IMBG120R090M1H [INFINEON]

是采用D2PAK-7L (TO-263-7)封装的1200 V, 90 mΩ CoolSiC™ SiC MOSFET,它基于先进的沟槽工艺,该工艺经过优化,兼具性能与可靠性。它采用改良版1200V SMD封装,将CoolSiC技术的低功耗特性与.XT互联技术相结合,可在电机驱动、充电模块以及工业电源等应用中实现最高效率和被动制冷。;
IMBG120R090M1H
型号: IMBG120R090M1H
厂家: Infineon    Infineon
描述:

是采用D2PAK-7L (TO-263-7)封装的1200 V, 90 mΩ CoolSiC™ SiC MOSFET,它基于先进的沟槽工艺,该工艺经过优化,兼具性能与可靠性。它采用改良版1200V SMD封装,将CoolSiC技术的低功耗特性与.XT互联技术相结合,可在电机驱动、充电模块以及工业电源等应用中实现最高效率和被动制冷。

电机 驱动
文件: 总17页 (文件大小:1257K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IMBG120R090M1H  
IMBG120R090M1H  
CoolSiC™ 1200V SiC Trench MOSFET  
with .XT interconnection technology  
Features  
Very low switching losses  
Drain  
TAB  
Short circuit withstand time 3 µs  
Fully controllable dV/dt  
Gate  
pin 1  
Benchmark gate threshold voltage, VGS(th) = 4.5V  
Robust against parasitic turn on, 0V turn-off gate voltage can be applied  
Robust body diode for hard commutation  
.XT interconnection technology for best-in-class thermal performance  
Package creepage and clearance distance > 6.1mm  
Sense pin for optimized switching performance  
Sense  
pin 2  
Source  
pin 3...7  
Benefits  
Efficiency improvement  
Enabling higher frequency  
Increased power density  
Cooling effort reduction  
Reduction of system complexity and cost  
Potential applications  
Drives  
Infrastructure Charger  
Energy generation - Solar string inverter and solar optimizer  
Industrial power supplies - Industrial UPS  
Product validation  
Qualified for industrial applications according to the relevant tests of JEDEC 47/20/22  
Note:  
the source and sense pins are not exchangeable, their exchange might lead to malfunction  
Table 1  
Type  
Key Performance and Package Parameters  
VDS  
ID  
RDS(on  
Tvj = 25°C, ID = 8.5A, VGS = 18V  
Tvj,max  
Marking  
Package  
PG-TO263-7  
TC = 25°C, Rth(j-c,max)  
IMBG120R090M1H 1200V  
26A  
90mΩ  
175°C  
12M1H090  
Final Datasheet  
Please read the Important Notice and Warnings at the end of this document  
page 1 of 17  
2.2  
2020-12-11  
www.infineon.com  
 
 
 
 
IMBG120R090M1H  
CoolSiC™ 1200V SiC Trench MOSFET  
Table of contents  
Table of contents  
Features ........................................................................................................................................ 1  
Benefits......................................................................................................................................... 1  
Potential applications..................................................................................................................... 1  
Product validation.......................................................................................................................... 1  
Table of contents............................................................................................................................ 2  
1
2
Maximum ratings ................................................................................................................... 3  
Thermal resistances ............................................................................................................... 4  
3
Electrical Characteristics ........................................................................................................ 5  
Static characteristics...............................................................................................................................5  
Dynamic characteristics..........................................................................................................................6  
Switching characteristics........................................................................................................................7  
3.1  
3.2  
3.3  
4
5
6
Electrical characteristic diagrams ............................................................................................ 8  
Package drawing...................................................................................................................14  
Test conditions .....................................................................................................................15  
Revision history.............................................................................................................................16  
Final Datasheet  
2 of 17  
2.2  
2020-12-11  
 
IMBG120R090M1H  
CoolSiC™ 1200V SiC Trench MOSFET  
Maximum ratings  
1
Maximum ratings  
For optimum lifetime and reliability, Infineon recommends operating conditions that do not exceed 80% of the  
maximum ratings stated in this datasheet.  
Table 2  
Maximum ratings  
Parameter  
Symbol  
Value  
Unit  
V
Drain-source voltage, Tvj ≥ 25°C  
VDSS  
1200  
DC drain current for Rth(j-c,max), limited by Tvjmax, VGS = 18V,  
TC = 25°C  
TC = 100°C  
ID  
26  
18  
A
A
1
Pulsed drain current, tp limited by Tvjmax, VGS = 18V  
ID,pulse  
65  
DC body diode forward current for Rth(j-c,max)  
,
limited by Tvjmax, VGS = 0V  
TC = 25°C  
TC = 100°C  
ISD  
A
A
V
28  
16  
1
Pulsed body diode current, tp limited by Tvjmax  
Gate-source voltage2  
ISD,pulse  
65  
Max transient voltage, < 1% duty cycle  
Recommended turn-on gate voltage  
Recommended turn-off gate voltage  
Short-circuit withstand time  
VDD = 800V, VDS,peak < 1200V, VGS,on = 15V, Tj,start = 25°C  
Power dissipation, limited by Tvjmax  
TC = 25°C  
VGS  
VGS,on  
VGS,off  
-723  
15… 18  
0
µs  
W
tSC  
3
Ptot  
136  
68  
TC = 100°C  
°C  
°C  
Virtual junction temperature  
Storage temperature  
Tvj  
-55… 175  
-55… 150  
Tstg  
Soldering temperature  
Reflow soldering (MSL1 according to JEDEC J-STD-020)  
Tsold  
260  
°C  
1 verified by design  
2 Important note: The selection of positive and negative gate-source voltages impacts the long-term behavior  
of the device. The design guidelines described in Application Note AN2018-09 must be considered to ensure  
sound operation of the device over the planned lifetime.  
Final Datasheet  
3 of 17  
2.2  
2020-12-11  
IMBG120R090M1H  
CoolSiC™ 1200V SiC Trench MOSFET  
Thermal resistances  
2
Thermal resistances  
Table 3  
Parameter  
Value  
Unit  
Symbol Conditions  
min.  
typ.  
0.82  
max.  
1.1  
MOSFET/body diode  
thermal resistance,  
junction case  
Rth(j-c)  
-
-
K/W  
K/W  
Thermal resistance,  
junction ambient  
Rth(j-a)  
leaded  
-
62  
Final Datasheet  
4 of 17  
2.2  
2020-12-11  
IMBG120R090M1H  
CoolSiC™ 1200V SiC Trench MOSFET  
Electrical Characteristics  
3
Electrical Characteristics  
3.1  
Static characteristics  
Table 4  
Static characteristics (at Tvj = 25°C, unless otherwise specified)  
Parameter  
Symbol Conditions  
Value  
Unit  
min.  
typ.  
max.  
Drain-source on-state  
resistance  
RDS(on)  
VGS = 18V, ID = 8.5A,  
Tvj = 25°C  
Tvj = 100°C  
Tvj = 175°C  
-
-
-
90  
114  
170  
125  
-
-
mΩ  
VGS = 15V, ID = 8.5A,  
Tvj = 25°C  
-
120  
160  
Body diode forward  
voltage  
VSD  
VGS = 0V, ISD = 8.5A  
Tvj = 25°C  
Tvj = 100°C  
-
-
-
4.1  
4.0  
3.9  
5.2  
-
-
V
Tvj = 175°C  
Gate-source threshold  
voltage  
VGS(th)  
(tested after 1 ms pulse at  
VGS = 20V)  
ID = 3.7mA, VDS = VGS  
Tvj = 25°C  
Tvj =175°C  
V
3.5  
-
4.5  
3.6  
5.7  
-
Zero gate voltage drain  
current  
IDSS  
VGS = 0V, VDS = 1200V  
Tvj = 25°C  
Tvj = 175°C  
-
-
-
-
-
-
0.5  
1.6  
-
165  
-
µA  
Gate-source leakage  
current  
IGSS  
VGS = 23V, VDS = 0V  
VGS = -7V, VDS = 0V  
VDS = 20V, ID = 8.5A  
f = 1MHz, VAC = 25mV  
100  
nA  
nA  
S
-
-100  
Transconductance  
gfs  
4.7  
9
-
-
Internal gate resistance  
RG,int  
Ω
Final Datasheet  
5 of 17  
2.2  
2020-12-11  
IMBG120R090M1H  
CoolSiC™ 1200V SiC Trench MOSFET  
Electrical Characteristics  
3.2  
Dynamic characteristics  
Table 5  
Parameter  
Dynamic characteristics (at Tvj = 25°C, unless otherwise specified)  
Value  
Symbol Conditions  
Unit  
min.  
typ.  
763  
39  
max.  
Input capacitance  
Output capacitance  
Reverse capacitance  
Coss stored energy  
Ciss  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Coss  
Crss  
Eoss  
QG  
pF  
µJ  
nC  
VDD = 800V, VGS = 0V,  
f = 1MHz, VAC = 25mV  
4.3  
15  
23  
Total gate charge  
VDD = 800V, ID = 8.5A,  
VGS = 0/18V, turn-on pulse  
5.9  
4.8  
Gate to source charge  
Gate to drain charge  
QGS,pl  
QGD  
Final Datasheet  
6 of 17  
2.2  
2020-12-11  
IMBG120R090M1H  
CoolSiC™ 1200V SiC Trench MOSFET  
Electrical Characteristics  
3.3  
Switching characteristics  
Table 6  
Switching characteristics, Inductive load 3  
Symbol Conditions  
Parameter  
Value  
Unit  
min.  
typ.  
max.  
MOSFET Characteristics, Tvj = 25°C  
Turn-on delay time  
Rise time  
td(on)  
tr  
td(off)  
tf  
VDD = 800V, ID = 8.5A,  
VGS = 0/18V, RG,ext = 2Ω,  
Lσ = 40nH,  
diode:  
body diode at VGS = 0V  
see Fig. E  
-
-
-
-
-
-
-
7.9  
3.1  
18  
-
-
-
-
-
-
-
ns  
µJ  
Turn-off delay time  
Fall time  
10  
Turn-on energy  
Turn-off energy  
Total switching energy  
Eon  
Eoff  
Etot  
96  
20  
116  
Body Diode Characteristics, Tvj = 25°C  
Diode reverse recovery  
charge  
Qrr  
VDD = 800V, ISD = 8.5A,  
VGS at diode = 0V,  
dif/dt= 1000A/µs,  
Qrr includes also QC ,  
see Fig. C  
nC  
A
-
-
127  
1.9  
-
-
Diode peak reverse  
recovery current  
Irrm  
MOSFET Characteristics, Tvj = 175°C  
Turn-on delay time  
Rise time  
td(on)  
tr  
td(off)  
tf  
VDD = 800V, ID = 8.5A,  
VGS = 0/18V, RG,ext = 2Ω,  
Lσ = 40nH,  
diode:  
body diode at VGS = 0V  
see Fig. E  
-
-
-
-
-
-
-
7.9  
7.3  
18  
-
-
-
-
-
-
-
ns  
µJ  
Turn-off delay time  
Fall time  
10  
Turn-on energy  
Turn-off energy  
Total switching energy  
Eon  
Eoff  
Etot  
144  
24  
168  
Body Diode Characteristics, Tvj = 175°C  
Diode reverse recovery  
charge  
Qrr  
VDD = 800V, ISD = 8.5A,  
VGS at diode = 0V,  
dif/dt= 1000A/µs,  
Qrr includes also QC ,  
see Fig. C  
nC  
A
-
-
158  
2.5  
-
-
Diode peak reverse  
recovery current  
Irrm  
3 The chip technology was characterized up to 200 kV/µs. The measured dV/dt was limited by measurement test  
setup and package.  
Final Datasheet  
7 of 17  
2.2  
2020-12-11  
IMBG120R090M1H  
CoolSiC™ 1200V SiC Trench MOSFET  
Electrical characteristic diagrams  
4
Electrical characteristic diagrams  
80  
60  
40  
20  
0
160  
140  
120  
100  
80  
not for linear use  
60  
40  
20  
0
0
25 50 75 100 125 150 175  
0
400  
800  
1200  
TC [ C]  
VDS [V]  
Figure 2  
Power dissipation as a function of case  
temperature limited by bond wire  
(Ptot = f(TC))  
Figure 1  
Safe operating area (SOA)  
(VGS = 0/18V, Tc = 25°C, Tj 175°C)  
45  
35  
40  
35  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
0
0
0
25 50 75 100 125 150 175  
0
25 50 75 100 125 150 175  
TC [ C]  
TC [ C]  
Figure 4  
Maximum source to drain current as a  
function of case temperature limited by  
bond wire (ISD = f(TC), VGS = 0V)  
Figure 3  
Maximum DC drain to source current as  
a function of case temperature limited  
by bond wire (IDS = f(TC))  
Final Datasheet  
8 of 17  
2.2  
2020-12-11  
IMBG120R090M1H  
CoolSiC™ 1200V SiC Trench MOSFET  
Electrical characteristic diagrams  
120  
6
5
4
3
2
1
0
Tvj=25°C  
Tvj=175°C  
90  
60  
30  
0
0
5
10  
15  
20  
-50  
0
50  
100  
150  
VGS [V]  
Tvj [ C]  
Figure 5  
Typical transfer characteristic  
(IDS = f(VGS), VDS = 20V, tP = 20µs)  
Figure 6  
Typical gate-source threshold voltage  
as a function of junction temperature  
(VGS(th) = f(Tvj), IDS = 3.7mA, VGS = VDS)  
120  
70  
20V  
18V  
16V  
15V  
14V  
12V  
10V  
8V  
20V  
18V  
16V  
15V  
14V  
12V  
10V  
8V  
60  
50  
40  
30  
20  
10  
0
90  
60  
30  
0
6V  
6V  
0
4
8
12  
16  
20  
0
4
8
12  
16  
20  
VDS [V]  
VDS [V]  
Figure 8  
Typical output characteristic, VGS as  
parameter  
Figure 7  
Typical output characteristic, VGS as  
parameter  
(IDS = f(VDS), Tvj=175°C, tP = 20µs)  
(IDS = f(VDS), Tvj=25°C, tP = 20µs)  
Final Datasheet  
9 of 17  
2.2  
2020-12-11  
IMBG120R090M1H  
CoolSiC™ 1200V SiC Trench MOSFET  
Electrical characteristic diagrams  
300  
18  
16  
14  
12  
10  
8
VGS = 18V  
250  
VGS = 15V  
200  
150  
100  
50  
6
4
2
0
-2  
0
0
5
10  
15  
20  
25  
-50  
0
50  
100 150  
QG [nC]  
Tvj [ C]  
Figure 10 Typical gate charge  
Figure 9  
Typical on-resistance as a function of  
junction temperature  
(VGS = f(QG), IDS = 8.5A, VDS = 800V, turn-on  
pulse)  
(RDS(on) = f(Tvj), IDS = 8.5A)  
6
5
4
3
2
1
0
1000  
100  
10  
1
Ciss  
Coss  
Crss  
1
10  
100  
1000  
-50  
0
50  
100  
150  
VDS[V]  
Tvj [ C]  
Figure 11 Typical capacitance as a function of  
drain-source voltage  
Figure 12 Typical body diode forward voltage as  
function of junction temperature  
(VSD=f(Tvj), VGS=0V, ISD=8.5A)  
(C = f(VDS), VGS = 0V, f = 1MHz)  
Final Datasheet  
10 of 17  
2.2  
2020-12-11  
IMBG120R090M1H  
CoolSiC™ 1200V SiC Trench MOSFET  
Electrical characteristic diagrams  
70  
60  
50  
40  
30  
20  
10  
0
70  
VGS=18V  
VGS=18V  
VGS=15V  
60  
VGS=15V  
50  
40  
30  
VGS=0V  
VGS=0V  
20  
10  
0
VGS=-2V  
VGS=-2V  
0
2
4
6
8
10  
0
2
4
6
8
10  
VSD [V]  
VSD [V]  
Figure 14 Typical body diode forward current as  
function of forward voltage, VGS as  
parameter  
Figure 13 Typical body diode forward current as  
function of forward voltage, VGS as  
parameter  
(ISD = f(VSD), Tvj = 175°C, tP = 20µs)  
(ISD = f(VSD), Tvj = 25°C, tP = 20µs)  
210  
400  
Etot  
Etot  
180  
Eon  
Eon  
Eoff  
300  
Eoff  
150  
120  
90  
200  
100  
0
60  
30  
0
25 50 75 100 125 150 175  
0
5
10  
15  
20  
Tvj [ C]  
ID [A]  
Figure 15 Typical switching energy losses as a  
function of junction temperature  
Figure 16 Typical switching energy losses as a  
function of drain-source current  
(E = f(IDS), VDD = 800V, VGS = 0V/18V,  
RG,ext = 2Ω, Tvj = 175°C, ind. load, test  
circuit in Fig. E, diode: body diode at VGS  
0V)  
(E = f(Tvj), VDD = 800V, VGS = 0V/18V,  
RG,ext = 2Ω, ID = 8.5A, ind. load, test circuit  
in Fig. E, diode: body diode at VGS = 0V)  
=
Final Datasheet  
11 of 17  
2.2  
2020-12-11  
IMBG120R090M1H  
CoolSiC™ 1200V SiC Trench MOSFET  
Electrical characteristic diagrams  
600  
80  
60  
40  
20  
0
td(on)  
tr  
Etot  
Eon  
Eoff  
td(off)  
tf  
400  
200  
0
0
20  
40  
60  
0
20  
40  
60  
RG [Ohm]  
RG [Ohm]  
Figure 17 Typical switching energy losses as a  
function of gate resistance  
Figure 18 Typical switching times as a function of  
gate resistor  
(E = f(RG,ext), VDD = 800V, VGS = 0V/18V,  
ID = 8.5A, Tvj = 175°C, ind. load, test circuit  
in Fig. E, diode: body diode at VGS = 0V)  
(t = f(RG,ext), VDD = 800V, VGS = 0V/18V,  
ID = 8.5A, Tvj = 175°C, ind. load, test circuit  
in Fig. E, diode: body diode at VGS = 0V)  
20  
0.5  
0.4  
0.3  
0.2  
T = 175°C  
T = 25°C  
15  
10  
5
0.1  
0.0  
T = 175°C  
T = 25°C  
0
0
2000  
4000  
6000  
0
2000  
4000  
6000  
diF /dt[A/µs]  
diF /dt[A/µs]  
Figure 20 Typical reverse recovery current as a  
function of diode current slope  
Figure 19 Typical reverse recovery charge as a  
function of diode current slope  
(Irrm = f(dif/dt), VDD = 800V, VGS = 0V/18V,  
ID = 8.5A, ind. load, test circuit in Fig.E,  
body diode at VGS = 0V)  
(Qrr = f(dif/dt), VDD = 800V, VGS = 0V/18V,  
ID = 8.5A, ind. load, test circuit in Fig.E,  
body diode at VGS = 0V)  
Final Datasheet  
12 of 17  
2.2  
2020-12-11  
IMBG120R090M1H  
CoolSiC™ 1200V SiC Trench MOSFET  
Electrical characteristic diagrams  
1E1  
1E0  
0.5  
0.2  
0.1  
0.05  
0.02  
0.01  
Single Pulse  
1E-1  
1E-2  
i:  
1
2
3
4
ri: [K/W] 1.8E-01 5.5E-01 3.1E-01 6.2E-02  
ti: [s] 1.7E-04 9.4E-03 1.6E-03 1.1E-05  
1E-6  
1E-5  
1E-4  
1E-3  
1E-2  
1E-1  
1E0  
tp [s]  
Figure 21 Max. transient thermal resistance (MOSFET/diode)  
(Zth(j-c,max) = f(tP), parameter D = tp/T, thermal equivalent circuit in Fig. D)  
Final Datasheet  
13 of 17  
2.2  
2020-12-11  
IMBG120R090M1H  
CoolSiC™ 1200V SiC Trench MOSFET  
Package drawing  
5
Package drawing  
Figure 22  
Package drawing  
Final Datasheet  
14 of 17  
2.2  
2020-12-11  
IMBG120R090M1H  
CoolSiC™ 1200V SiC Trench MOSFET  
Test conditions  
6
Test conditions  
Figure 23  
Test conditions  
Final Datasheet  
15 of 17  
2.2  
2020-12-11  
IMBG120R090M1H  
1200V SiC Trench MOSFET  
Revision history  
Revision history  
Document  
version  
Date of release  
Description of changes  
2.1  
2.2  
2020-09-01  
2020-12-11  
Final Datasheet  
Correction of circuit symbol on page 1  
Final Datasheet  
16 of 17  
2.2  
2020-12-11  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
Published by  
Infineon Technologies AG  
81726 München, Germany  
© Infineon Technologies AG 2020.  
All Rights Reserved.  
Important notice  
The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics  
(“Beschaffenheitsgarantie”). With respect to any examples, hints or any typical values stated herein and/or any  
information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and  
liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third  
party.  
In addition, any information given in this document is subject to customer’s compliance with its obligations stated in this  
document and any applicable legal requirements, norms and standards concerning customer’s products and any use of  
the product of Infineon Technologies in customer’s applications.  
The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of  
customer’s technical departments to evaluate the suitability of the product for the intended application and the  
completeness of the product information given in this document with respect to such application.  
For further information on the product, technology, delivery terms and conditions and prices please contact your nearest  
Infineon Technologies office (www.infineon.com).  
Please note that this product is not qualified according to the AEC Q100 or AEC Q101 documents of the Automotive  
Electronics Council.  
Warnings  
Due to technical requirements products may contain dangerous substances. For information on the types in question  
please contact your nearest Infineon Technologies office.  
Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized  
representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a  
failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.  

相关型号:

IMBG120R140M1H

是采用D2PAK-7L (TO-263-7)封装的1200 V, 140 mΩ CoolSiC™ SiC MOSFET,它基于先进的沟槽工艺,该工艺经过优化,兼具性能与可靠性。它采用改良版1200V SMD封装,将CoolSiC技术的低功耗特性与.XT互联技术相结合,可在电机驱动、充电模块以及工业电源等应用中实现最高效率和被动制冷。
INFINEON

IMBG120R220M1H

是采用D2PAK-7L (TO-263-7)封装的1200 V, 220 mΩ CoolSiC™ SiC MOSFET,它基于先进的沟槽工艺,该工艺经过优化,兼具性能与可靠性。它采用改良版1200V SMD封装,将CoolSiC技术的低功耗特性与.XT互联技术相结合,可在电机驱动、充电模块以及工业电源等应用中实现最高效率和被动制冷。
INFINEON

IMBG120R350M1H

是采用D2PAK-7L (TO-263-7)封装的1200 V, 350 mΩ CoolSiC™ SiC MOSFET,它基于先进的沟槽工艺,该工艺经过优化,兼具性能与可靠性。它采用改良版1200V SMD封装,将CoolSiC技术的低功耗特性与.XT互联技术相结合,可在电机驱动、充电模块以及工业电源等应用中实现最高效率和被动制冷。
INFINEON

IMBG65R022M1H

CoolSiC™ MOSFET 技术通过最大限度发挥碳化硅强大的物理特性,从而增强了器件性能、稳健性和易用性等独特优势。IMBG65R022M1H CoolSiC™ MOSFET 650 VSiC MOSFET 采用紧凑型 7 引脚 SMD 封装,基于先进的英飞凌碳化硅沟槽技术,适于大功率应用。 该器件旨在提高系统性能,缩减尺寸,增强可靠性。
INFINEON

IMBG65R030M1H

CoolSiC™ MOSFET 技术通过最大限度发挥碳化硅强大的物理特性,从而增强了器件性能、稳健性和易用性等独特优势。IMBG65R030M1H CoolSiC™ MOSFET 650 VSiC MOSFET 采用紧凑型 7 引脚 SMD 封装,基于先进的英飞凌碳化硅沟槽技术,适于大功率应用。 该器件旨在提高系统性能,缩减尺寸,增强可靠性。
INFINEON

IMBG65R057M1H

CoolSiC™ MOSFET 技术通过最大限度发挥碳化硅强大的物理特性,从而增强了器件性能、稳健性和易用性等独特优势。IMBG65R057M1H CoolSiC™ MOSFET 650 VSiC MOSFET 采用紧凑型 7 引脚 SMD 封装,基于先进的英飞凌碳化硅沟槽技术,适于大功率应用。 该器件旨在提高系统性能,缩减尺寸,增强可靠性。
INFINEON

IMBG65R083M1H

CoolSiC™ MOSFET 技术通过最大限度发挥碳化硅强大的物理特性,从而增强了器件性能、稳健性和易用性等独特优势。IMBG65R083M1H CoolSiC™ MOSFET 650 VSiC MOSFET 采用紧凑型 7 引脚 SMD 封装,基于先进的英飞凌碳化硅沟槽技术,适于大功率应用。 该器件旨在提高系统性能,缩减尺寸,增强可靠性。
INFINEON

IMBG65R163M1H

CoolSiC™ MOSFET 技术通过最大限度发挥碳化硅强大的物理特性,从而增强了器件性能、稳健性和易用性等独特优势。IMBG65R163M1H CoolSiC™ MOSFET 650 VSiC MOSFET 采用紧凑型 7 引脚 SMD 封装,基于先进的英飞凌碳化硅沟槽技术,适于大功率应用。 该器件旨在提高系统性能,缩减尺寸,增强可靠性。
INFINEON

IMBM-700

VIA C7™/ Eden™ Processor, Up To 2.0 GHz
AAEON

IMBM-B75A

Intel® 2nd/3rd Generation Core™ i7/ i5/ i3/ Processors
AAEON

IMBM-H110A

Two Independent Display: HDMI x 2, VGA x 1, DVI-D x 1
AAEON

IMBM-H110A-A10

Two Independent Display: HDMI x 2, VGA x 1, DVI-D x 1
AAEON