figure 13 shows the rear seat entertainment (RSE) application block diagram using CCG7D. In the RSE  
application, one port is a dedicated charge-only port and the second port is used for charging and streaming  
video content to the rear-seat monitor, using a mobile phone, PC, or a tablet. The implementation of the  
charging-only port is identical to the RSC application. CCG7D supports display port alternate mode sink in the  
port that supports video streaming and controls the external display port multiplexer over I2C. CCG7D also  
communicates with the system’s SoC over I2C.  
(USB PD, 3.3-21V, 5A)  
5 m  
5 m  
VIN  
VBUS  
Battery Input  
(9V-18V)  
VDDD  
VDDD  
0.1μF  
0.1μF  
68  
67  
1
2
5
9
7
8
6
11  
12 13  
17  
14  
1μF  
4
3
PVDD_0  
PGND_0  
66  
CSNI_0  
65  
61  
62  
CSPI_0  
VIN  
5 m  
19  
20  
GND  
CC1  
CSP_0_GPIO1  
GPIO2  
VCCD  
0.1μF  
10  
COMP_0  
15  
16  
CC1_0  
CC2_0  
390pF  
69  
64  
34  
GND (EPAD)  
GND  
GND  
CC2  
390pF  
AGND  
HPI_INT  
33  
CSN_1_GPIO13  
Host Processor/  
Billboard  
DP  
HPI_SDA  
HPI_SCL  
29  
30  
23  
24  
DP_0_GPIO5  
DM_0_GPIO6  
GPIO9  
GPIO10  
DM  
I2CM_SCL  
I2CM_SDA  
21  
22  
GPIO3  
GPIO4  
Display Port  
Mux  
HPD  
18  
CSN_0_GPIO0  
63  
25  
VDDD  
10μF  
VDDD  
VDDD  
CYPD7299-68LDXS  
0.1μF  
1μF  
48  
49  
VDDD  
1
2
3
PVDD_1  
PGND_1  
0.1μF 1μF  
AGND  
XRES  
28  
57  
56  
XRES  
5 m  
LIN_RX  
LIN_TX  
SWD_CLK  
4
5
32  
31  
GND  
GPIO15  
GPIO14  
CSP_1_GPIO12  
GPIO11  
SWD_DAT  
LIN_TXR_EN  
58  
Programming Header  
– not needed for final  
production  
GPIO16  
CC1  
CC2  
37  
36  
P1_NTC[0]  
P0_NTC[0]  
59  
60  
CC1_1  
CC2_1  
GPIO17  
GPIO18  
390pF  
390pF  
42  
COMP_1  
27  
26  
DP  
DP_1_GPIO8  
DM_1_GPIO7  
LIN_RX  
DM  
55  
54  
CSPI_1  
CSNI_1  
LIN  
LIN_TX  
Transceiver  
LIN_TXR_EN  
52  
39  
35  
38  
53 51 50  
47 43  
45 44 46  
41 40  
VDDD  
VDDD  
0.1μF  
0.1μF  
VBUS  
VIN  
5 m  
5 m  
(USB PD, 3.3-21V, 5A)  
Figure 13  
CCG7D RSE application diagram  
Datasheet  
26  
002-28172 Rev. *N  
2023-01-31  
EZ-PD™ CCG7D Automotive USB Type-C and Buck-boost Controller  
Dual-port  
Applications  
Table 5  
RSE GPIO pin mapping for application diagram in Figure 13  
Port 0: Display and charger port  
Port 1: Charge only port  
Pin #  
Pin name  
Function  
GPIO  
RSE  
18  
CSN_0_GPIO0  
Port 0: Hot Plug Detect  
P0.0  
P0_HPD  
Port 0: CSP pin on ground side to implement VBAT  
to GND short circuit protection  
19  
20  
21  
22  
CSP_0_GPIO1  
GPIO2  
P0.1  
P0.2  
P0.3  
P0.4  
P0_VBAT_CSP  
P0_VBAT_FET  
I2CM_SCL  
Port 0: GPIO to disable the FET for VBAT to GND  
short circuit protection  
I2C Master Clock (SCL) for controlling the Display  
port Mux  
I2C Master Data (SDA) for controlling the Display  
port Mux  
GPIO3  
GPIO4  
I2CM_SDA  
23  
24  
DP_0_GPIO5  
DM_0_GPIO6  
GPIO, available for system level function  
GPIO, available for system level function  
P1.0  
P1.1  
GPIO  
GPIO  
Port 1: USB DM of Type-C port. Supports BC 1.2, QC,  
Apple Charging and AFC  
26  
27  
29  
30  
31  
DM_1_GPIO7  
DP_1_GPIO8  
GPIO9  
P1.2  
P1.3  
P2.0  
P2.1  
P1.4  
P1_DM  
P1_DP  
Port 1: USB DP of Type-C port. Supports BC 1.2, QC,  
Apple Charging and AFC  
HPI_SDA  
[BILLBOARD]  
HPI_SCL  
[BILLBOARD]  
HPI data (SDA)  
HPI clock (SCL)  
GPIO10  
Port 1: GPIO to disable the FET for VBAT to GND  
short circuit protection  
GPIO11  
P1_VBAT_FET  
P1_VBAT_CSP  
HPI_INT  
Port 1: CSP pin on ground side to implement VBAT  
to GND short circuit protection  
32  
33  
CSP_1_GPIO12  
P1.5  
P1.6  
CSN_1_GPIO13 HPI INT  
LIN TX pin  
56  
57  
GPIO14  
Connect to the host programmer’s SWDIO (data) for  
programming the CCG7D device  
P3.0  
P3.1  
LIN_TX  
LIN_RX  
LIN RX pin  
GPIO15  
Connect to the host programmer’s SWDCLK (clock)  
for programming the CCG7D  
58  
59  
60  
GPIO16  
GPIO17  
GPIO18  
LIN Transceiver enable  
Port 1: Thermistor  
Port 0: Thermistor  
P3.2  
P3.3  
P3.4  
LIN_TXR_EN  
P1_NTC[0]  
P0_NTC[0]  
Datasheet  
27  
002-28172 Rev. *N  
2023-01-31  
EZ-PD™ CCG7D Automotive USB Type-C and Buck-boost Controller  
Dual-port  
Applications  
Figure 14 shows a RSC buck application block diagram using CCG7D. This application uses the integrated buck  
controller to supply the required voltage and current to the connected device. This application is identical to the  
Rear Seat Charger application, except that this application uses only buck topology when compared to the  
buck-boost topology in the standard RSC application. In a buck application, the negotiated voltage should  
always be lower than the input voltage. If the input voltage drops lower than the output voltage, then the output  
voltage will not be maintained and the port will shut down. This application can also be configured to support  
the legacy charging protocols – BC1.2 DCP, Qualcomm QC2.0/3.0, Apple charging, and Samsung AFC.  
(USB PD, 3.3 V-11 V, 3A)  
5 m  
5 m  
VIN  
VBUS  
Battery Input  
VDDD  
VDDD  
0. 1μF  
0. 1μF  
VDDD  
68  
67  
1
2
5
9
7
8
6
11  
12 13  
17  
14  
1μF  
4
PVDD_0  
PGND_0  
66  
CSNI_0  
3
65  
61  
62  
CSPI_0  
VIN  
18  
CSN_0_GPIO0  
5 m  
19  
20  
GND  
CC1  
CSP_0_GPIO1  
GPIO2  
VCCD  
0. 1μF  
10  
COMP_0  
15  
16  
CC1_0  
CC2_0  
390 pF  
69  
64  
34  
GND (EPAD)  
GND  
GND  
CC2  
390 pF  
AGND  
29  
30  
GPIO9  
DP  
23  
24  
DP_0_GPIO5  
DM_0_GPIO6  
GPIO10  
DM  
21  
22  
GPIO3  
GPIO4  
63  
25  
VDDD  
10μF  
VDDD  
1μF  
VDDD  
VDDD  
0.1μF  
CYPD729X- 68LQXQ  
VDDD  
AGND  
1
2
3
0.1μF 1μF  
48  
PVDD_1  
PGND_1  
XRES  
28  
57  
56  
49  
33  
XRES  
SWD_CLK  
4
CSN_1_GPIO13  
GPIO15  
GPIO14  
5 m  
SWD_DAT  
5
32  
31  
37  
GND  
CSP_1_GPIO12  
GPIO11  
Programming Header -  
GPIO16  
58  
GPIO16  
not needed for final production  
CC1  
CC2  
P1_NTC[0]  
P0_NTC[0]  
59  
60  
CC1_1  
GPIO17  
GPIO18  
390 pF  
390 pF  
36  
CC2_1  
42  
COMP_1  
27  
26  
DP  
DP_1_GPIO8  
DM_1_GPIO7  
DM  
55  
54  
CSPI_1  
CSNI_1  
52  
51 50  
43  
45  
VDDD  
44 46 41  
40 39  
35  
0. 1μF  
38  
53  
47  
VDDD  
0. 1μF  
VBUS  
VIN  
5 m  
5 m  
(USB PD, 3.3-11 V, 3A)  
Figure 14  
CCG7D RSC buck application diagram  
Datasheet  
28  
002-28172 Rev. *N  
2023-01-31  
EZ-PD™ CCG7D Automotive USB Type-C and Buck-boost Controller  
Dual-port  
Applications  
Table 6  
Pin #  
RSC buck GPIO pin mapping for application diagram in Figure 14  
Pin name  
Function  
GPIO  
RSC  
Port 0: CSN pin on ground side to implement VBAT  
to GND short circuit protection  
18  
19  
20  
CSN_0_GPIO0  
P0.0  
P0_VBAT_CSN  
Port 0: CSP pin on ground side to implement VBAT  
to GND short circuit protection  
CSP_0_GPIO1  
GPIO2  
P0.1  
P0.2  
P0_VBAT_CSP  
P0_VBAT_FET  
Port 0: GPIO to disable the FET for VBAT to GND  
short circuit protection  
21  
22  
GPIO3  
GPIO4  
GPIO, available for system level function  
GPIO, available for system level function  
P0.3  
P0.4  
GPIO  
GPIO  
Port 0: USB DP of Type-C port. Supports BC 1.2, QC,  
Apple Charging and AFC  
23  
24  
26  
27  
DP_0_GPIO5  
DM_0_GPIO6  
DM_1_GPIO7  
DP_1_GPIO8  
P1.0  
P1.1  
P1.2  
P1.3  
P0_DP  
P0_DM  
P1_DM  
P1_DP  
Port 0: USB DM of Type-C port. Supports BC 1.2, QC,  
Apple Charging and AFC  
Port 1: USB DM of Type-C port. Supports BC 1.2, QC,  
Apple Charging and AFC  
Port 1: USB DP of Type-C port. Supports BC 1.2, QC,  
Apple Charging and AFC  
29  
30  
GPIO9  
GPIO, available for system level function  
GPIO, available for system level function  
P2.0  
P2.1  
GPIO  
GPIO  
GPIO10  
Port 1: GPIO to disable the FET for VBAT to GND  
short circuit protection  
31  
32  
GPIO11  
P1.4  
P1.5  
P1_VBAT_FET  
P1_VBAT_CSP  
Port 1: CSP pin on ground side to implement VBAT  
to GND short circuit protection  
CSP_1_GPIO12  
Port 1: CSN pin on ground side to implement VBAT  
to GND short circuit protection  
33  
56  
57  
CSN_1_GPIO13  
GPIO14  
P1.6  
P3.0  
P3.1  
P1_VBAT_CSN  
SWDIO  
Connect to the host programmer’s SWDIO (data) for  
programming the CCG7D device  
Connect to the host programmer’s SWDCLK (clock)  
for programming the CCG7D  
GPIO15  
SWDCLK  
58  
59  
60  
GPIO16  
GPIO17  
GPIO18  
GPIO, available for system-level function  
Port 1: Thermistor  
Port 0: Thermistor  
P3.2  
P3.3  
P3.4  
GPIO  
P1_NTC[0]  
P0_NTC[0]  
Datasheet  
29  
002-28172 Rev. *N  
2023-01-31  
EZ-PD™ CCG7D Automotive USB Type-C and Buck-boost Controller  
Dual-port  
Electrical specifications  
6
Electrical specifications  
6.1  
Table 7  
Absolute maximum ratings  
Absolute maximum ratings[1]  
Parameter  
Description  
Min  
Typ  
Max  
Unit Details/conditions  
Maximum input supply  
voltage  
VIN_MAX  
40  
Maximum supply voltage  
relative to VSS  
Maximum supply voltage  
relative to VSS  
VDDD_MAX  
V5V_MAX  
6
V
Max VBUS_C (P0/P1) voltage  
relative to Vss  
Max voltage on CC1 and CC2  
pins  
VBUS_C_MAX  
24  
VCC_PIN_ABS  
VGPIO_ABS  
Inputs to GPIO  
VDDD + 0.5  
–0.5  
–25  
VGPIO_OVT_ABS OVT GPIO voltage  
IGPIO_ABS Maximum current per GPIO  
6
25  
GPIO injection current, Max  
mA  
V
Absolute max, current  
injected per pin  
IGPIO_INJECTION for VIH > VDDD, and Min for VIL <  
VSS  
–0.5  
0.5  
Electrostatic discharge  
ESD_HBM  
2000  
500  
All pins.  
human body model  
Electrostatic discharge (ESD)  
Charged device model  
ESD  
ESD_CDM  
charged device model  
LU  
TJ  
Pin current for latch-up  
Junction temperature  
–100  
–40  
100  
125  
mA  
°C  
Note  
1. Usage above the absolute maximum conditions listed in Table 7 may cause permanent damage to the  
device. Exposure to absolute maximum conditions for extended periods of time may affect device reliability.  
The maximum storage temperature is 150 °C in compliance with JEDEC Standard JESD22-A103, High  
Temperature Storage Life. When used below absolute maximum conditions but above normal operating  
conditions, the device may not operate to specification.  
Datasheet  
30  
002-28172 Rev. *N  
2023-01-31  
EZ-PD™ CCG7D Automotive USB Type-C and Buck-boost Controller  
Dual-port  
Electrical specifications  
Table 8  
Pin based absolute maximum ratings  
Pin #  
Pin name  
Absolute minimum (V)  
Absolute maximum (V)  
1
SW1_0  
–0.7  
–0.5  
–0.3  
35  
[2]  
2
LG1_0  
PVDD + 0.5  
0.3  
3
PGND_0  
PVDD_0  
4
VDDD  
[2]  
5
LG2_0  
–0.5  
PVDD + 0.5  
6
VOUT_0  
SW2_0  
–0.3  
24  
7
[2]  
[2]  
8
HG2_0 (wrt SW2_0)  
–0.5  
PVDD + 0.5  
PVDD + 0.5  
PVDD + 0.5  
9
BST2_0 (wrt SW2_0)  
[2]  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
COMP_0  
–0.5  
CSPO_0  
CSNO_0  
–0.3  
–0.5  
VBUS_IN_0  
VBUS_C_0  
CC1_0  
24  
32  
CC2_0  
VBUS_CTRL_0  
[2]  
CSN_0_GPIO0  
[2]  
CSP_0_GPIO1  
[2]  
GPIO2  
[2]  
GPIO3  
PVDD + 0.5  
[2]  
GPIO4  
[2]  
DP_0_GPIO5  
[2]  
DM_0_GPIO6  
VDDD  
–0.5  
6
[2]  
DM_1_GPIO7  
[2]  
DP_1_GPIO8  
[2]  
XRES  
[2]  
GPIO9  
PVDD + 0.5  
[2]  
GPIO10  
[2]  
GPIO11  
[2]  
CSP_1_GPIO12  
[2]  
CSN_1_GPIO13  
GND  
Note  
2. Max voltage cannot exceed 6 V.  
3. Max absolute voltage w.r.t. GND must not exceed 40 V.  
Datasheet  
31  
002-28172 Rev. *N  
2023-01-31  
EZ-PD™ CCG7D Automotive USB Type-C and Buck-boost Controller  
Dual-port  
Electrical specifications  
Table 8  
Pin based absolute maximum ratings (continued)  
Pin #  
Pin name  
VBUS_CTRL_1  
CC2_1  
Absolute minimum (V)  
Absolute maximum (V)  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
32  
–0.5  
–0.3  
CC1_1  
VBUS_C_1  
VBUS_IN_1  
CSNO_1  
24  
CSPO_1  
–0.3  
–0.5  
24  
[1]  
COMP_1  
PVDD + 0.5  
[1]  
BST2_1 (wrt SW2_1)  
[1]  
HG2_1 (wrt SW2_1)  
–0.5  
–0.3  
SW2_1  
24  
VOUT_1  
[1]  
LG2_1  
–0.5  
PVDD + 0.5  
VDDD  
PVDD_1  
PGND_1  
–0.3  
–0.5  
–0.7  
–0.5  
0.3  
[1]  
LG1_1  
PVDD + 0.5  
35  
SW1_1  
[1, 2]  
HG1_1  
(wrt SW1_1)  
(wrt SW1_1)  
PVDD + 0.5  
[1, 2]  
BST1_1  
CSNI_1  
CSPI_1  
–0.3  
40  
[1]  
[1]  
GPIO14/SWD_DAT  
GPIO15/SWD_CLK  
–0.5  
PVDD + 0.5  
[1]  
GPIO16  
[1]  
GPIO17  
[1]  
GPIO18  
VIN  
VCCD  
VDDD  
GND  
–0.3  
40  
6
CSPI_0  
–0.3  
40  
CSNI_0  
[1, 2]  
BST1_0  
(wrt SW1_0)  
(wrt SW1_0)  
–0.5  
PVDD + 0.5  
[1, 2]  
HG1_0  
EPAD  
Note  
2. Max voltage cannot exceed 6 V.  
3. Max absolute voltage w.r.t. GND must not exceed 40 V.  
Datasheet  
32  
002-28172 Rev. *N  
2023-01-31  
EZ-PD™ CCG7D Automotive USB Type-C and Buck-boost Controller  
Dual-port  
Electrical specifications  
6.2  
Device-level specifications  
All specifications are valid for –40°C TA 105°C and TJ 125°C, except where noted. Specifications are valid for  
3.0 V to 5.5 V except where noted.  
6.2.1  
DC specifications  
Table 9  
DC specifications (operating conditions)  
Min  
Typ  
Max  
Unit  
Spec ID  
SID.PWR#1  
Parameter Description  
Details/conditions  
V
Input supply voltage  
4.0  
24  
IN  
Buck boost operating  
input supply voltage  
SID.PWR#1A  
V
5.5  
24  
IN_BB  
VDDD output with V 5.5  
IN  
SID.PWR#2  
V
to 24 V,  
4.6  
5.5  
DDD_REG  
Max load = 150 mA  
V
VDDD output with V  
4 to 5.5 V,  
IN  
SID.PWR#3  
V
V – 0.2  
DDD_MIN  
IN  
Max load = 20 mA  
SID.PWR#20 VBUS  
VBUS_C_0/1 valid range  
3.3  
21.5  
Regulated output voltage  
(for Core Logic)  
SID.PWR#5  
SID.PWR#16  
SID.PWR#17  
V
1.8  
100  
10  
CCD  
External regulator voltage  
bypass for VCCD  
C
C
80  
120  
nF  
µF  
EFC_VCCD  
EXC_VDDD  
Power supply decoupling  
capacitor for V  
X5R ceramic  
DDD  
Bootstrap supply  
SID.PWR#18  
C
capacitor (BST1_0,  
BST1_1, BST2_0, BST2_1)  
0.1  
EXV  
T = 25°C, V = 12 V.  
A
IN  
CC IO IN Transmit or  
Receive, no I/O sourcing  
current, No VCONN load  
Supply current at  
0.4 MHz switching  
frequency  
SID.PWR#24  
I
85  
mA current, CPU at 24 MHz,  
two PD ports active.  
Buck-boost converter ON,  
3-nF gate driver capaci-  
tance.  
DD_ACT  
Deep Sleep mode  
Type-C not attached,  
CC enabled for wakeup.  
Rp connection should be  
µA enabled for both PD ports.  
V
= 12 V. CC wakeup on,  
IN  
SID_DS1  
SID_DS2  
SID_DS3  
I
I
110  
50  
DD_DS1  
DD_DS2  
Type-C not connected.  
T = 25°C.  
A
All faults disabled  
including VBAT-GND.  
USB-PD disabled.  
V
= 12 V  
Wake-up from GPIO.  
IN  
T = 25°C.  
A
Type-C not attached,  
CC enabled for wakeup.  
Rp connection should be  
enabled for both PD ports.  
µA  
V
= 12 V. CC wakeup on,  
IN  
IDD_DS3  
450  
Type-C not connected.  
T = 25°C. All faults  
A
disabled except  
VBAT-GND.  
Datasheet  
33  
002-28172 Rev. *N  
2023-01-31  
EZ-PD™ CCG7D Automotive USB Type-C and Buck-boost Controller  
Dual-port  
Electrical specifications  
6.2.2  
CPU  
Table 10  
CPU specifications  
Spec ID  
Parameter Description  
Min  
Typ  
Max Unit Details/conditions  
–40°C TA +105°C,  
SID.CLK#4  
FCPU  
CPU input frequency  
48  
MHz  
All VDDD  
Wakeup from Deep  
Sleep mode  
External reset pulse  
width  
SID.PWR#19 TDEEPSLEEP  
SYS.XRES#5 TXRES  
35  
µs  
5
Power-up to “Ready to  
SYS.FES#1  
T_PWR_RDY  
accept I2C/CC  
5
25  
ms  
command”  
6.2.3  
GPIO  
Table 11  
GPIO DC specifications  
Spec ID  
Parameter Description  
Min  
Typ  
Max  
Unit Details/conditions  
Input voltage HIGH  
threshold  
SID.GIO#9  
VIH_CMOS  
0.7 × VDDD  
CMOS input  
V
Input voltage LOW  
threshold  
Output voltage  
HIGH level  
SID.GIO#10 VIL_CMOS  
VDDD – 0.6  
0.3 × VDDD  
IOH = –4 mA,  
SID.GIO#7  
SID.GIO#8  
SID.GIO#2  
SID.GIO#3  
VOH_3V  
VOL_3V  
Rpu  
–40°C TA +105°C  
IOL = 10 mA,  
–40°C TA +105°C  
Output voltage  
LOW level  
0.6  
Pull-up resistor  
when enabled  
Pull-down resistor  
when enabled  
Input leakage  
current (absolute  
value)  
3.5  
5.6  
8.5  
2
k–40°C TA +105°C  
Rpd  
SID.GIO#4  
IIL  
nA +25°C TA, 3-V VDDD  
3
–40°C TA +105°C,  
pF Capacitance on DP, DM  
pins  
Max pin  
capacitance  
SID.GIO#5  
SID.GIO#6  
CPIN_A  
CPIN  
22  
7
Max pin  
capacitance  
–40°C TA +105°C,  
ALL VDDD, All other I/Os  
pF  
SID.GIO#11 VIHTTL  
SID.GIO#12 VILTTL  
LVTTL input  
LVTTL input  
2
0.8  
V
–40°C TA +105°C  
Input hysteresis,  
SID.GIO#13 VHYSTTL  
SID.GIO#14 VHYSCMOS  
100  
VDDD > 2.7 V  
LVTTL, VDDD > 2.7 V  
mV  
Input hysteresis  
CMOS  
0.1 × VDDD  
Datasheet  
34  
002-28172 Rev. *N  
2023-01-31  
EZ-PD™ CCG7D Automotive USB Type-C and Buck-boost Controller  
Dual-port  
Electrical specifications  
Table 12  
Spec ID  
GPIO AC specifications  
Parameter Description  
Min  
Typ  
Max Unit Details/conditions  
Rise time in Fast Strong  
mode  
Fall time in Fast Strong  
mode  
Rise time in Slow Strong  
mode  
SID.GIO#16 TRISEF  
SID.GIO#17 TFALLF  
SID.GIO#18 TRISES  
SID.GIO#19 TFALLS  
2
12  
ns  
10  
60  
Cload = 25 pF,  
–40°C TA +105°C  
Fall time in Slow Strong  
mode  
GPIO FOUT  
;
SID.GIO#20 FGPIO_OUT1 3.0 V VDDD 5.5 V.  
16  
Fast Strong mode.  
GPIO FOUT  
;
SID.GIO#21 FGPIO_OUT2 3.0 V VDDD 5.5 V.  
7
MHz  
Slow Strong mode.  
GPIO input operating  
SID.GIO#22 FGPIO_IN  
frequency;  
16  
–40°C TA +105°C  
3.0 V VDDD 5.5 V.  
Table 13  
Spec ID  
GPIO OVT DC specifications  
Parameter  
Details/  
Min  
Typ Max Unit  
Description  
conditions  
Max / Min current in  
to any input or  
SID.GPIO_20VT_GIO  
#4  
GPIO_20VT latch  
up current limits  
GPIO_20VT_I_LU  
–140  
140 mA  
output, pin-to-pin,  
pin-to-supply  
SID.GPIO_20VT_GIO  
#5  
GPIO_20VTpull-up  
resistor value  
GPIO_20VT_RPU  
GPIO_20VT_RPD  
–40°C T +105°C,  
A
3.5  
8.5  
kΩ  
GPIO_20VT  
pull-down resistor  
value  
All V  
DDD  
SID.GPIO_20VT_GIO  
#6  
GPIO_20VT input  
leakage current  
(absolute value)  
SID.GPIO_20VT_GIO  
#16  
GPIO_20VT_IIL  
+25°C T , 3-V V  
2
nA  
pF  
A
DDD  
–40°C T +105°C,  
SID.GPIO_20VT_GIO  
#17  
GPIO_20VT pin  
capacitance  
A
GPIO_20VT_CPIN  
10  
All V  
DDD  
SID.GPIO_20VT_GIO  
#33  
GPIO_20VT output  
voltage high level.  
GPIO_20VT_Voh  
I
I
= -4 mA  
= 8 mA  
VDDD – 0.6  
OH  
OL  
SID.GPIO_20VT_GIO  
#36  
GPIO_20VT output  
voltage low level.  
GPIO_20VT_Vol  
2
0.6  
V
SID.GPIO_20VT_GIO  
#41  
GPIO_20VT LVTTL  
input  
GPIO_20VT_Vih_LVTTL  
GPIO_20VT_Vil_LVTTL  
–40°C T +105°C,  
A
SID.GPIO_20VT_GIO  
#42  
GPIO_20VT LVTTL  
input  
All V  
DDD  
0.8  
Datasheet  
35  
002-28172 Rev. *N  
2023-01-31  
EZ-PD™ CCG7D Automotive USB Type-C and Buck-boost Controller  
Dual-port  
Electrical specifications  
Table 13  
Spec ID  
GPIO OVT DC specifications (continued)  
Details/  
Min  
Typ Max Unit  
Parameter  
Description  
conditions  
–40°C T +105°C,  
SID.GPIO_20VT_GIO  
#43  
GPIO_20VT input  
hysteresis LVTTL  
A
GPIO_20VT_Vhysttl  
100  
mV  
mA  
All V  
DDD  
GPIO_20VT  
V(GPIO_20VT Pin) >  
SID.GPIO_20VT_GIO GPIO_20VT_I-  
maximum total  
sink pin current to  
ground  
95  
#45  
TOT_GPIO  
V
DDD  
Table 14  
GPIO OVT AC specifications  
Details/  
Min  
Typ Max Unit  
Spec ID  
Parameter  
Description  
conditions  
GPIO_20VT rise time  
in Fast Strong Mode  
SID.GPIO_20VT_70  
GPIO_20VT_TriseF  
1
15  
ns  
70  
GPIO_20VT fall time  
in Fast Strong Mode  
SID.GPIO_20VT_71  
GPIO_20VT_TfallF  
GPIO_20VT_TriseS  
GPIO_20VT_TfallS  
SID.GPIO_20VT_GIO#  
46  
GPIO_20VT rise time  
in Slow Strong Mode  
10  
SID.GPIO_20VT_GIO#  
47  
GPIO_20VT fall time  
in Slow Strong Mode  
All V , C  
= 25 pF  
DDD load  
GPIO_20VT GPIO  
SID.GPIO_20VT_GIO# GPIO_20VT_FGPI-  
48 O_OUT1  
Fout; 3 V V  
5.5  
DDD  
33  
V.  
Fast Strong mode.  
GPIO_20VT GPIO  
SID.GPIO_20VT_GIO# GPIO_20VT_FGPI-  
50 O_OUT3  
Fout; 3 VV 5.5V.  
7
8
MHz  
DDD  
Slow Strong mode.  
GPIO_20VT GPIO  
input operating  
frequency;  
SID.GPIO_20VT_GIO# GPIO_20VT_FG-  
All V  
DDD  
52  
PIO_IN  
3 V V  
5.5 V  
DDD  
6.2.4  
XRES  
Table 15  
XRES DC specifications  
Details/  
Spec ID  
Parameter Description  
Min  
0.7 × VDDD  
Typ  
Max  
Unit  
conditions  
Input voltage HIGH  
threshold on XRES pin  
Input voltage LOW  
threshold on XRES pin  
Input capacitance on  
XRES pin  
Input voltage hysteresis  
on XRES pin  
SID.XRES#1 VIH_XRES  
SID.XRES#2 VIL_XRES  
SID.XRES#3 CIN_XRES  
SID.XRES#4 VHYSXRES  
V
CMOS input  
0.3 × VDDD  
7
pF  
0.05 × VDDD  
mV  
Datasheet  
36  
002-28172 Rev. *N  
2023-01-31  
EZ-PD™ CCG7D Automotive USB Type-C and Buck-boost Controller  
Dual-port  
Electrical specifications  
6.3  
Digital peripherals  
The following specifications apply to the Timer/Counter/PWM peripherals in the Timer mode.  
6.3.1  
Table 16  
PWM for GPIO pins  
PWM AC specifications  
Parameter Description  
Operating  
Spec ID  
Min  
Typ  
Max Unit Details/conditions  
SID.TCPWM.1 TCPWMFREQ  
Fc  
MHz Fc max = CLK_SYS  
frequency  
Minimum possible width of  
overflow, underflow, and CC  
(counter equals compare  
value) outputs  
Minimum time between  
successive counts  
Output trigger  
pulse width  
SID.TCPWM.3 TPWMEXT  
2/Fc  
1/Fc  
ns  
Resolution of  
counter  
SID.TCPWM.4 TCRES  
Minimum pulse width of PWM  
output  
SID.TCPWM.5 PWMRES  
PWM resolution  
6.3.2  
I2C  
Table 17  
Spec ID  
SID153  
Fixed I2C AC specifications  
Parameter Description  
Min  
Typ  
Max  
Unit Details/conditions  
FI2C1  
Bit rate  
1
Mbps –  
6.3.3  
UART  
Table 18  
Spec ID  
SID162  
Fixed UART AC specifications  
Parameter Description  
Min  
Typ  
Max  
1
Unit Details/conditions  
Mbps –  
FUART  
Bit rate  
6.3.4  
SPI  
Table 19  
Fixed SPI AC specifications  
Spec ID  
Parameter Description  
Min Typ Max Unit Details/conditions  
MHz –  
SPI operating frequency  
(Master; 6X oversampling)  
SID166  
FSPI  
8
Table 20  
Spec ID  
Fixed SPI Master mode AC specifications  
Parameter Description  
Min Typ Max Unit Details/conditions  
MOSI valid after SClock  
SID167  
SID168  
SID169  
TDMO  
20  
0
15  
driving edge  
MISO valid before SClock  
capturing edge  
Full clock, late MISO  
sampling  
Referred to slave  
capturing edge  
TDSI  
ns  
Previous MOSI data hold  
THMO  
time  
Datasheet  
37  
002-28172 Rev. *N  
2023-01-31  
EZ-PD™ CCG7D Automotive USB Type-C and Buck-boost Controller  
Dual-port  
Electrical specifications  
Table 21  
Spec ID  
Fixed SPI Slave mode AC specifications  
Parameter Description Min Typ  
Details/  
Max  
Unit  
conditions  
MOSI valid before  
SID170  
SID171  
TDMI  
TDSO  
40  
Sclock capturing edge  
MISO valid after Sclock  
driving edge  
48 + (3 × TCPU  
)
TCPU = 1/FCPU  
MISO valid after Sclock  
driving edge in Ext Clk  
mode  
SID171A  
TDSO_EXT  
48  
ns  
Previous MISO data  
hold time  
SSEL valid to first SCK  
Valid edge  
SID172  
THSO  
0
SID172A  
TSSELSCK  
100  
6.3.5  
Memory  
Table 22  
Flash AC specifications  
Details/  
Spec ID  
Parameter Description  
Min Typ Max Unit  
conditions  
Row (Block) write time  
(erase and program)  
SID.MEM#2 FLASH_WRITE  
SID.MEM#1 FLASH_ERASE  
SID.MEM#5 FLASH_ROW_PGM  
20  
–40°C TA +85°C,  
All VDDD  
Row erase time  
Row program time after  
erase  
15.5  
ms  
7
SID178  
SID180  
TBULKERASE  
TDEVPROG  
Bulk erase time (32 KB)  
Total device program  
time  
35  
7.5  
s
25°C TA 55°C,  
SID.MEM#6 FLASH_ENPB  
Flash write endurance  
100k  
20  
cycles  
All VDDD  
Flash retention,  
TA 55°C, 100K P/E cycles  
Flash retention,  
TA 85°C, 10K P/E cycles  
SID182  
FRET1  
FRET2  
years  
SID182A  
10  
Datasheet  
38  
002-28172 Rev. *N  
2023-01-31  
EZ-PD™ CCG7D Automotive USB Type-C and Buck-boost Controller  
Dual-port  
Electrical specifications  
6.4  
System resources  
6.4.1  
Power-on-reset (POR) with brown out  
Table 23  
Imprecise power-on reset (IPOR)  
Spec ID  
Parameter Description  
Min Typ Max Unit Details/conditions  
Power-on reset (POR) rising  
SID185  
SID186  
VRISEIPOR  
VFALLIPOR  
0.80  
0.70  
1.50  
1.4  
–40°C TA +105°C,  
All VDDD  
trip voltage  
V
POR falling trip voltage  
Table 24  
Spec ID  
Precise POR  
Parameter Description  
Min Typ Max Unit Details/conditions  
Brown-out detect (BOD) trip  
SID190  
SID192  
VFALLPPOR  
VFALLDPSLP  
voltage in Active/Sleep  
modes  
1.48  
1.1  
1.62  
1.5  
–40°C TA +105°C,  
All VDDD  
V
BOD trip voltage in Deep  
Sleep mode  
6.4.2  
SWD interface  
Table 25  
SWD interface specifications  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max Unit Details/conditions  
SID.SWD#1 F_SWDCLK1  
3.0 V VDDIO 5.5 V  
14  
MHz  
SID.SWD#2 T_SWDI_SETUP  
SID.SWD#3 T_SWDI_HOLD  
SID.SWD#4 T_SWDO_VALID  
SID.SWD#5 T_SWDO_HOLD  
0.25 × T  
T = 1/f SWDCLK  
ns  
1
0.50 × T  
6.4.3  
IMO  
Table 26  
IMO AC specifications  
Spec ID  
Parameter Description  
Min Typ Max Unit Details/conditions  
Frequency variation at  
48 MHz (trimmed)  
IMO start-up time  
IMO frequency  
3.0 V VDDD < 5.5 V.  
SID.CLK#13 FIMOTOL  
±2  
7
%
–40°C TA 105°C  
SID226  
TSTARTIMO  
FIMO  
µs  
–40°C TA +105°C,  
All VDDD  
SID.CLK#1  
24  
48 MHz  
6.4.4  
Internal low-speed oscillator  
ILO AC specifications  
Table 27  
Spec ID  
SID234  
SID238  
SID.CLK#5  
Parameter Description  
Min Typ Max Unit Details/conditions  
TSTARTILO1  
TILODUTY  
FILO  
ILO start-up time  
ILO duty cycle  
ILO frequency  
40  
20  
50  
40  
2
60  
ms  
%
–40°C TA +105°C,  
All VDDD  
80 kHz –  
Datasheet  
39  
002-28172 Rev. *N  
2023-01-31  
EZ-PD™ CCG7D Automotive USB Type-C and Buck-boost Controller  
Dual-port  
Electrical specifications  
6.4.5  
PD  
Table 28  
PD DC specifications  
Details/  
Spec ID  
Parameter  
Description  
Min Typ Max Unit  
conditions  
Transmitter output High  
Voltage  
Transmitter output Low  
Voltage  
SID.DC.cc_shvt.1  
SID.DC.cc_shvt.2  
vSwing  
1.05  
1.2  
V
vSwing_low  
0.075  
Transmitter output  
impedance  
Receiver input impedance  
Source current for USB  
standard advertisement  
SID.DC.cc_shvt.3  
SID.DC.cc_shvt.4  
SID.DC.cc_shvt.5  
zDriver  
33  
10  
64  
75  
zBmcRx  
Idac_std  
M  
96  
Source current for 1.5 A at  
5 V advertisement  
Source current for 3 A at  
5 V advertisement  
SID.DC.cc_shvt.6  
SID.DC.cc_shvt.7  
Idac_1p5a  
Idac_3a  
166  
304  
194  
356  
µA  
Pull down termination  
SID.DC.cc_shvt.8  
Rd  
resistance when acting as  
upstream facing port (UFP)  
4.59  
5.61  
k  
CC impedance to ground  
when disabled  
CC voltages on DFP  
side-standard USB  
CC voltages on DFP  
side-1.5A  
SID.DC.cc_shvt.10 zOPEN  
108  
0.15  
0.35  
SID.DC.cc_shvt.11 DFP_default_0p2  
SID.DC.cc_shvt.12 DFP_1.5A_0p4  
0.25  
0.45  
SID.DC.cc_shvt.13 DFP_3A_0p8  
SID.DC.cc_shvt.14 DFP_3A_2p6  
CC voltages on DFP side-3 A 0.75  
CC voltages on DFP side-3 A 2.45  
0.85  
2.75  
V
CC voltages on UFP  
SID.DC.cc_shvt.15 UFP_default_0p66  
SID.DC.cc_shvt.16 UFP_1.5A_1p23  
0.61  
0.7  
side-Standard USB  
CC voltages on UFP  
side-1.5A  
1.16  
1.31  
SID.DC.cc_shvt.17 Vattach_ds  
SID.DC.cc_shvt.18 Rattach_ds  
SID.DC.cc_shvt.19 VTX_step  
Deep sleep attach threshold 0.3  
0.6  
50  
120 mV  
%
k  
Deep sleep pull-up resistor  
TX drive voltage step size  
10  
80  
Datasheet  
40  
002-28172 Rev. *N  
2023-01-31  
EZ-PD™ CCG7D Automotive USB Type-C and Buck-boost Controller  
Dual-port  
Electrical specifications  
6.4.6  
Analog-to-digital converter  
ADC DC specifications  
Table 29  
Spec ID  
SID.ADC.1  
Parameter Description  
Resolution ADC resolution  
Min  
Typ  
Max Unit Details/conditions  
8
Bits –  
Reference voltage  
SID.ADC.2  
SID.ADC.3  
SID.ADC.4  
SID.ADC.5  
SID.ADC.6  
INL  
Integral non-linearity  
–1.5  
–2.5  
1.5  
generated from  
bandgap  
Differential  
non-linearity  
Reference voltage  
generated from VDDD  
Reference voltage  
generated from  
bandgap  
Reference voltage  
generated from VDDD  
Reference voltage  
generated from deep  
sleep reference  
DNL  
2.5  
1.5  
LSB  
Gain Error  
VREF_ADC1  
VREF_ADC2  
Gain error  
–1.5  
Reference voltage of  
ADC  
VDDDmin  
1.96  
VDDDmax  
2.04  
V
Reference voltage of  
ADC  
2.0  
6.4.7  
High-side CSA  
Table 30  
High-side CSA DC specifications  
Spec ID  
Parameter  
Description  
Min Typ Max Unit Details/conditions  
CSA accuracy 5 mV < Vsense <  
10 mV  
SID.HSCSA.1 Csa_Acc1  
SID.HSCSA.2 Csa_Acc2  
–15  
–10  
15  
10  
CSA accuracy 10 mV < Vsense  
< 15 mV  
CSA accuracy 15 mV < Vsense  
< 25 mV  
SID.HSCSA.3 Csa_Acc3  
SID.HSCSA.4 Csa_Acc4  
SID.HSCSA.7 Csa_SCP_Acc1  
–5  
–3  
5
3
CSA accuracy 25 mV < Vsense  
Active mode  
%
CSA SCP at 6 A with 5-mΩ  
sense resistor  
–10  
10  
CSA SCP at 10 A with 5-mΩ  
sense resistor  
SID.HSCSA.8 Csa_SCP_Acc2  
SID.HSCSA.9 Csa_OCP_1A  
SID.HSCSA.10 Csa_OCP_5A  
–10  
10  
CSA OCP at 1 A with 5-mΩ  
sense resistor  
104 130 156  
123 130 137  
CSA OCP for 5 A with 5-mΩ  
sense resistor  
Datasheet  
41  
002-28172 Rev. *N  
2023-01-31  
EZ-PD™ CCG7D Automotive USB Type-C and Buck-boost Controller  
Dual-port  
Electrical specifications  
Table 31  
Spec ID  
High-side CSA AC specifications  
Parameter Description  
Min Typ Max Unit Details/conditions  
Delay from SCP  
threshold trip to  
external NFET power  
gate turn off  
TSCP_GATE  
SID.HSCSA.AC.1  
SID.HSCSA.AC.2  
3.5  
8
1 nF NFET gate  
3 nF NFET gate  
µs  
Delay from SCP  
threshold trip to  
external NFET power  
gate turn off  
TSCP_GATE_1  
6.4.8  
UV/OV  
Table 32  
UV/OV Specifications  
Spec ID  
Parameter Description  
Min Typ Max Unit Details/conditions  
Overvoltage threshold  
SID.UVOV.1  
SID.UVOV.2  
SID.UVOV.3  
SID.UVOV.4  
SID.UVOV.5  
VTHOV1  
VTHOV2  
VTHUV1  
VTHUV2  
VTHUV3  
–3  
–3.2  
–4  
3
3.2  
4
Accuracy, 4 V to 11 V  
Overvoltage threshold  
Accuracy, 11 V to 21.5 V  
Undervoltage threshold  
Accuracy, 3 V to 3.3 V  
Undervoltage threshold  
Accuracy, 3.3 V to 4.0 V  
Undervoltage threshold  
Accuracy, 4.0 V to 21.5 V  
%
Active mode  
–3.5  
–3  
3.5  
3
6.4.9  
VCONN switch  
Table 33  
VCONN switch DC specifications  
Spec ID  
Parameter  
Description  
Min Typ Max Unit Details/conditions  
VCONN output voltage  
with 20 mA load current  
Connector side pin  
leakage current  
DC.VCONN.1 VCONN_OUT  
DC.VCONN.2 ILEAK  
4.5  
5.5  
10  
V
µA  
VCONN Over-Current  
Protection Threshold  
DC.VCONN.3 IOCP  
22.5 30 37.5 mA  
Table 34  
VCONN switch AC specifications  
Parameter Description  
Spec ID  
Min Typ Max Unit Details/conditions  
AC.VCONN.1 TON  
AC.VCONN.2 TOFF  
VCONN switch turn-on time  
VCONN switch turn-off time  
600  
10  
µs  
Datasheet  
42  
002-28172 Rev. *N  
2023-01-31  
EZ-PD™ CCG7D Automotive USB Type-C and Buck-boost Controller  
Dual-port  
Electrical specifications  
6.4.10  
VBUS  
Table 35  
VBUS discharge specifications  
Details/  
Spec ID  
Parameter  
R1  
Description  
Min  
500  
Typ Max Unit  
conditions  
20-V NMOS ON  
resistance for DS = 1  
20-V NMOS ON  
resistance for DS = 2  
20-V NMOS ON  
resistance for DS = 4  
20-V NMOS ON  
resistance for DS = 8  
SID.VBUS.DISC.1  
SID.VBUS.DISC.2  
SID.VBUS.DISC.3  
SID.VBUS.DISC.4  
SID.VBUS.DISC.5  
2000  
1000  
R2  
250  
Measured at  
0.5 V  
R4  
125  
500  
250  
125  
R8  
62.5  
31.25  
20-V NMOS ON  
resistance for DS = 16  
R16  
When VBUS is  
discharged to  
5 V  
Errorpercentage offinal  
VBUS value from setting  
SID.VBUS.DISC.6  
Vbus_stop_error  
10  
%
6.4.11  
Table 36  
Spec ID  
Voltage regulation  
Voltage regulation DC specifications  
Parameter Description  
Min Typ Max Unit Details/conditions  
VBUS_IN output voltage  
SID.DC.VR.1 VOUT  
SID.DC.VR.2 VR  
3.3  
±3  
21.5  
±5  
V
%
V
range  
VBUS_IN voltage regulation  
accuracy  
VINSupplybelowwhichchip  
will get reset  
SID.DC.VR.3 VIN_UVLO  
1.7  
3.0  
Table 37  
Spec ID  
Voltage regulator specifications  
Parameter Description  
Min Typ Max Unit Details/conditions  
200 µs  
Total startup time for the  
regulator supply outputs  
SID.VREG.1 TSTART  
Datasheet  
43  
002-28172 Rev. *N  
2023-01-31  
EZ-PD™ CCG7D Automotive USB Type-C and Buck-boost Controller  
Dual-port  
Electrical specifications  
6.4.12  
Table 38  
Spec ID  
VBUS gate driver  
VBUS gate driver DC specifications  
Parameter Description  
Min Typ Max Unit Details/conditions  
Gate to source overdrive  
GD_VGS  
SID.GD.1  
SID.GD.2  
SID.GD.5  
4.5  
5
10  
2
V
NFET driver is ON.  
during ON condition  
Resistance when pull-down  
enabled  
Applicable on VBUS_CTRL  
to turn off external NFET  
GD_RPD  
k  
Programmable typical gate  
GD_drv  
current  
0.3  
9.75 µA  
Table 39  
Spec ID  
VBUS gate driver AC specifications  
Parameter Description  
Min Typ Max Unit Details/conditions  
VBUS_CTRL Low to High (1 V  
SID.GD.3  
SID.GD.4  
TON  
to VBUS + 1 V) with 3 nF  
external capacitance  
2
5
7
10 ms VBUS_IN = 5 V  
VBUS_CTRL High to Low  
(90% to 10%) with 3 nF  
external capacitance  
TOFF  
µs  
VBUS_IN = 21.5 V  
6.4.13  
Table 40  
Spec ID  
PWM.1  
PWM controller  
Buck-boost PWM controller specifications  
Parameter  
Description  
Min Typ Max Unit Details/conditions  
FSW  
Switching frequency  
150  
600 kHz  
Spread spectrum  
frequency dithering  
span  
Buck to buck boost ratio  
Boost to buck boost  
ratio  
PWM.2  
FSS  
10  
%
PWM.3  
PWM.4  
Ratio_Buck_BB  
Ratio_Boost_BB  
1.16  
0.84  
Datasheet  
44  
002-28172 Rev. *N  
2023-01-31  
EZ-PD™ CCG7D Automotive USB Type-C and Buck-boost Controller  
Dual-port  
Electrical specifications  
6.4.14  
Table 41  
Spec ID  
NFET gate driver  
Buck-boost NFET gate driver specifications  
Parameter Description  
Top-side gate driver  
Min Typ Max Unit Details/conditions  
2
DR.1  
DR.2  
DR.3  
DR.4  
R_HS_PU  
on-resistance - gate pull-up  
Top-side gate driver  
on-resistance - gate  
pull-down  
1.5  
R_HS_PD  
R_LS_PU  
R_LS_PD  
Ω
Bottom-side gate driver  
on-resistance - gate pull-up  
Bottom-side gate driver  
on-resistance - gate  
pull-down  
2
1.5  
Dead time before high-side  
rising edge  
Dead time before low-side  
rising edge  
30  
30  
DR.5  
DR.6  
Dead_HS  
Dead_LS  
Top-side gate driver rise  
time  
25  
20  
25  
DR.7  
DR.8  
DR.9  
Tr_HS  
Tf_HS  
Tr_LS  
ns  
Top-side gate driver fall time  
Bottom-side gate driver rise  
time  
Bottom-side gate driver fall  
time  
20  
DR.10  
Tf_LS  
6.4.15  
Table 42  
Spec ID  
LS-SCP  
LS-SCP DC specifications  
Parameter Description  
Min Typ Max Unit Details/conditions  
Using differential inputs  
(CSN_1_GPIO12,  
CSP_1_GPIO13 or  
CSP_0_GPIO0,  
CSN_0_GPIO1)  
Using single ended inputs  
(CSP_1_GPIO13 or  
CSP_0_GPIO0) and internal  
ground  
Short circuit current  
detect @ 6A  
SID.LSSCP.DC.1 SCP_6A  
SID.LSSCP.DC.1A SCP_6A_SE  
SID.LSSCP.DC.2 SCP_10A  
SID.LSSCP.DC.2A SCP_10A_SE  
5.4  
4.5  
9
6
6
6.6  
7.5  
11  
Short circuit current  
detect @ 6A  
A
Using differential inputs  
(CSN_1_GPIO12,  
CSP_1_GPIO13 or  
CSP_0_GPIO0,  
Short circuit current  
detect @10A  
10  
CSN_0_GPIO1)  
Using single ended inputs  
(CSP_1_GPIO13 or  
CSP_0_GPIO0) and internal  
ground  
Short circuit current  
detect @10A  
7.5  
10 12.5  
Datasheet  
45  
002-28172 Rev. *N  
2023-01-31  
EZ-PD™ CCG7D Automotive USB Type-C and Buck-boost Controller  
Dual-port  
Electrical specifications  
6.4.16  
Table 43  
Spec ID  
Thermal  
Thermal specifications  
Parameter Description  
OTP  
Min Typ Max Unit Details/conditions  
120 125 130 °C  
SID.OTP.1  
Thermal shutdown  
Datasheet  
46  
002-28172 Rev. *N  
2023-01-31  
EZ-PD™ CCG7D Automotive USB Type-C and Buck-boost Controller  
Dual-port  
Ordering information  
7
Ordering information  
Table 44 lists the CCG7D part numbers and features.  
Table 44  
CCG7D ordering Information  
Termination  
resistor  
Switching  
frequency  
Package  
type  
MPN  
Application  
Role  
Rear seat and  
DFP (power  
source only)  
DFP power,  
UFP data  
CYPD7291-68LDXS  
head unit charger  
RP  
150 to 600 kHz 68-pin QFN  
CYPD7299-68LDXS Rear seat entertainment  
7.1  
Ordering code definitions  
-
X
X X  
XX XX  
PD  
X
XX  
X
CY  
T = Tape and reel (optional)  
Temperature grade:  
S = Automotive grade  
Lead: X = Pb-free  
Package type: LD = QFN wettable flank  
Number of pins in the package  
Application and feature combination designation  
Number of Type-C Ports: 1 = 1 Port, 2 = 2 Port  
Product type: 7 = Seventh-generation product family  
Marketing code: PD = Power Delivery product family  
Company ID: CY = Cypress (an Infineon company)  
Datasheet  
47  
002-28172 Rev. *N  
2023-01-31  
EZ-PD™ CCG7D Automotive USB Type-C and Buck-boost Controller  
Dual-port  
Packaging  
8
Packaging  
Table 45  
Package characteristics  
Parameter Description  
Operating junction  
Conditions  
Min  
Typ  
Max  
Unit  
TJ  
–40  
25  
125  
°C  
temperature  
Package JA  
Package JC  
TJA  
TJC  
12.1  
3.1  
°C/W  
Table 46  
Table 47  
Solder reflow peak temperature  
Maximum time within 5°C  
of peak temperature  
Package  
68-QFN  
Maximum peak temperature  
260°C  
30 seconds  
Package moisture sensitivity level (MSL), IPC/JEDEC J-STD-2  
Package  
MSL  
68-QFN  
MSL 3  
Datasheet  
48  
002-28172 Rev. *N  
2023-01-31  
EZ-PD™ CCG7D Automotive USB Type-C and Buck-boost Controller  
Dual-port  
Packaging  
NOTES:  
DIMENSIONS  
SYMBOL  
e
1. ALL DIMENSIONS ARE IN MILLIMETERS.  
2. N IS THE TOTAL NUMBER OF TERMINALS.  
MIN.  
0.30  
NOM.  
MAX.  
0.50  
0.50 BSC  
68  
17  
0.40  
3
DIMENSION "b" APPLIES TO METALLIZED TERMINAL AND IS MEASURED  
BETWEEN 0.15 AND 0.30mm FROM TERMINAL TIP. IF THE TERMINAL HAS  
THE OPTIONAL RADIUS ON THE OTHER END OF THE TERMINAL, THE  
DIMENSION "b" SHOULD NOT BE MEASURED IN THAT RADIUS AREA.  
ND REFERS TO THE NUMBER OF TERMINALS ON D SIDE.  
N
ND  
L
b
D2  
E2  
D
0.18  
5.25  
5.40  
0.25  
5.35  
0.30  
5.45  
5.60  
4
5
6
PIN #1 ID ON TOP WILL BE LOCATED WITHIN THE INDICATED ZONE.  
COPLANARITY ZONE APPLIES TO THE EXPOSED HEAT SINK  
SLUG AS WELL AS THE TERMINALS.  
5.50  
10.00 BSC  
E
A
A1  
A3  
R
10.00 BSC  
7. JEDEC SPECIFICATION NO. REF. : N/A.  
-
-
-
1.00  
0.05  
0.00  
0.203 REF  
0.20 TYP  
0.35 MIN  
K
002-29306 *A  
Figure 15  
68-QFN package outline  
Datasheet  
49  
002-28172 Rev. *N  
2023-01-31  
EZ-PD™ CCG7D Automotive USB Type-C and Buck-boost Controller  
Dual-port  
Packaging  
4.00 0.10  
(Po)  
0.30 0.05  
(T)  
2.00 0.10  
(P2)  
+0.10  
-0.00  
1.50  
(Do)  
12.00 0.10  
(P1)  
1.60 0.10(D1)  
"A"  
0.18  
6.30 0.10  
(Ao/BOTTOM)  
R0.25  
DETAIL "A" (5/1)  
002-19972 **  
Figure 16  
Carrier Tape dimensions  
Datasheet  
50  
002-28172 Rev. *N  
2023-01-31  
EZ-PD™ CCG7D Automotive USB Type-C and Buck-boost Controller  
Dual-port  
Acronyms  
9
Acronyms  
Table 48  
Acronyms used in this document  
Acronym  
Description  
ADC  
AFC  
Arm®  
BOD  
BMC  
CC  
analog-to-digital converter  
Samsung Adaptive Fast Charging  
advanced RISC machine, a CPU architecture  
brownout detect  
biphase mark coding  
configuration channel  
CDP  
CMOS  
CPU  
CSA  
DAC  
DCM  
DFP  
EA  
charging downstream port  
Complementary Metal Oxide Semiconductor  
central processing unit  
current sense amplifier  
digital-to-analog converter  
discontinuous-conduction mode  
downstream facing port  
error amplifier  
EMC  
electromagnetic compatibility  
electronically marked cable assembly, a USB cable that includes an IC that reports cable  
characteristics (e.g., current rating) to the Type-C  
EMCA  
EMI  
EPAD  
ESD  
electromagnetic interference  
exposed pad  
electrostatic discharge  
FCCM  
GPIO  
HPI  
HSDR  
HSIOM  
HU  
forced continuous current/conduction mode  
general-purpose input/output  
host processor interface  
high-side driver  
high-speed I/O matrix  
head unit  
HUC  
I2C, or IIC  
IDAC  
I/O  
ILO  
IMO  
head unit charger  
inter-integrated circuit, a communications protocol  
current DAC  
input/output, see also GPIO  
internal low-speed oscillator  
internal main oscillator  
IRQ  
interrupt request  
ISR  
interrupt service routine  
low-side driver  
low-voltage transistor-transistor logic  
microcontroller unit  
LSDR  
LVTTL  
MCU  
NTC  
negative temperature coefficient (refers to a thermistor)  
Datasheet  
51  
002-28172 Rev. *N  
2023-01-31  
EZ-PD™ CCG7D Automotive USB Type-C and Buck-boost Controller  
Dual-port  
Acronyms  
Table 48  
Acronyms used in this document (continued)  
Acronym  
Description  
OCP  
OTP  
OVP  
PD  
overcurrent protection  
overtemperature protection  
overvoltage protection  
power delivery  
POR  
PPS  
PSoC™  
PSM  
PWM  
RCP  
RAM  
ROM  
RSC  
power-on reset  
programmable power supply  
Programmable System-on-Chip™  
pulse-skipping mode  
pulse-width modulator  
reverse current protection  
random-access memory  
read-only memory  
rear-seat charger  
RSE  
SCB  
rear-seat entertainment  
serial communications block  
SPI  
serial peripheral interface, a communications protocol  
static random access memory  
serial wire debug, a test protocol  
timer/counter/PWM  
SRAM  
SWD  
TCPWM  
a new standard with a slimmer USB connector and a reversible cable, capable of sourcing  
up to 100 W of power  
Type-C  
UART  
UFP  
UVP  
USB  
UVLO  
VPA  
VPD  
WDT  
WIC  
Universal Asynchronous Transmitter Receiver, a communications protocol  
upstream facing port  
undervoltage protection  
Universal Serial Bus  
under-voltage lockout  
VCONN-powered accessories  
VCONN-powered devices  
watchdog timer  
wakeup interrupt controller  
zero-crossing detector  
ZCD  
Datasheet  
52  
002-28172 Rev. *N  
2023-01-31  
EZ-PD™ CCG7D Automotive USB Type-C and Buck-boost Controller  
Dual-port  
Document conventions  
10  
Document conventions  
10.1  
Units of measure  
Table 49  
Units of measure  
Symbol  
Unit of measure  
°C  
Hz  
degrees Celsius  
hertz  
KB  
1024 bytes  
kHz  
k  
Mbps  
MHz  
M  
Msps  
µA  
µF  
µs  
µV  
kilohertz  
kilo ohm  
megabits per second  
megahertz  
mega-ohm  
megasamples per second  
microampere  
microfarad  
microsecond  
microvolt  
µW  
mA  
m  
ms  
mV  
nA  
microwatt  
milliampere  
milliohm  
millisecond  
millivolt  
nanoampere  
nanosecond  
ohm  
ns  
pF  
picofarad  
ppm  
ps  
s
parts per million  
picosecond  
second  
sps  
samples per second  
Datasheet  
53  
002-28172 Rev. *N  
2023-01-31  
EZ-PD™ CCG7D Automotive USB Type-C and Buck-boost Controller  
Dual-port  
Revision history  
Revision history  
Document  
Date  
Description of changes  
revision  
**  
2019-08-16  
Initial release.  
Updated General description, Features, Logic block diagram, Functional  
block diagram, and Pin list. Updated Figure 2, Figure 3, and Figure 4.  
Added Table of contents, Ordering information and Ordering code defini-  
tions sections.  
*A  
*B  
2020-01-09  
2020-02-06  
Updated CCG7D Functional Block Diagram for Head Unit Charger section as  
renamed it as Figure 11.  
Updated the title of the document.  
Updated General description, Applications, and Features.  
Added Figure 9. CCG7D 68-QFN pinout.  
Added Packaging section and Figure 15. 68-QFN package outline.  
Updated General description and Features.  
Added Functional overview and Power subsystem.  
Updated document status from ‘Advance’ to ‘Preliminary.  
Updated Figure 9 and Figure 15.  
Removed Figure 2, Figure 3, and Figure 4 in the Applications Block Diagram section  
from previous revision. Renamed Application Block Diagram section to  
Applications.  
*C  
2020-06-05  
Updated Figure 11: Updated application diagram for Head Unit application.  
Added application diagrams for Rear-Seat Charger and Rear-Seat Entertainment in  
Figure 12 and Figure 13 respectively.  
Updated Table 2 in Pin list.  
Added Table 3, Table 4, and Table 5 for application specific GPIO pin mapping.  
Added Electrical Specifications (Table 7 through Table 43).  
Updated Packaging: Added Table 45, Table 46, and Table 47.  
Updated Logic block diagram and Features.  
Updated Figure 7 and Figure 8.  
*D  
*E  
2020-06-10  
2020-08-20  
Added CCG7D programming and bootloading.  
Updated VCONN switches, VBUS UVP and OVP, VBUS OCP and SCP, Gate  
driver for VBUS provider NFET, Legacy charge detection and support,  
VBAT to ground short protection, VBUS to CC short protection, USB-PD  
subsystem.  
Updated descriptions of pins in Table 2.  
Updated Table 34 and Table 40.  
Updated Functional block diagram.  
Updated Pin list:  
Updated Table 2.  
Updated Applications  
Added description.  
Updated Electrical specifications  
Updated Device-level specifications  
Updated DC specifications  
Updated Table 9.  
*F  
2020-09-22  
Updated GPIO:  
Updated Table 14.  
Updated Digital peripherals  
Updated PWM for GPIO pins  
Updated Table 16.  
Datasheet  
54  
002-28172 Rev. *N  
2023-01-31  
EZ-PD™ CCG7D Automotive USB Type-C and Buck-boost Controller  
Dual-port  
Revision history  
Document  
Date  
Description of changes  
revision  
Added “Confidential” statement in footers across the document.  
Updated Logic block diagram.  
Updated Electrical specifications  
Updated Absolute maximum ratings  
Added Table 8.  
Updated Applications  
Added Figure 14.  
Added Table 6.  
*G  
2021-04-29  
Updated Device-level specifications  
Updated DC specifications  
Updated Table 9.  
Updated System resources  
Updated VBUS gate driver  
Table 38.  
Changed status from Preliminary to Final.  
Updated Pin list  
Updated Table 2.  
Updated Electrical specifications  
Updated Absolute maximum ratings  
Updated Table 7.  
Updated Device-level specifications  
Updated DC specifications  
Updated Table 9.  
*H  
2021-06-09  
Updated System resources  
Updated High-side CSA  
Updated Table 30.  
Updated Applications:  
Updated Figure 13.  
*I  
2021-06-22  
2021-07-30  
Updated Ordering information  
Updated part numbers.  
Updated Applications  
Updated Figure 11.  
Updated Figure 12.  
Updated Figure 13.  
*J  
Updated General description, Features, Functional block diagram and  
Functional overview.  
*K  
2021-09-24  
Updated MPN in Figure 13.  
Updated Table 11: Added SID.GIO#11 and SID.GIO#12.  
Updated Ordering information.  
Migrated to Infineon template.  
Updated datasheet title.  
*L  
2022-05-11  
Updated to indicate compliance with USB-PD Revision 3.1.  
Update external links.  
Update list of acronyms.  
*M  
*N  
2022-11-11  
2023-01-31  
Added package diagram Figure 16 (002-19972 **).  
Removed “restricted” status from the datasheet.  
Datasheet  
55  
002-28172 Rev. *N  
2023-01-31  
Please read the Important Notice and Warnings at the end of this document  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
WARNINGS  
The information given in this document shall in no Due to technical requirements products may contain  
Edition 2023-01-31  
Published by  
event be regarded as a guarantee of conditions or dangerous substances. For information on the types  
characteristics (“Beschaffenheitsgarantie”).  
in question please contact your nearest Infineon  
Technologies office.  
With respect to any examples, hints or any typical  
Infineon Technologies AG  
81726 Munich, Germany  
values stated herein and/or any information Except as otherwise explicitly approved by Infineon  
regarding the application of the product, Infineon Technologies in a written document signed by  
Technologies hereby disclaims any and all authorized  
representatives  
of  
Infineon  
warranties and liabilities of any kind, including Technologies, Infineon Technologies’ products may  
without limitation warranties of non-infringement of not be used in any applications where a failure of the  
intellectual property rights of any third party.  
product or any consequences of the use thereof can  
reasonably be expected to result in personal injury.  
© 2023 Infineon Technologies AG.  
All Rights Reserved.  
In addition, any information given in this document  
is subject to customer’s compliance with its  
obligations stated in this document and any  
applicable legal requirements, norms and standards  
concerning customer’s products and any use of the  
product of Infineon Technologies in customer’s  
applications.  
Do you have a question about this  
document?  
Email:  
erratum@infineon.com  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer’s technical departments  
to evaluate the suitability of the product for the  
intended application and the completeness of the  
product information given in this document with  
respect to such application.  
Document reference  
002-28172 Rev. *N  

相关型号:

CYPD7299-68LDXST

EZ-PD™ CCG7D CYPD7299-68LDXST is the tape and reel packing type option belonging to EZ-PD™ CCG7D family of Infineon’s highly integrated dual-port USB-C Power Delivery (PD) with integrated buck-boost controller for automotive in-cabin charger and video applications.
INFINEON

CYPM1115-48LQXI

EZ-PD™ PMG1-B1 CYPM1115-48LQXI因其Rp 和Rd 终端电阻和托盘包装而与众不同。它是EZ-PD™ PMG1-B1系列高度集成的单端口USB-C电力传输(PD)解决方案的一部分,集成了降压-升压控制器。
INFINEON

CYPM1115-48LQXIT

EZ-PD™ PMG1-B1 CYPM1115-48LQXIT因其Rp 和Rd 终端电阻和卷带包装而与众不同。它是EZ-PD™ PMG1-B1系列高度集成的单端口USB-C电力传输(PD)解决方案的一部分,集成了降压-升压控制器。
INFINEON

CYPM1116-48LQXI

EZ-PD™ PMG1-B1 CYPM1116-48LQXI因其Rp 和Rd 终端电阻和托盘包装而与众不同。它是EZ-PD™ PMG1-B1系列高度集成的单端口USB-C电力传输(PD)解决方案的一部分,集成了降压-升压控制器。
INFINEON

CYPM1116-48LQXIT

EZ-PD™ PMG1-B1 CYPM1116-48LQXIT因其Rp 和Rd 终端电阻和卷带封装而与众不同。它是EZ-PD™ PMG1-B1系列高度集成的单端口USB-C电力传输(PD)解决方案的一部分,集成了降压-升压控制器。
INFINEON

CYPM1211-40LQXI

EZ-PD™ PMG1-S2 CYPM1211-40LQXI是PMG1-S2的托盘包装类型选项,它支持双角色端口(DRP)USB-C PD应用并集成了一个USB全速设备控制器。
INFINEON

CYPM1211-40LQXIT

EZ-PD™ PMG1-S2 CYPM1211-40LQXIT是PMG1-S2的卷带封装类型选项,它支持双角色端口(DRP)USB-C PD应用并集成了一个USB全速设备控制器。
INFINEON

CYPM1211-42FNXI

EZ-PD™ PMG1-S2 CYPM1211-42NFXI is the tray packing type option of the PMG1-S2, it supports Dual Role Port (DRP) USB-C PD applications and integrates a USB full-speed device controller.
INFINEON

CYPM1211-42FNXIT

EZ-PD™ PMG1-S2 CYPM1211-42NFXIT是PMG1-S2的卷带封装类型选项,它支持双角色端口(DRP)USB-C PD应用并集成了一个USB全速设备控制器。
INFINEON

CYPOSIC2GVC-K

Framers and Mappers
ETC

CYPSI2G100P456-1MGC

Microprocessor Circuit, CMOS, PBGA456, 35 X 35 MM, 2.33 MM HEIGHT, BGA-456
CYPRESS

CYPSI2G100SP456-1MGC

Microprocessor Circuit, CMOS, PBGA456, 35 X 35 MM, 2.33 MM HEIGHT, BGA-456
CYPRESS