ICE3A4065I [INFINEON]

Switching Regulator, Current-mode, 100kHz Switching Freq-Max, PZFM6, TO-220, 6 LEAD;
ICE3A4065I
型号: ICE3A4065I
厂家: Infineon    Infineon
描述:

Switching Regulator, Current-mode, 100kHz Switching Freq-Max, PZFM6, TO-220, 6 LEAD

局域网 开关
文件: 总31页 (文件大小:558K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet, Version 2.0, 24 Aug 2005  
CoolSET™-F3  
ICE3A(B)0365/0565/1065/1565  
ICE3A(B)2065/2565  
ICE3A0565Z/2065Z  
ICE3A(B)2065I/3065I/3565I  
ICE3A(B)5065I/5565I  
ICE3A(B)2065P/3065P/3565P  
ICE3A(B)5065P/5565P  
Off-Line SMPS Current Mode  
Controller with integrated 650V  
Startup Cell/Depletion CoolMOS™  
Power Management & Supply  
N e v e r s t o p t h i n k i n g .  
CoolSET™-F3  
Revision History:  
2005-08-24  
Datasheet  
Previous Version: V1.3  
Page  
Subjects (major changes since last revision)  
Update to Pb-free package  
Delete ordering code  
4, 5  
19  
Add pulse drain current  
For questions on technology, delivery and prices please contact the Infineon Technologies Offices in Germany or the Infineon  
Technologies Companies and Representatives worldwide: see our webpage at http://www.infineon.com  
CoolMOS™, CoolSET™ are trademarks of Infineon Technologies AG.  
Edition 2005-08-24  
Published by Infineon Technologies AG,  
St.-Martin-Strasse 53,  
D-81541 München  
© Infineon Technologies AG 1999.  
All Rights Reserved.  
Attention please!  
The information herein is given to describe certain components and shall not be considered as warranted characteristics.  
Terms of delivery and rights to technical change reserved.  
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits,  
descriptions and charts stated herein.  
Infineon Technologies is an approved CECC manufacturer.  
Information  
For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Tech-  
nologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).  
Warnings  
Due to technical requirements components may contain dangerous substances. For information on the types in question  
please contact your nearest Infineon Technologies Office.  
Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of  
Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support  
device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended  
to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is rea-  
sonable to assume that the health of the user or other persons may be endangered.  
CoolSET™-F3  
Off-Line SMPS Current Mode Controller with  
integrated 650V Startup Cell/Depletion  
CoolMOS™  
PG-DIP-7-1  
D--1  
Product Highlights  
• Best in class in DIP7, DIP8, TO220/I2Pak packages  
• Active Burst Mode to reach the lowest Standby Power  
Requirements < 100mW  
PG-DIP-8-6  
• Protection features (Auto Restart Mode) to increase robustness and  
safety of the system  
• Adjustable Blanking Window for high load jumps to  
increase system reliability  
• Isolated drain package for TO220/I2Pak  
• Wide creepage distance for DIP7/TO220/I2Pak  
• Wide power class of products for various applications  
• Pb-free lead plating for all packages; RoHS compliant  
PG-TO220-6-46 (I2Pak)  
PG-TO220-6-47  
Description  
Features  
The new generation CoolSET™-F3 provides Active Burst Mode  
to reach the lowest Standby Power Requirements <100mW at no  
load. As the controller is always active during Active Burst  
Mode, there is an immediate response on load jumps without any  
black out in the SMPS. In Active Burst Mode the ripple of the  
output voltage can be reduced <1%. Furthermore, to increase the  
robustness and safety of the system, the device enters into Auto  
Restart Mode in the cases of Overtemperature, VCC  
Overvoltage, Output Open Loop or Overload and VCC  
Undervoltage. By means of the internal precise peak current  
limitation, the dimension of the transformer and the secondary  
diode can be lowered which leads to more cost efficiency. An  
adjustable blanking window prevents the IC from entering Auto  
Restart or Active Burst Mode unintentionally during high load  
jumps. The CoolSET™-F3 family consists a wide power class  
range of products for various applications.  
650V avalanche rugged CoolMOS™ with built in  
switchable Startup Cell  
Active Burst Mode for lowest Standby Power  
@ light load controlled by Feedback signal  
Fast load jump response in Active Burst Mode  
67/100 kHz fixed switching frequency  
Auto Restart Mode for Overtemperature Detection  
Auto Restart Mode for Overvoltage Detection  
Auto Restart Mode for Overload and Open Loop  
Auto Restart Mode for VCC Undervoltage  
Blanking Window for short duration high current  
User defined Soft Start  
Minimum of external components required  
Max Duty Cycle 72%  
Overall tolerance of Current Limiting < ±5%  
Internal PWM Leading Edge Blanking  
Soft driving for low EMI  
Typical Application  
+
Converter  
Snubber  
CBulk  
DC Output  
85 ... 270 VAC  
-
CVCC  
VCC  
Drain  
Startup Cell  
Power Management  
PWM Controller  
Current Mode  
Depl.  
CoolMOS™  
CS  
FB  
Precise Low Tolerance Peak  
Current Limitation  
RSense  
Active Burst Mode  
Control  
Unit  
GND  
SoftS  
CSoftS  
Auto Restart Mode  
CoolSET™-F3  
Version 2.0  
3
24 Aug 2005  
CoolSET™-F3  
Overview  
1)  
Type  
Package  
VDS  
FOSC  
RDSon  
6.45  
4.70  
2.95  
1.70  
0.92  
0.65  
230VAC ±15%2)  
85-265 VAC2)  
10W  
ICE3A0365  
ICE3A0565  
ICE3A1065  
ICE3A1565  
ICE3A2065  
ICE3A2565  
PG-DIP-8-6  
PG-DIP-8-6  
PG-DIP-8-6  
PG-DIP-8-6  
PG-DIP-8-6  
PG-DIP-8-6  
650V  
650V  
650V  
650V  
650V  
650V  
100kHz  
100kHz  
100kHz  
100kHz  
100kHz  
100kHz  
22W  
25W  
32W  
42W  
57W  
68W  
12W  
16W  
20W  
28W  
33W  
ICE3B0365  
ICE3B0565  
ICE3B1065  
ICE3B1565  
ICE3B2065  
ICE3B2565  
PG-DIP-8-6  
PG-DIP-8-6  
PG-DIP-8-6  
PG-DIP-8-6  
PG-DIP-8-6  
PG-DIP-8-6  
650V  
650V  
650V  
650V  
650V  
650V  
67kHz  
67kHz  
67kHz  
67kHz  
67kHz  
67kHz  
6.45  
4.70  
2.95  
1.70  
0.92  
0.65  
22W  
25W  
32W  
42W  
57W  
68W  
10W  
12W  
16W  
20W  
28W  
33W  
1)  
typ @ T=25°C  
2)  
Calculated maximum input power rating at Ta=75°C, Tj=125°C and without copper area as heat sink.  
230VAC ±15%2)  
85-265 VAC2)  
12W  
1)  
Type  
Package  
VDS  
FOSC  
RDSon  
4.70  
ICE3A0565Z  
ICE3A2065Z  
typ @ T=25°C  
PG-DIP-7-1  
PG-DIP-7-1  
650V  
650V  
100kHz  
100kHz  
25W  
57W  
0.92  
28W  
1)  
2)  
Calculated maximum input power rating at Ta=75°C, Tj=125°C and without copper area as heat sink.  
Version 2.0  
4
24 Aug 2005  
CoolSET™-F3  
1)  
Type  
Package  
VDS  
FOSC  
RDSon  
3.00  
2.10  
1.55  
0.95  
0.79  
230VAC ±15%2)  
85-265 VAC2)  
50W  
ICE3A2065I  
ICE3A3065I  
ICE3A3565I  
ICE3A5065I  
ICE3A5565I  
PG-TO-220-6-46  
PG-TO-220-6-46  
PG-TO-220-6-46  
PG-TO-220-6-46  
PG-TO-220-6-46  
650V  
650V  
650V  
650V  
650V  
100kHz  
100kHz  
100kHz  
100kHz  
100kHz  
102W  
128W  
170W  
220W  
240W  
62W  
83W  
105W  
120W  
ICE3B2065I  
ICE3B3065I  
ICE3B3565I  
ICE3B5065I  
ICE3B5565I  
PG-TO-220-6-46  
PG-TO-220-6-46  
PG-TO-220-6-46  
PG-TO-220-6-46  
PG-TO-220-6-46  
650V  
650V  
650V  
650V  
650V  
67kHz  
67kHz  
67kHz  
67kHz  
67kHz  
3.00  
2.10  
1.55  
0.95  
0.79  
102W  
128W  
170W  
220W  
240W  
50W  
62W  
83W  
105W  
120W  
ICE3A2065P  
ICE3A3065P  
ICE3A3565P  
ICE3A5065P  
ICE3A5565P  
PG-TO-220-6-47  
PG-TO-220-6-47  
PG-TO-220-6-47  
PG-TO-220-6-47  
PG-TO-220-6-47  
650V  
650V  
650V  
650V  
650V  
100kHz  
100kHz  
100kHz  
100kHz  
100kHz  
3.00  
2.10  
1.55  
0.95  
0.79  
102W  
128W  
170W  
220W  
240W  
50W  
62W  
83W  
105W  
120W  
ICE3B2065P  
ICE3B3065P  
ICE3B3565P  
ICE3B5065P  
ICE3B5565P  
typ @ T=25°C  
PG-TO-220-6-47  
PG-TO-220-6-47  
PG-TO-220-6-47  
PG-TO-220-6-47  
PG-TO-220-6-47  
650V  
650V  
650V  
650V  
650V  
67kHz  
67kHz  
67kHz  
67kHz  
67kHz  
3.00  
2.10  
1.55  
0.95  
0.79  
102W  
128W  
170W  
220W  
240W  
50W  
62W  
83W  
105W  
120W  
1)  
2)  
Calculated maximum continuous input power in an open frame design at Ta=50°C, Tj=125°C and RthCA(external heatsink)=2.7K/W  
Version 2.0  
5
24 Aug 2005  
CoolSET™-F3  
Page  
Table of Contents  
1
Pin Configuration and Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Pin Configuration with PG-DIP-8-6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Pin Configuration with PG-DIP-7-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Pin Configuration with PG-TO220-6-46 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Pin Configuration with PG-TO220-6-47 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Pin Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
1.1  
1.2  
1.3  
1.4  
1.5  
2
Representative Blockdiagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
3
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Startup Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
PWM Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
PWM-Latch FF1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Gate Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Current Limiting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Leading Edge Blanking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Propagation Delay Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Control Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Adjustable Blanking Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Active Burst Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Entering Active Burst Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Working in Active Burst Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Leaving Active Burst Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Protection Mode (Auto Restart Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
3.1  
3.2  
3.3  
3.4  
3.4.1  
3.4.2  
3.4.3  
3.5  
3.5.1  
3.5.2  
3.6  
3.6.1  
3.6.2  
3.6.2.1  
3.6.2.2  
3.6.2.3  
3.6.3  
4
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Supply Section 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Supply Section 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Internal Voltage Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
PWM Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Control Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Current Limiting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
CoolMOS™ Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
4.1  
4.2  
4.3  
4.3.1  
4.3.2  
4.3.3  
4.3.4  
4.3.5  
4.3.6  
4.3.7  
5
Outline Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Version 2.0  
6
24 Aug 2005  
CoolSET™-F3  
Pin Configuration and Functionality  
1
Pin Configuration and Functionality  
1.1  
Pin Configuration with PG-DIP-8-6  
1.2  
Pin Configuration with PG-DIP-7-1  
Pin  
Symbol Function  
Pin  
Symbol Function  
1
2
3
SoftS  
FB  
Soft-Start  
Feedback  
1
2
3
SoftS  
FB  
Soft-Start  
Feedback  
CS  
Current Sense/  
CS  
Current Sense/  
650V1) Depl. CoolMOS™ Source  
650V1) Depl. CoolMOS™ Source  
650V1) Depl. CoolMOS™ Drain  
650V1) Depl. CoolMOS™ Drain  
4
5
Drain  
Drain  
4
5
n.c.  
Not connected  
650V1) Depl. CoolMOS™ Drain  
Drain  
-
7
-
-
6
7
n.c.  
VCC  
GND  
Not Connected  
VCC  
GND  
Controller Supply Voltage  
Controller Ground  
Controller Supply Voltage  
Controller Ground  
8
8
1)  
1)  
at Tj = 110°C  
at Tj = 110°C  
Package PG-DIP-7-1  
Package PG-DIP-8-6  
SoftS  
FB  
1
8
7
6
5
GND  
VCC  
n.c.  
SoftS  
FB  
1
8
7
GND  
VCC  
2
2
CS  
3
4
CS  
3
4
Drain  
Drain  
n.c.  
5
Drain  
Figure 2  
Pin Configuration PG-DIP-7-1(top view)  
Figure 1  
Pin Configuration PG-DIP-8-6(top view)  
Note: Pin 4 and 5 are shorted within the DIP 8 package.  
Version 2.0  
7
24 Aug 2005  
CoolSET™-F3  
Pin Configuration and Functionality  
1.3  
Pin Configuration with PG-TO220-6-46  
1.4  
Pin Configuration with PG-TO220-6-47  
Pin  
Symbol  
Drain  
CS  
Function  
Pin  
Symbol  
Drain  
CS  
Function  
650V1) Depl. CoolMOS™ Drain  
650V1) Depl. CoolMOS™ Drain  
1
3
1
3
Current Sense/  
Current Sense/  
650V1) Depl. CoolMOS™ Source  
650V1) Depl. CoolMOS™ Source  
4
5
6
7
GND  
VCC  
SoftS  
FB  
Controller Ground  
Controller Supply Voltage  
Soft-Start  
4
5
6
7
GND  
VCC  
SoftS  
FB  
Controller Ground  
Controller Supply Voltage  
Soft-Start  
Feedback  
Feedback  
1)  
1)  
at Tj = 110°C  
at Tj = 110°C  
Package PG-TO220-6-46 (I2Pak)  
Package PG-TO220-6-47  
1
2
3
4
5
6
7
1
2
3
4
5
6
7
Figure 3 Pin Configuration PG-TO220-6-46 I2Pak (front  
view)  
Figure 4 Pin Configuration PG-TO220-6-47  
(front view)  
Version 2.0  
8
24 Aug 2005  
CoolSET™-F3  
Pin Configuration and Functionality  
1.5  
Pin Functionality  
SoftS (Soft Start & Auto Restart Control)  
The SoftS pin combines the functions of Soft Start during  
Start Up and error detection for Auto Restart Mode. These  
functions are implemented and can be adjusted by means of  
an external capacitor at SoftS to ground. This capacitor also  
provides an adjustable blanking window for high load jumps,  
before the IC enters into Auto Restart Mode.  
FB (Feedback)  
The information about the regulation is provided by the FB  
Pin to the internal Protection Unit and to the internal PWM-  
Comparator to control the duty cycle. The FB-Signal  
controls in case of light load the Active Burst Mode of the  
controller.  
CS (Current Sense)  
The Current Sense pin senses the voltage developed on the  
series resistor inserted in the source of the integrated Depl.  
CoolMOS™. If CS reaches the internal threshold of the  
Current Limit Comparator, the Driver output is immediately  
switched off. Furthermore the current information is  
provided for the PWM-Comparator to realize the Current  
Mode.  
Drain (Drain of integrated Depl. CoolMOS™)  
Pin Drain is the connection to the Drain of the internal Depl.  
CoolMOSTM  
.
VCC (Power supply)  
The VCC pin is the positive supply of the IC. The operating  
range is between 8.5V and 21V.  
GND (Ground)  
The GND pin is the ground of the controller.  
Version 2.0  
9
24 Aug 2005  
CoolSET™-F3  
Representative Blockdiagram  
2
Representative Blockdiagram  
Figure 5  
Representative Blockdiagram  
Version 2.0  
10  
24 Aug 2005  
CoolSET™-F3  
Functional Description  
3
Functional Description  
All values which are used in the functional description are  
typical values. For calculating the worst cases the min/max  
values which can be found in section 4 Electrical  
Characteristics have to be considered.  
3.2  
Power Management  
VCC  
Drain  
3.1  
Introduction  
Startup Cell  
CoolSET™-F3 is the further development of the  
CoolSET™-F2 to meet the requirements for the lowest  
Standby Power at minimum load and no load conditions. A  
new fully integrated Standby Power concept is implemented  
into the IC in order to keep the application design easy.  
Compared to CoolSET™-F2 no further external parts are  
needed to achieve the lowest Standby Power. An intelligent  
Active Burst Mode is used for this Standby Mode. After  
entering this mode there is still a full control of the power  
conversion by the secondary side via the same optocoupler  
that is used for the normal PWM control. The response on  
load jumps is optimized. The voltage ripple on Vout is  
minimized. Vout is further on well controlled in this mode.  
The usually external connected RC-filter in the feedback line  
after the optocoupler is integrated in the IC to reduce the  
external part count.  
Furthermore a high voltage Startup Cell is integrated into the  
IC which is switched off once the Undervoltage Lockout on-  
threshold of 15V is exceeded. This Startup Cell is part of the  
integrated Depl. CoolMOS™. The external startup resistor is  
no longer necessary as this Startup Cell is connected to the  
Drain. Power losses are therefore reduced. This increases the  
efficiency under light load conditions drastically.  
The Soft-Start capacitor is also used for providing an  
adjustable blanking window for high load jumps. During this  
time window the overload detection is disabled. With this  
concept no further external components are necessary to  
adjust the blanking window.  
An Auto Restart Mode is implemented in the IC to reduce the  
average power conversion in the event of malfunction or  
unsafe operating condition in the SMPS system. This feature  
increases the system’s robustness and safety which would  
otherwise lead to a destruction of the SMPS. Once the  
malfunction is removed, normal operation is automatically  
initiated after the next Start Up Phase.  
The internal precise peak current limitation reduces the costs  
for the transformer and the secondary diode. The influence  
of the change in the input voltage on the power limitation can  
be avoided together with the integrated Propagation Delay  
Compensation. Therefore the maximum power is nearly  
independent on the input voltage which is required for wide  
range SMPS. There is no need for an extra over-sizing of the  
SMPS, e.g. the transformer or the secondary diode.  
Depl. CoolMOS™  
Power  
Management  
Undervoltage Lockout  
15V  
Internal Bias  
8.5V  
6.5V  
Voltage  
Reference  
Auto Restart  
Mode  
T1  
Active Burst  
Mode  
SoftS  
Power Management  
Figure 6  
The Undervoltage Lockout monitors the external supply  
voltage VVCC. When the SMPS is plugged to the main line  
the internal Startup Cell is biased and starts to charge the  
external capacitor CVCC which is connected to the VCC pin.  
This VCC charge current which is provided by the Startup  
Cell from the Drain pin is 1.05mA. When VVCC exceeds the  
on-threshold VCCon=15V the internal voltage reference and  
bias circuit are switched on. Then the Startup Cell is  
switched off by the Undervoltage Lockout and therefore no  
power losses present due to the connection of the Startup  
Cell to the Drain voltage. To avoid uncontrolled ringing at  
switch-on a hysteresis is implemented. The switch-off of the  
controller can only take place after Active Mode was entered  
and VVCC falls below 8.5V.  
The maximum current consumption before the controller is  
activated is about 160µA.  
When VVCC falls below the off-threshold VCCoff=8.5V the  
internal reference is switched off and the Power Down reset  
let T1 discharging the soft-start capacitor CSoftS at pin SoftS.  
Thus it is ensured that at every startup cycle the voltage ramp  
at pin SoftS starts at zero.  
Version 2.0  
11  
24 Aug 2005  
CoolSET™-F3  
Functional Description  
The internal Voltage Reference is switched off if Auto Figure 7). This maximum charge current in the very first  
Restart Mode is entered. The current consumption is then stage when VSoftS is below 1V, is limited to 1.32mA.  
reduced to 300µA.  
Once the malfunction condition is removed, this block will  
then turn back on. The recovery from Auto Restart Mode  
VSoftS  
does not require disconnecting the SMPS from the AC line.  
max. Startup Phase  
When Active Burst Mode is entered, the internal Bias is  
switched off in order to reduce the current consumption to  
below 1.05mA while keeping the Voltage Reference active  
as this is necessary in this mode.  
5.4V  
4V  
1V  
max. Soft Start Phase  
3.3  
Startup Phase  
6.5V  
DCmax  
t
3.25kΩ  
DC  
1
DC  
2
R
T2  
SoftS  
T3  
1V  
SoftS  
t1  
t2 t  
C
SoftS  
Soft Start  
Soft-Start  
Figure 8  
Startup Phase  
Comparator  
GateDriver  
By means of this extra charge stage, there is no delay in the  
beginning of the Startup Phase when there is still no  
switching. Furthermore Soft Start is finished at 4V to have  
faster the maximum power capability. The duty cycles DC1  
and DC2 are depending on the mains and the primary  
inductance of the transformer. The limitation of the primary  
current by DC2 is related to VSoftS = 4V. But DC1 is related  
to a maximum primary current which is limited by the  
internal Current Limiting with CS = 1V. Therefore the  
maximum Startup Phase is divided into a Soft Start Phase  
until t1 and a phase from t1 until t2 where maximum power  
is provided if demanded by the FB signal.  
C7  
&
G7  
C2  
4V  
0.85V  
CS  
x3.7  
PWM OP  
Figure 7  
Soft Start  
At the beginning of the Startup Phase, the IC provides a Soft  
Start duration whereby it controls the maximum primary  
current by means of a duty cycle limitation. A signal VSoftS  
which is generated by the external capacitor CSofts in  
combination with the internal pull up resistor RSoftS  
determines the duty cycle until VSoftS exceeds 4V.  
,
When the Soft Start begins, CSoftS is immediately charged up  
to approx. 1V by T2. Therefore the Soft Start Phase takes  
place between 1V and 4V. Above VSoftsS = 4V there is no  
longer duty cycle limitation DCmax which is controlled by  
comparator C7 since comparator C2 blocks the gate G7 (see  
Version 2.0  
12  
24 Aug 2005  
CoolSET™-F3  
Functional Description  
3.4.3  
Gate Driver  
3.4  
PWM Section  
0.72  
PWM Section  
Oscillator  
VCC  
1
Duty Cycle  
max  
PWM-Latch  
Clock  
Gate  
Soft Start  
FF1  
Comparator  
CoolMOS™  
Gate Driver  
&
S
R
1
Q
G8  
PWM  
Comparator  
G9  
Gate Driver  
Current  
Limiting  
Figure 10  
Gate Driver  
Internal  
CoolMOS™  
Gate  
The driver-stage is optimized to minimize EMI and to  
provide high circuit efficiency. This is done by reducing the  
switch on slope when exceeding the internal CoolMOS™  
threshold. This is achieved by a slope control of the rising  
edge at the driver’s output (see Figure 11).  
Figure 9  
3.4.1  
PWM Section  
Oscillator  
(internal) VGate  
The oscillator generates a fixed frequency. The switching  
frequency of ICE3Axx65x is fOSC = 100kHz and for  
ICE3Bxx65x fOSC = 67kHz. A resistor, a capacitor and a  
current source and current sink which determine the  
frequency are integrated. The charging and discharging  
current of the implemented oscillator capacitor are internally  
trimmed, in order to achieve a very accurate switching  
frequency. The ratio of controlled charge to discharge  
current is adjusted to reach a maximum duty cycle limitation  
of Dmax=0.72.  
ca. t = 130ns  
5V  
t
3.4.2  
PWM-Latch FF1  
Figure 11  
Gate Rising Slope  
The oscillator clock output provides a set pulse to the PWM-  
Latch when initiating the internal CoolMOS™ conduction.  
After setting the PWM-Latch can be reset by the PWM  
comparator, the Soft Start comparator or the Current-Limit  
comparator. In case of resetting, the driver is shut down  
immediately.  
Thus the leading switch on spike is minimized. When the  
integrated CoolMOS™ is switched off, the falling shape of  
the driver is slowed down when reaching 2V to prevent an  
overshoot below ground. Furthermore the driver circuit is  
designed to eliminate cross conduction of the output stage.  
During powerup when VCC is below the undervoltage  
lockout threshold VVCCoff, the output of the Gate Driver is  
low to disable power transfer to the seconding side.  
Version 2.0  
13  
24 Aug 2005  
CoolSET™-F3  
Functional Description  
3.5.1  
Leading Edge Blanking  
3.5  
Current Limiting  
VSense  
PWM Latch  
FF1  
V
csth  
tLEB = 220ns  
Current Limiting  
Propagation-Delay  
Compensation  
Vcsth  
Leading  
Edge  
C10  
Blanking  
220ns  
t
PWM-OP  
&
Figure 13  
Leading Edge Blanking  
C12  
G10  
Each time when the internal CoolMOS™ is switched on, a  
leading edge spike is generated due to the primary-side  
capacitances and secondary-side rectifier reverse recovery  
time. This spike can cause the gate drive to switch off  
unintentionally. To avoid a premature termination of the  
switching pulse, this spike is blanked out with a time  
constant of tLEB = 220ns. During this time, the gate drive will  
not be switched off.  
0.257V  
1pF  
10k  
Active Burst  
Mode  
D1  
CS  
3.5.2  
Propagation Delay Compensation  
In case of overcurrent detection, the switch-off of the  
internal CoolMOS™ is delayed due to the propagation delay  
of the circuit. This delay causes an overshoot of the peak  
current Ipeak which depends on the ratio of dI/dt of the peak  
current (see Figure 14).  
Figure 12  
Current Limiting Block  
There is a cycle by cycle Current Limiting realized by the  
Current-Limit comparator C10 to provide an overcurrent  
detection. The source current of the internal CoolMOS™ is  
sensed via an external sense resistor RSense . By means of  
RSense the source current is transformed to a sense voltage  
VSense which is fed into the pin CS. If the voltage VSense  
exceeds the internal threshold voltage Vcsth the comparator  
C10 immediately turns off the gate drive by resetting the  
PWM Latch FF1. A Propagation Delay Compensation is  
added to support the immediate shut down without delay of  
the internal CoolMOS™ in case of Current Limiting. The  
influence of the AC input voltage on the maximum output  
power can thereby be avoided.  
Signal1  
IOvershoot2  
Signal2  
tPropagation Delay  
ISense  
Ipeak2  
Ipeak1  
ILimit  
IOvershoot1  
To prevent the Current Limiting from distortions caused by  
leading edge spikes a Leading Edge Blanking is integrated in  
the current sense path for the comparators C10, C12 and the  
PWM-OP.  
t
The output of comparator C12 is activated by the Gate G10  
if Active Burst Mode is entered. Once activated the current  
limiting is thereby reduced to 0.257V. This voltage level  
determines the power level when the Active Burst Mode is  
left if there is a higher power demand.  
Figure 14  
Current Limiting  
The overshoot of Signal2 is bigger than of Signal1 due to the  
steeper rising waveform. This change in the slope is  
depending on the AC input voltage. Propagation Delay  
Compensation is integrated to limit the overshoot  
dependency on dI/dt of the rising primary current. That  
means the propagation delay time between exceeding the  
current sense threshold Vcsth and the switch off of the internal  
CoolMOS™ is compensated over temperature within a wide  
range.  
Version 2.0  
14  
24 Aug 2005  
CoolSET™-F3  
Functional Description  
Current Limiting is now possible in a very accurate way. E.g.  
Ipeak = 0.5A with RSense = 2. Without Propagation Delay  
Compensation the current sense threshold is set to a static  
voltage level Vcsth=1V. A current ramp of  
3.6  
Control Unit  
The Control Unit contains the functions for Active Burst  
Mode and Auto Restart Mode. The Active Burst Mode and  
the Auto Restart Mode are combined with an Adjustable  
Blanking Window which is depending on the external Soft  
Start capacitor. By means of this Adjustable Blanking  
Window, the IC avoids entering into these two modes  
accidentally. Furthermore it also provides a certain time  
whereby the overload detection is delayed. This delay is  
useful for applications which normally works with a low  
current and occasionally require a short duration of high  
current.  
dI/dt = 0.4A/µs, that means dVSense/dt = 0.8V/µs, and a  
propagation delay time of i.e. tPropagation Delay =180ns leads  
then to an Ipeak overshoot of 14.4%. By means of propagation  
delay compensation the overshoot is only about 2% (see  
Figure 15).  
with compensation  
without compensation  
V
1,3  
1,25  
1,2  
3.6.1  
Adjustable Blanking Window  
1,15  
1,1  
SoftS  
1,05  
1
6.5V  
0,95  
0,9  
RSoftS  
5kΩ  
0
0,2  
0,4  
0,6  
0,8  
1
1,2  
1,4  
1,6  
1,8  
2
V
dVSense  
dt  
µs  
4.4V  
1
S1  
Figure 15  
Overcurrent Shutdown  
G2  
The Propagation Delay Compensation is realized by means  
of a dynamic threshold voltage Vcsth (see Figure 16). In case  
of a steeper slope the switch off of the driver is earlier to  
compensate the delay.  
C3  
VOSC  
5.4V  
max. Duty Cycle  
Auto  
Restart  
Mode  
&
G5  
4.8V  
C4  
off time  
Active  
Burst  
Mode  
VSense  
Vcsth  
t
Propagation Delay  
&
FB  
G6  
C5  
1.32V  
Signal1  
Signal2  
Control Unit  
t
Figure 16  
Dynamic Voltage Threshold Vcsth  
Figure 17  
Adjustable Blanking Window  
VSoftS is clamped at 4.4V by the closed switch S1 after the  
SMPS is settled. If overload occurs VFB is exceeding 4.8V.  
Auto Restart Mode can’t be entered as the gate G5 is still  
blocked by the comparator C3. But after VFB has exceeded  
4.8V the switch S1 is opened via the gate G2. The external  
Version 2.0  
15  
24 Aug 2005  
CoolSET™-F3  
Functional Description  
Soft Start capacitor can now be charged further by the 3.6.2.1  
Entering Active Burst Mode  
integrated pull up resistor RSoftS. The comparator C3 releases  
the gates G5 and G6 once VSofts has exceeded 5.4V.  
Therefore there is no entering of Auto Restart Mode possible  
during this charging time of the external capacitor CSoftS. The  
same procedure happens to the external Soft Start capacitor  
if a low load condition is detected by comparator C5 when  
VFB is falling below 1.32V. Only after VSoftS has exceeded  
5.4V and VFB is still below 1.32V Active Burst Mode is  
entered.  
The FB signal is always observed by the comparator C5 if  
the voltage level falls below 1.32V. In that case the switch S1  
is released which allows the capacitor CSoftS to be charged  
starting from the clamped voltage level at 4.4V in normal  
operating mode. If VSoftS exceeds 5.4V the comparator C3  
releases the gate G6 to enter the Active Burst Mode. The  
time window that is generated by combining the FB and  
SoftS signals with gate G6 avoids a sudden entering of the  
Active Burst Mode due to large load jumps. This time  
window can be adjusted by the external capacitor CSoftS  
.
3.6.2  
The controller provides Active Burst Mode for low load  
conditions at VOUT Active Burst Mode increases  
Active Burst Mode  
After entering Active Burst Mode a burst flag is set and the  
internal bias is switched off in order to reduce the current  
consumption of the IC down to approx. 1.05mA. In this Off  
State Phase the IC is no longer self supplied so that therefore  
CVCC has to provide the VCC current (see Figure 19).  
Furthermore gate G11 is then released to start the next burst  
cycle once VFB has 3.4V exceeded.  
.
significantly the efficiency at light load conditions while  
supporting a low ripple on VOUT and fast response on load  
jumps. During Active Burst Mode which is controlled only  
by the FB signal the IC is always active and can therefore  
immediately response on fast changes at the FB signal. The  
Startup Cell is kept switched off to avoid increased power  
losses for the self supply.  
It has to be ensured by the application that the VCC remains  
above the Undervoltage Lockout Level of 8.5V to avoid that  
the Startup Cell is accidentally switched on. Otherwise  
power losses are significantly increased. The minimum VCC  
level during Active Burst Mode is depending on the load  
conditions and the application. The lowest VCC level is  
SoftS  
6.5V  
reached at no load conditions at VOUT  
.
RSoftS  
5k  
3.6.2.2 Working in Active Burst Mode  
Internal Bias  
4.4V  
After entering the Active Burst Mode the FB voltage rises as  
OUT starts to decrease due to the inactive PWM section.  
V
Comparator C6a observes the FB signal if the voltage level  
4V is exceeded. In that case the internal circuit is again  
activated by the internal Bias to start with switching. As now  
in Active Burst Mode the gate G10 is released the current  
limit is only 0.257V to reduce the conduction losses and to  
avoid audible noise. If the load at VOUT is still below the  
starting level for the Active Burst Mode the FB signal  
decreases down to 3.4V. At this level C6b deactivates again  
the internal circuit by switching off the internal Bias. The  
gate G11 is released as after entering Active Burst Mode the  
burst flag is set. If working in Active Burst Mode the FB  
voltage is changing like a saw tooth between 3.4V and 4V  
(see Figure 19).  
S1  
Current  
Limiting  
&
C3  
G10  
5.4V  
4.8V  
C4  
Active  
Burst  
C5  
&
G6  
Mode  
FB  
1.32V  
4.0V  
3.4V  
3.6.2.3  
Leaving Active Burst Mode  
The FB voltage immediately increases if there is a high load  
jump. This is observed by comparator C4. As the current  
limit is ca. 26% during Active Burst Mode a certain load  
jump is needed that FB can exceed 4.8V. At this time C4  
resets the Active Burst Mode which also blocks C12 by the  
C6a  
C6b  
&
G11  
Control Unit  
Figure 18  
Active Burst Mode  
The Active Burst Mode is located in the Control Unit. Figure  
18 shows the related components.  
Version 2.0  
16  
24 Aug 2005  
CoolSET™-F3  
Functional Description  
gate G10. Maximum current can now be provided to 3.6.3  
Protection Mode (Auto Restart Mode)  
stabilize VOUT  
.
In order to increase the SMPS system’s robustness and  
safety, the IC provides the Auto Restart Mode as a protection  
feature. The Auto Restart Mode is entered upon detection of  
the following faults in the system:  
V
FB  
Entering Active  
Burst Mode  
Leaving Active  
Burst Mode  
VCC Overvoltage  
Overtemperature  
Overload  
4.80V  
4.00V  
3.40V  
Open Loop  
VCC Undervoltage  
Short Optocoupler  
1.32V  
VSoftS  
t
Blanking Window  
SoftS  
6.5V  
Control Unit  
RSoftS  
5.40V  
CSoftS  
5k  
VCC  
4.40V  
C1  
&
G1  
4.4V  
Spike  
17V  
Blanking  
VCS  
t
t
t
t
t
8.0us  
C11  
4.0V  
Thermal Shutdown  
T >140°C  
j
Current limit level during  
Active Burst Mode  
1.00V  
S1  
0.257V  
4.8V  
5.4V  
&
Auto Restart  
Mode  
C4  
C3  
FB  
V
G5  
VCC  
Voltage  
Reference  
8.5V  
Figure 20  
Auto Restart Mode  
The VCC voltage is observed by comparator C1 if 17V is  
exceeded. The output of C1 is combined with both the output  
of C11 which checks for SoftS<4.0V, and the output of C4  
which checks for FB>4.8V. Therefore the overvoltage  
detection is can only active during Soft Start  
Phase(SoftS<4.0V) and when FB signal is outside the  
operating range > 4.8V. This means any small voltage  
overshoots of VVCC during normal operating cannot trigger  
the Auto Restart Mode.  
In order to ensure system reliability and prevent any false  
activation, a blanking time is implemented before the IC can  
enter into the Auto Restart Mode. The output of the VCC  
overvoltage detection is fed into a spike blanking with a time  
constant of 8.0µs.  
IVCC  
7.2mA  
1.05mA  
VOUT  
Max. Ripple < 1%  
The other fault detection which can result in the Auto Restart  
Mode and has this 8.0µs blanking time is the  
Overtemperature detection. This block checks for a junction  
temperature of higher than 140°C for malfunction operation.  
Once the Auto Restart Mode is entered, the internal Voltage  
Reference is switched off in order to reduce the current  
Figure 19  
Signals in Active Burst Mode  
Version 2.0  
17  
24 Aug 2005  
CoolSET™-F3  
Functional Description  
consumption of the IC as much as possible. In this mode, the  
average current consumption is only 300µA as the only  
working block is the Undervoltage Lockout(UVLO) which  
controls the Startup Cell by switching on/off at VVCCon  
/
VVCCoff  
.
As there is no longer a self supply by the auxiliary winding,  
VCC starts to drop. The UVLO switches on the integrated  
Startup Cell when VCC falls below 8.5V. It will continue to  
charge VCC up to 15V whereby it is switched off again and  
the IC enters into the Start Up Phase.  
As long as all fault conditions have been removed, the IC  
will automatically power up as usual with switching cycle at  
the GATE output after Soft Start duration. Thus the name  
Auto Restart Mode.  
Other fault detections which are active in normal operation  
is the sensing for Overload, Open Loop and VCC  
undervoltage conditions. In the first 2 cases, FB will rise  
above 4.8V which will be observed by C4. At this time, S1  
is released such that VSoftS can rise from its earlier clamp  
voltage of 4.4V. If VSoftS exceeds 5.4V which is observed by  
C3, Auto Restart Mode is entered as both inputs of the gate  
G5 are high.  
This charging of the Soft Start capacitor from 4.4V to 5.4V  
defines a blanking window which prevents the system from  
entering into Auto Restart Mode un-intentionally during  
large load jumps. In this event, FB will rise close to 6.5V for  
a short duration before the loop regulates with FB less than  
4.8V. This is the same blanking time window as for the  
Active Burst Mode and can therefore be adjusted by the  
external CSoftS  
.
In the case of VCC undervoltage, ie. VCC falls below 8.5V,  
the IC will be turn off with the Startup Cell charging VCC as  
described earlier in this section. Once VCC is charged above  
15V, the IC will start a new startup cycle. The same  
procedure applies when the system is under Short  
Optocoupler fault condition, as it will lead to VCC  
undervoltage.  
Version 2.0  
18  
24 Aug 2005  
CoolSET™-F3  
Electrical Characteristics  
4
Electrical Characteristics  
Note: All voltages are measured with respect to ground (Pin 8). The voltage levels are valid if other ratings are not  
violated.  
4.1  
Absolute Maximum Ratings  
Note: Absolute maximum ratings are defined as ratings, which when being exceeded may lead to destruction of the  
integrated circuit. For the same reason make sure, that any capacitor that will be connected to pin 7 (VCC) is  
discharged before assembling the application circuit.  
Parameter  
Symbol  
Limit Values  
Unit  
Remarks  
min.  
max.  
Drain Source Voltage  
VDS  
-
650  
V
Tj=110°C  
ICE3Axx65/xx65I/xx65P  
ICE3Bxx65/xx65I/xx65P  
Pulse drain current, tp  
ICE3x0365  
ID_Puls1  
ID_Puls2  
ID_Puls3  
ID_Puls4  
ID_Puls5  
ID_Puls6  
ID_Puls7  
ID_Puls8  
ID_Puls9  
ID_Puls10  
ID_Puls11  
-
-
-
-
-
-
-
-
-
-
-
1.6  
A
A
A
A
A
A
A
A
A
A
A
limited by max. Tj=150°C  
ICE3x0565  
2.3  
ICE3A0565Z  
ICE3x1065  
ICE3x1565  
3.4  
6.1  
ICE3x2065  
10.3  
15.7  
3.4  
ICE3A2065Z  
ICE3x2565  
ICE3x2065I  
ICE3x2065P  
ICE3x3065I  
ICE3x3065P  
4.3  
ICE3x3565I  
ICE3x3565P  
6.5  
ICE3x5065I  
ICE3x5065P  
9.4  
ICE3x5565I  
ICE3x5565P  
10.7  
Version 2.0  
19  
24 Aug 2005  
CoolSET™-F3  
Electrical Characteristics  
Parameter  
Symbol  
Limit Values  
Unit  
Remarks  
min.  
max.  
Avalanche energy,  
repetitive tAR limited by  
max. Tj=150°C1)  
ICE3x0365  
EAR1  
EAR2  
EAR3  
EAR4  
EAR5  
EAR6  
EAR7  
EAR8  
EAR9  
EAR10  
EAR11  
-
-
-
-
-
-
-
-
-
-
-
0.005  
mJ  
mJ  
mJ  
mJ  
mJ  
mJ  
mJ  
mJ  
mJ  
mJ  
mJ  
ICE3x0565  
0.01  
0.07  
0.15  
0.40  
0.47  
0.07  
0.11  
0.17  
0.40  
0.44  
ICE3A0565Z  
ICE3x1065  
ICE3x1565  
ICE3x2065  
ICE3A2065Z  
ICE3x2565  
ICE3x2065I  
ICE3x2065P  
ICE3x3065I  
ICE3x3065P  
ICE3x3565I  
ICE3x3565P  
ICE3x5065I  
ICE3x5065P  
ICE3x5565I  
ICE3x5565P  
Version 2.0  
20  
24 Aug 2005  
CoolSET™-F3  
Electrical Characteristics  
Parameter  
Symbol  
Limit Values  
Unit  
Remarks  
min.  
max.  
Avalanche current,  
repetitive tAR limited by  
max. Tj=150°C  
ICE3x0365  
IAR1  
IAR2  
IAR3  
IAR4  
IAR5  
IAR6  
IAR7  
IAR8  
IAR9  
IAR10  
IAR11  
-
-
-
-
-
-
-
-
-
-
-
0.3  
A
A
A
A
A
A
A
A
A
A
A
ICE3x0565  
0.5  
1.0  
1.5  
2.0  
2.5  
2.0  
3.0  
3.5  
5.0  
5.5  
ICE3A0565Z  
ICE3x1065  
ICE3x1565  
ICE3x2065  
ICE3A2065Z  
ICE3x2565  
ICE3x2065I  
ICE3x2065P  
ICE3x3065I  
ICE3x3065P  
ICE3x3565I  
ICE3x3565P  
ICE3x5065I  
ICE3x5065P  
ICE3x5565I  
ICE3x5565P  
1)  
Repetitive avalanche causes additional power losses that can be calculated as PAV=EAR*f  
Version 2.0  
21  
24 Aug 2005  
CoolSET™-F3  
Electrical Characteristics  
Parameter  
Symbol  
Limit Values  
Unit  
Remarks  
min.  
max.  
Thermal Resistance  
Junction-Ambient  
ICE3x0365  
ICE3x0565  
ICE3x1065  
ICE3x1565  
ICE3x2065  
ICE3x2565  
RthJA1  
90  
K/W  
PG-DIP-8-6  
ICE3A0565Z RthJA2  
96  
K/W  
K/W  
PG-DIP-7-1  
ICE3x2065Z  
ICE3x2065I  
ICE3x3065I  
ICE3x3565I  
ICE3x5065I  
ICE3x5565I  
RthJA3  
103  
PG-TO220-6-46  
Free standing without  
heatsink  
ICE3x2065P RthJA4  
ICE3x3065P  
82  
K/W  
PG-TO220-6-47  
Free standing without  
heatsink  
ICE3x3565P  
ICE3x5065P  
ICE3x5565P  
Thermal Resistance  
Junction-Case  
ICE3x2065I  
ICE3x2065P  
RthJC1  
RthJC2  
RthJC3  
RthJC4  
RthJC5  
3.30  
3.08  
2.94  
2.79  
2.75  
K/W  
K/W  
K/W  
K/W  
K/W  
PG-TO220-6-46  
PG-TO220-6-47  
ICE3x3065I  
ICE3x3065P  
PG-TO220-6-46  
PG-TO220-6-47  
ICE3x3565I  
ICE3x3565P  
PG-TO220-6-46  
PG-TO220-6-47  
ICE3x5065I  
ICE3x5065P  
PG-TO220-6-46  
PG-TO220-6-47  
ICE3x5565I  
ICE3x5565P  
PG-TO220-6-46  
PG-TO220-6-47  
VCC Supply Voltage  
FB Voltage  
VVCC  
VFB  
VSoftS  
VCS  
Tj  
-0.3  
-0.3  
-0.3  
-0.3  
-40  
-55  
-
22  
V
6.5  
6.5  
6.5  
150  
150  
3
V
SoftS Voltage  
V
CS Voltage  
V
Junction Temperature  
Storage Temperature  
°C  
°C  
kV  
Controller & CoolMOS™  
Human body model1)  
TS  
ESD Capability(incl. Drain Pin)  
VESD  
1)  
According to EIA/JESD22-A114-B (discharging a 100pF capacitor through a 1.5kseries resistor)  
Version 2.0  
22  
24 Aug 2005  
CoolSET™-F3  
Electrical Characteristics  
4.2  
Operating Range  
Note: Within the operating range the IC operates as described in the functional description.  
Parameter  
Symbol  
Limit Values  
Unit  
Remarks  
min.  
max.  
VCC Supply Voltage  
VVCC  
VVCCoff  
21  
V
Junction Temperature of Controller TjCon  
-25  
130  
150  
°C  
°C  
Max value limited due to thermal shut  
down of controller  
Junction Temperature of  
CoolMOS™  
TjCoolMOS  
-25  
4.3  
Characteristics  
4.3.1  
Supply Section 1  
Note: The electrical characteristics involve the spread of values within the specified supply voltage and junction  
temperature range TJ from – 25 °C to 130 °C. Typical values represent the median values, which are related to  
25°C. If not otherwise stated, a supply voltage of VCC = 15 V is assumed.  
Parameter  
Symbol  
Limit Values  
Unit  
Test Condition  
min.  
typ.  
max.  
Start Up Current  
IVCCstart  
-
160  
220  
µA  
V
VCC =14V  
VCC Charge Current  
IVCCcharge1  
IVCCcharge2  
IStartLeak  
0.55  
1.05  
0.88  
0.2  
1.60  
-
mA  
mA  
µA  
V
V
V
VCC = 0V  
-
-
VCC =14V  
Leakage Current of  
50  
VCC=16V, VDrain = 450V  
Start Up Cell and CoolMOS™  
at Tj=100°C  
Supply Current with  
Inactive Gate  
IVCCsup1  
-
-
5.5  
7.0  
-
mA  
Supply Current in  
Auto Restart Mode with  
Inactive Gate  
IVCCrestart  
300  
µA  
I
I
FB = 0  
Softs = 0  
Supply Current in  
Active Burst Mode  
with Inactive Gate  
IVCCburst1  
IVCCburst2  
-
-
1.05  
0.95  
1.25  
1.15  
mA  
mA  
V
V
VCC =15V  
FB = 3.7V, VSoftS = 4.4V  
V
V
VCC = 9.5V  
FB = 3.7V, VSoftS = 4.4V  
VCC Turn-On Threshold  
VCC Turn-Off Threshold  
VCC Turn-On/Off Hysteresis  
VVCCon  
VVCCoff  
VVCChys  
14.2  
8.0  
-
15.0  
8.5  
15.8  
9.0  
-
V
V
V
6.5  
Version 2.0  
23  
24 Aug 2005  
CoolSET™-F3  
Electrical Characteristics  
4.3.2  
Supply Section 2  
Parameter  
Symbol  
Limit Values  
Unit  
Test Condition  
min.  
typ.  
5.6  
5.5  
5.7  
max.  
Supply Current  
with Active Gate  
ICE3A0365  
ICE3B0365  
IVCCsup2  
IVCCsup2  
IVCCsup2  
-
-
-
7.1  
7.0  
7.2  
mA  
mA  
mA  
V
SoftS = 4.4V  
I
FB = 0  
ICE3A0565  
ICE3A0565Z  
ICE3B0565  
ICE3A1065  
ICE3B1065  
ICE3A1565  
ICE3B1565  
IVCCsup2  
IVCCsup2  
IVCCsup2  
IVCCsup2  
IVCCsup2  
IVCCsup2  
-
-
-
-
-
-
5.6  
5.9  
5.7  
6.3  
6.0  
7.1  
7.1  
7.5  
7.2  
8.0  
7.6  
8.9  
mA  
mA  
mA  
mA  
mA  
mA  
ICE3A2065  
ICE3A2065Z  
ICE3B2065  
ICE3A2565  
ICE3B2565  
IVCCsup2  
IVCCsup2  
IVCCsup2  
IVCCsup2  
-
-
-
-
6.5  
8.1  
7.2  
5.9  
8.2  
10.2  
9.0  
mA  
mA  
mA  
mA  
Supply Current  
with Active Gate  
ICE3A2065I  
ICE3A2065P  
7.5  
V
SoftS = 4.4V  
I
FB = 0  
ICE3B2065I  
ICE3B2065P  
IVCCsup2  
IVCCsup2  
IVCCsup2  
IVCCsup2  
IVCCsup2  
IVCCsup2  
IVCCsup2  
IVCCsup2  
IVCCsup2  
-
-
-
-
-
-
-
-
-
5.7  
6.1  
5.9  
6.4  
6.0  
7.2  
6.6  
7.6  
6.8  
7.2  
7.7  
7.4  
8.0  
7.6  
9.0  
8.3  
9.5  
8.5  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
ICE3A3065I  
ICE3A3065P  
ICE3B3065I  
ICE3B3065P  
ICE3A3565I  
ICE3A3565P  
ICE3B3565I  
ICE3B3565P  
ICE3A5065I  
ICE3A5065P  
ICE3B5065I  
ICE3B5065P  
ICE3A5565I  
ICE3A5565P  
ICE3B5565I  
ICE3B5565P  
Version 2.0  
24  
24 Aug 2005  
CoolSET™-F3  
Electrical Characteristics  
4.3.3  
Internal Voltage Reference  
Symbol  
Parameter  
Limit Values  
Unit  
Test Condition  
min.  
typ.  
max.  
6.63  
Trimmed Reference Voltage  
VREF  
6.37  
6.50  
V
measured at pin FB  
I
FB = 0  
4.3.4  
PWM Section  
Parameter  
Symbol  
Limit Values  
Unit  
Test Condition  
min.  
typ.  
max.  
Fixed Oscillator  
Frequency  
ICE3Axx65  
ICE3Axx65Z  
ICE3Axx65I  
ICE3Axx65P  
fOSC1  
fOSC2  
fOSC1  
fOSC2  
92  
100  
108  
106  
73  
kHz  
kHz  
kHz  
kHz  
94  
61  
63  
100  
67  
Tj = 25°C  
Tj = 25°C  
Fixed Oscillator  
Frequency  
ICE3Bxx65  
ICE3Bxx65I  
ICE3Bxx65P  
67  
71  
Max. Duty Cycle  
Min. Duty Cycle  
PWM-OP Gain  
Dmax  
0.67  
0
0.72  
-
0.77  
Dmin  
-
VFB < 0.3V  
AV  
3.5  
-
3.7  
0.85  
0.7  
3.9  
Voltage Ramp Max Level  
VMax-Ramp  
VFBmin  
-
-
V
V
VFB Operating Range Min Level  
0.3  
VFB Operating Range Max level  
VFBmax  
-
-
4.75  
V
CS=1V, limited by  
Comparator C41)  
FB Pull-Up Resistor  
SoftS Pull-Up Resistor  
1)  
RFB  
16  
39  
20  
50  
27  
62  
kΩ  
kΩ  
RSoftS  
The parameter is not subjected to production test - verified by design/characterization  
Version 2.0  
25  
24 Aug 2005  
CoolSET™-F3  
Electrical Characteristics  
4.3.5  
Control Unit  
Parameter  
Symbol  
Limit Values  
Unit  
Test Condition  
min.  
typ.  
max.  
Deactivation Level for SoftS  
Comparator C7 by C2  
VSoftSC2  
VSoftSclmp  
VSoftSC3  
ISoftSstart  
VFBC4  
3.85  
4.00  
4.15  
4.57  
5.60  
-
V
V
V
V
V
V
V
FB > 5V  
Clamped VSoftS Voltage during  
Normal Operating Mode  
4.23  
5.20  
-
4.40  
5.40  
1.3  
V
FB = 4V  
Activation Limit of  
Comparator C3  
V
FB > 5V  
SoftS Startup Current  
mA  
V
SoftS = 0V  
SoftS > 5.6V  
SoftS > 5.6V  
Over Load & Open Loop Detection  
Limit for Comparator C4  
4.62  
1.23  
3.85  
4.80  
1.30  
4.00  
4.98  
1.37  
4.15  
Active Burst Mode Level for  
Comparator C5  
VFBC5  
V
Active Burst Mode Level for  
Comparator C6a  
VFBC6a  
V
After Active Burst Mode  
is entered  
Active Burst Mode Level for  
Comparator C6b  
VFBC6b  
VVCCOVP  
TjSD  
3.25  
16.1  
130  
-
3.40  
17.1  
140  
8.0  
3.55  
18.1  
150  
-
V
After Active Burst Mode  
is entered  
Overvoltage Detection Limit  
Thermal Shutdown1)  
Spike Blanking  
1)  
V
V
V
FB > 5V  
SoftS < 4.0V  
°C  
µs  
tSpike  
The parameter is not subjected to production test - verified by design/characterization  
Note: The trend of all the voltage levels in the Control Unit is the same regarding the deviation except VVCCOVP and VVCCPD  
4.3.6  
Current Limiting  
Parameter  
Symbol  
Limit Values  
Unit  
Test Condition  
min.  
typ.  
max.  
Peak Current Limitation  
(incl. Propagation Delay)  
Vcsth  
VCS2  
0.97  
1.02  
1.07  
V
V
dVsense / dt = 0.6V/µs  
(see Figure 16)  
Peak Current Limitation during  
Active Burst Mode  
0.232  
0.257  
0.282  
Leading Edge Blanking  
tLEB  
-
220  
-0.2  
-
ns  
V
V
SoftS = 4.4V  
CS =0V  
CS Input Bias Current  
ICSbias  
-1.0  
0
µA  
Version 2.0  
26  
24 Aug 2005  
CoolSET™-F3  
Electrical Characteristics  
4.3.7  
CoolMOS™ Section  
Parameter  
Symbol  
Limit Values  
Unit  
Test Condition  
min.  
typ.  
max.  
Drain Source Breakdown Voltage  
ICE3Axx65/xx65I/xx65P  
V(BR)DSS  
600  
650  
-
-
-
-
V
V
Tj = 25°C  
Tj = 110°C  
ICE3Bxx65/xx65I/xx65P  
Drain Source  
On-Resistance  
ICE3A0365  
ICE3B0365  
RDSon1  
RDSon2  
RDSon3  
RDSon4  
RDSon5  
RDSon6  
RDSon7  
-
-
6.45  
13.7  
7.50  
17.0  
Tj = 25°C  
Tj=125°C1)  
at ID = 0.3A  
ICE3A0565  
ICE3A0565Z  
ICE3B0565  
-
-
4.70  
10.0  
5.44  
12.5  
Tj = 25°C  
Tj=125°C1)  
at ID = 0.5A  
ICE3A1065  
ICE3B1065  
-
-
2.95  
6.6  
3.42  
7.56  
Tj = 25°C  
Tj=125°C1)  
at ID = 1.0A  
ICE3A1565  
ICE3B1565  
-
-
1.70  
3.57  
1.96  
4.12  
Tj = 25°C  
Tj=125°C1)  
at ID = 1.5A  
ICE3A2065  
ICE3A2065Z  
ICE3B2065  
-
-
0.92  
1.93  
1.05  
2.22  
Tj = 25°C  
Tj=125°C1)  
at ID = 2.0A  
ICE3A2565  
ICE3B2565  
-
-
0.65  
1.37  
0.75  
1.58  
Tj = 25°C  
Tj=125°C1)  
at ID = 2.5A  
Drain Source  
On-Resistance  
ICE3A2065I  
ICE3A2065P  
ICE3B2065I  
ICE3B2065P  
-
-
3.00  
6.6  
3.47  
7.63  
Tj = 25°C  
Tj=125°C1)  
at ID =1.0A  
ICE3A3065I  
ICE3A3065P  
ICE3B3065I  
ICE3B3065P  
RDSon8  
RDSon9  
RDSon10  
RDSon11  
-
-
2.10  
4.41  
2.43  
5.10  
Tj = 25°C  
Tj=125°C1)  
at ID = 1.5A  
ICE3A3565I  
ICE3A3565P  
ICE3B3565I  
ICE3B3565P  
-
-
1.55  
3.26  
1.80  
3.78  
Tj = 25°C  
Tj=125°C1)  
at ID = 1.8A  
ICE3A5065I  
ICE3A5065P  
ICE3B5065I  
ICE3B5065P  
0.95  
2.00  
1.10  
2.31  
Tj = 25°C  
Tj=125°C1)  
at ID = 2.5A  
ICE3A5565I  
ICE3A5565P  
ICE3B5565I  
ICE3B5565P  
-
-
0.79  
1.68  
0.91  
1.92  
Tj = 25°C  
Tj=125°C1)  
at ID = 2.8A  
Version 2.0  
27  
24 Aug 2005  
CoolSET™-F3  
Electrical Characteristics  
Parameter  
Symbol  
Limit Values  
Unit  
Test Condition  
min.  
typ.  
max.  
Effective output  
ICE3A0365  
Co(er)1  
Co(er)2  
-
3.65  
-
pF  
pF  
VDS = 0V to 480V  
capacitance, energy ICE3B0365  
related  
ICE3A0565  
-
4.75  
-
ICE3A0565Z  
ICE3B0565  
ICE3A1065  
ICE3B1065  
Co(er)3  
Co(er)4  
Co(er)5  
-
-
-
7.0  
-
-
-
pF  
pF  
pF  
ICE3A1565  
ICE3B1565  
11.63  
21  
ICE3A2065  
ICE3A2065Z  
ICE3B2065  
ICE3A2565  
ICE3B2565  
Co(er)6  
Co(er)7  
-
-
26.0  
7.0  
-
-
pF  
pF  
Effective output  
ICE3A2065I  
VDS = 0V to 480V  
capacitance, energy ICE3A2065P  
related  
ICE3B2065I  
ICE3B2065P  
ICE3A3065I  
ICE3A3065P  
ICE3B3065I  
ICE3B3065P  
Co(er)8  
Co(er)9  
Co(er)10  
Co(er)11  
-
-
-
-
10.0  
14.0  
20.5  
23.0  
-
-
-
-
pF  
pF  
pF  
pF  
ICE3A3565I  
ICE3A3565P  
ICE3B3565I  
ICE3B3565P  
ICE3A5065I  
ICE3A5065P  
ICE3B5065I  
ICE3B5065P  
ICE3A5565I  
ICE3A5565P  
ICE3B5565I  
ICE3B5565P  
Rise Time  
Fall Time  
1)  
trise  
tfall  
-
-
302)  
302)  
-
-
ns  
ns  
The parameter is not subjected to production test - verified by design/characterization  
Measured in a Typical Flyback Converter Application  
2)  
Version 2.0  
28  
24 Aug 2005  
CoolSET™-F3  
Outline Dimension  
5
Outline Dimension  
PG-DIP-8-6  
(Plastic Dual In-Line Outline)  
Figure 21 PG-DIP-8-6 (Pb-free lead plating Plastic Dual In-Line Outline)  
PG-DIP-7-1  
(Plastic Dual In-Line Outline)  
±0.38  
7.87  
1.7 MAX.  
2.54  
0.25 +0.1  
1)  
±0.1  
±0.25  
0.46  
6.35  
0.35 7x  
±1  
8.9  
7
5
4
1)  
1
±0.25  
9.52  
Index Marking  
1) Does not include plastic or metal protrusion of 0.25 max. per side  
Figure 22 PG-DIP-7-1 (Pb-free lead plating Plastic Dual In-Line Outline)  
Dimensions in mm  
Version 2.0  
29  
24 Aug 2005  
CoolSET™-F3  
Outline Dimension  
9.9  
7.5  
6.6  
4.4  
PG-TO220-6-46  
(Isodrain I2Pak Package)  
A
+0.1  
1.3  
-0.02  
B
0.05  
1)  
7.62  
±0.1  
0.5  
M
0.25  
A B  
0...0.15  
2.4  
±0.1  
6 x 0.6  
±0.3  
5.3  
4 x 1.27  
±0.3  
8.4  
1) Shear and punch direction no burrs this surface  
Back side, heatsink contour  
All metal surfaces tin plated, except area of cut.  
Figure 23 PG-TO220-6-46 (Pb-free lead plating Isodrain I2Pak Package)  
±0.2  
9.9  
PG-TO220-6-47  
(Isodrain Package)  
A
±0.2  
9.5  
4.4  
+0.1  
-0.02  
7.5  
6.6  
1.3  
B
0.05  
1)  
7.62  
±0.1  
0.5  
M
0.25  
A B  
0...0.15  
2.4  
±0.1  
6 x 0.6  
±0.3  
5.3  
4 x 1.27  
±0.3  
8.4  
1) Shear and punch direction no burrs this surface  
Back side, heatsink contour  
All metal surfaces tin plated, except area of cut.  
Figure 24 PG-TO220-6-47 (Pb-free lead plating Isodrain Package)  
Dimensions in mm  
24 Aug 2005  
Version 2.0  
30  
Total Quality Management  
Qualität hat für uns eine umfassende  
Bedeutung. Wir wollen allen Ihren  
Ansprüchen in der bestmöglichen Weise  
gerecht werden. Es geht uns also nicht nur  
um die Produktqualität – unsere  
quality. We direct our efforts equally at  
quality of supply and logistics, service and  
support, as well as all the other ways in  
which we advise and attend to you.  
Part of this is the very special attitude of our  
staff. Total Quality in thought and deed,  
towards co-workers, suppliers and you, our  
customer. Our guideline is “do everything  
with zero defects”, in an open manner that is  
demonstrated beyond your immediate  
workplace, and to constantly improve.  
Throughout the corporation we also think in  
terms of Time Optimized Processes (top),  
greater speed on our part to give you that  
decisive competitive edge.  
Give us the chance to prove the best of  
performance through the best of quality –  
you will be convinced.  
Anstrengungen gelten gleichermaßen der  
Lieferqualität und Logistik, dem Service  
und Support sowie allen sonstigen  
Beratungs- und Betreuungsleistungen.  
Dazu gehört eine bestimmte Geisteshaltung  
unserer Mitarbeiter. Total Quality im  
Denken und Handeln gegenüber Kollegen,  
Lieferanten und Ihnen, unserem Kunden.  
Unsere Leitlinie ist jede Aufgabe mit „Null  
Fehlern“ zu lösen – in offener Sichtweise  
auch über den eigenen Arbeitsplatz hinaus –  
und uns ständig zu verbessern.  
Unternehmensweit orientieren wir uns  
dabei auch an „top“ (Time Optimized  
Processes), um Ihnen durch größere  
Schnelligkeit den entscheidenden  
Wettbewerbsvorsprung zu verschaffen.  
Geben Sie uns die Chance, hohe Leistung  
durch umfassende Qualität zu beweisen.  
Wir werden Sie überzeugen.  
Quality takes on an allencompassing  
significance at Semiconductor Group. For  
us it means living up to each and every one  
of your demands in the best possible way.  
So we are not only concerned with product  
h t t p : / / w w w . i n f i n e o n . c o m  
Published by Infineon Technologies AG  

相关型号:

ICE3A4065P

Switching Regulator, Current-mode, 100kHz Switching Freq-Max, PZFM6, TO-220, 6 LEAD
INFINEON

ICE3A4565I

Switching Regulator, Current-mode, 100kHz Switching Freq-Max, PZFM6, TO-220, 6 LEAD
INFINEON

ICE3A4565P

Switching Regulator, Current-mode, 100kHz Switching Freq-Max, PZFM6, TO-220, 6 LEAD
INFINEON

ICE3A5065I

Off-Line SMPS Current Mode Controller with integrated 650V Startup Cell/CoolMOS
INFINEON

ICE3A5065P

Off-Line SMPS Current Mode Controller with integrated 650V Startup Cell/CoolMOS
INFINEON

ICE3A5565I

Off-Line SMPS Current Mode Controller with integrated 650V Startup Cell/CoolMOS
INFINEON

ICE3A5565I

SWITCHING REGULATOR, 100kHz SWITCHING FREQ-MAX, ZIP6, ROHS COMPLIANT, TO-220, 6 LEAD
ROCHESTER

ICE3A5565P

Off-Line SMPS Current Mode Controller with integrated 650V Startup Cell/CoolMOS
INFINEON

ICE3A5565PBKSA1

Switching Regulator, Current-mode, 100kHz Switching Freq-Max, ROHS COMPLIANT, TO-220, 6 LEAD
INFINEON

ICE3A6065I

Switching Regulator, Current-mode, 100kHz Switching Freq-Max, PZFM6, TO-220, 6 LEAD
INFINEON

ICE3A6065P

Switching Regulator, Current-mode, 100kHz Switching Freq-Max, PZFM6, TO-220, 6 LEAD
INFINEON

ICE3A6565I

Switching Regulator, Current-mode, 100kHz Switching Freq-Max, PZFM6, TO-220, 6 LEAD
INFINEON