IMYH200R024M1H [INFINEON]

The CoolSiC™ 2000 V 24 mΩ SiC MOSFET in TO-247PLUS-4-HCC package has been designed to offer increased power density without compromising the system’s reliability even under demanding high voltage and switching frequency conditions. The low power losses of CoolSiC™ technology provide increased reliability thanks to the .XT interconnection technology in a 2000 V optimized package, enabling top efficiency in applications such as string inverters, solar power optimizer, EV charging and energy storage systems.;
IMYH200R024M1H
型号: IMYH200R024M1H
厂家: Infineon    Infineon
描述:

The CoolSiC™ 2000 V 24 mΩ SiC MOSFET in TO-247PLUS-4-HCC package has been designed to offer increased power density without compromising the system’s reliability even under demanding high voltage and switching frequency conditions. The low power losses of CoolSiC™ technology provide increased reliability thanks to the .XT interconnection technology in a 2000 V optimized package, enabling top efficiency in applications such as string inverters, solar power optimizer, EV charging and energy storage systems.

文件: 总16页 (文件大小:1850K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IMYH200R024M1H  
CoolSiC 2000 V SiC Trench MOSFET  
CoolSiC 2000 V SiC Trench MOSFET : Silicon Carbide MOSFET with .XT interconnection technology  
Features  
• VDSS = 2000 V at Tvj = 25°C  
• IDCC = 89 A at Tc = 25°C  
• RDS(on) = 24 mΩ at VGS = 18 V, Tvj = 25°C  
• Very low switching losses  
• Benchmark gate threshold voltage, VGS(th) = 4.5 V  
• Robust body diode for hard commutation  
• .XT interconnection technology for best-in-class thermal performance  
Potential applications  
• String inverter  
• Solar power optimizer  
• EV-Charging  
Product validation  
• Qualified for industrial applications according to the relevant tests of JEDEC47/20/22  
• Please also note the application note AN2019-05 for power and thermal cycling  
Description  
1 – drain  
2 – source  
3 – Kelvin sense contact  
4 – gate  
Note: the source and sense pins are not exchangeable, their exchange might lead to malfunction (only for 4pin, TO263-7L)  
Type  
Package  
Marking  
IMYH200R024M1H  
PG-TO247-4-PLUS-NT14  
20M1H024  
Datasheet  
www.infineon.com  
Please read the sections "Important notice" and "Warnings" at the end of this document  
Revision 1.10  
2023-01-16  
IMYH200R024M1H  
CoolSiC 2000 V SiC Trench MOSFET  
Table of contents  
Table of contents  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
Potential applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Product validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
MOSFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Body diode (MOSFET) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Characteristics diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Package outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
Testing conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
1
2
3
4
5
6
Datasheet  
2
Revision 1.10  
2023-01-16  
IMYH200R024M1H  
CoolSiC 2000 V SiC Trench MOSFET  
1 Package  
1
Package  
Table 1  
Characteristic values  
Symbol Note or test condition  
Parameter  
Values  
Typ.  
Unit  
Min.  
Max.  
150  
Storage temperature  
Soldering temperature  
Tstg  
-55  
°C  
°C  
Tsold  
wave soldering 1.6 mm (0.063 in.) from case  
for 10 s  
260  
Thermal resistance,  
junction-ambient  
Rth(j-a)  
Rth(j-c)  
62  
K/W  
K/W  
MOSFET/body diode  
thermal resistance,  
junction-case  
0.20  
0.26  
2
MOSFET  
Table 2  
Maximum rated values  
Symbol Note or test condition  
Parameter  
Values  
2000  
89  
Unit  
Drain-source voltage  
VDSS  
IDDC  
Tvj ≥ 25 °C  
VGS = 18 V  
V
A
Continuous DC drain  
current for Rth(j-c,max)  
limited by Tvj(max)  
Tc = 25 °C  
,
Tc = 100 °C  
63  
Peak drain current, tp  
limited by Tvj(max)  
IDM  
VGS  
VGS  
Ptot  
VGS = 18 V  
189  
A
V
Gate-source voltage, max.  
transient voltage1)  
tp ≤ 0.5 µs, D < 0.01  
-10/23  
-7/20  
Gate-source voltage, max.  
static voltage  
V
Power dissipation, limited  
by Tvj(max)  
Tc = 25 °C  
576  
288  
W
Tc = 100 °C  
1)  
Important note: The selection of positive and negative gate-source voltages impacts the long-term behavior of the device. The design  
guidelines described in Application Note AN2018-09 must be considered to ensure sound operation of the device over the planned  
lifetime.  
Table 3  
Recommended values  
Symbol Note or test condition  
VGS(on)  
Parameter  
Values  
Unit  
Recommended turn-on  
gate voltage  
15...18  
V
Recommended turn-off  
gate voltage  
VGS(off)  
-5...0  
V
Datasheet  
3
Revision 1.10  
2023-01-16  
IMYH200R024M1H  
CoolSiC 2000 V SiC Trench MOSFET  
2 MOSFET  
Table 4  
Characteristic values  
Parameter  
Symbol Note or test condition  
Values  
Typ.  
24  
Unit  
Min.  
Max.  
Drain-source on-state  
resistance  
RDS(on) ID = 40 A  
Tvj = 25 °C,  
VGS(on) = 18 V  
33  
mΩ  
Tvj = 100 °C,  
VGS(on) = 18 V  
41  
72  
27  
Tvj = 175 °C,  
VGS(on) = 18 V  
Tvj = 25 °C,  
VGS(on) = 15 V  
35  
Gate-source threshold  
voltage  
VGS(th) ID = 24 mA, VDS = VGS  
(tested afꢀr 1 ms pulse  
at VGS = 20 V)  
Tvj = 25 °C  
3.5  
4.5  
3.6  
5.5  
V
Tvj = 175 °C  
Zero gate-voltage drain  
current  
IDSS  
VDS = 2000 V, VGS = 0 V  
Tvj = 25 °C  
Tvj = 175 °C  
VGS = 23 V  
VGS = -10 V  
400  
µA  
nA  
10  
Gate leakage current  
IGSS  
VDS = 0 V  
100  
-100  
Forward transconductance  
Internal gate resistance  
Input capacitance  
gfs  
RG,int  
Ciss  
ID = 40 A, VDS = 20 V  
20  
6
S
f = 100 kHz, VAC = 25 mV  
VDD = 1200 V, VGS = 0 V, f = 100 kHz,  
VAC = 25 mV  
4850  
pF  
Output capacitance  
Coss  
Crss  
Eoss  
QG  
VDD = 1200 V, VGS = 0 V, f = 100 kHz,  
VAC = 25 mV  
161  
11  
pF  
pF  
µJ  
nC  
nC  
nC  
ns  
Reverse transfer  
capacitance  
VDD = 1200 V, VGS = 0 V, f = 100 kHz,  
VAC = 25 mV  
Coss stored energy  
VDD = 1200 V, VGS = 0 V, f = 100 kHz,  
VAC = 25 mV  
109  
137  
38  
Total gate charge  
VDD = 1200 V, ID = 40 A, VGS = -2/18 V, turn-on  
pulse  
Plateau gate charge  
Gate-to-drain charge  
Turn-on delay time  
QGS(pl) VDD = 1200 V, ID = 40 A, VGS = -2/18 V, turn-on  
pulse  
QGD  
VDD = 1200 V, ID = 40 A, VGS = -2/18 V, turn-on  
pulse  
22  
td(on)  
VDD = 1200 V, ID = 40 A,  
VGS = -2/18 V,  
Tvj = 25 °C  
19  
23  
Tvj = 175 °C  
RGS(on) = 2 Ω,  
RGS(off) = 2 Ω, L = 15 nH,  
σ
diode: body diode at  
VGS = -2 V  
(table continues...)  
Datasheet  
4
Revision 1.10  
2023-01-16  
IMYH200R024M1H  
CoolSiC 2000 V SiC Trench MOSFET  
2 MOSFET  
Table 4  
(continued) Characteristic values  
Symbol Note or test condition  
Parameter  
Values  
Typ.  
11  
Unit  
Min.  
Max.  
Rise time  
tr  
td(off)  
tf  
VDD = 1200 V, ID = 40 A,  
VGS = -2/18 V,  
Tvj = 25 °C  
ns  
Tvj = 175 °C  
14  
RGS(on) = 2 Ω,  
RGS(off) = 2 Ω, L = 15 nH,  
σ
diode: body diode at  
VGS = -2 V  
Turn-off delay time  
VDD = 1200 V, ID = 40 A,  
VGS = -2/18 V,  
Tvj = 25 °C  
40  
58  
ns  
ns  
µJ  
µJ  
µJ  
°C  
Tvj = 175 °C  
RGS(on) = 2 Ω,  
RGS(off) = 2 Ω, L = 15 nH,  
σ
diode: body diode at  
VGS = -2 V  
Fall time  
VDD = 1200 V, ID = 40 A,  
VGS = -2/18 V,  
Tvj = 25 °C  
16  
18  
Tvj = 175 °C  
RGS(on) = 2 Ω,  
RGS(off) = 2 Ω, L = 15 nH,  
σ
diode: body diode at  
VGS = -2 V  
Turn-on energy  
Turn-off energy  
Total switching energy  
Eon  
Eoff  
Etot  
Tvj  
VDD = 1200 V, ID = 40 A,  
VGS = -2/18 V,  
Tvj = 25 °C  
1150  
2140  
Tvj = 175 °C  
RGS(on) = 2 Ω,  
RGS(off) = 2 Ω, L = 15 nH,  
σ
diode: body diode at  
VGS = -2 V  
VDD = 1200 V, ID = 40 A,  
VGS = -2/18 V,  
Tvj = 25 °C  
400  
435  
Tvj = 175 °C  
RGS(on) = 2 Ω,  
RGS(off) = 2 Ω, L = 15 nH,  
σ
diode: body diode at  
VGS = -2 V  
VDD = 1200 V, ID = 40 A,  
VGS = -2/18 V,  
Tvj = 25 °C  
2100  
3675  
Tvj = 175 °C  
RGS(on) = 2 Ω,  
RGS(off) = 2 Ω, L = 15 nH,  
σ
diode: body diode at  
VGS = -2 V  
Virtual junction  
temperature  
-55  
175  
Note:  
The chip technology was characterized up to 100 kV/µs. The measured dV/dt was limited by measurement  
test setup and package.  
Dynamic test circuit see Fig. F.  
Datasheet  
5
Revision 1.10  
2023-01-16  
IMYH200R024M1H  
CoolSiC 2000 V SiC Trench MOSFET  
3 Body diode (MOSFET)  
3
Body diode (MOSFET)  
Table 5  
Maximum rated values  
Parameter  
Symbol Note or test condition  
Values  
2000  
91  
Unit  
Drain-source voltage  
VDSS  
ISDC  
Tvj ≥ 25 °C  
VGS = 0 V  
V
A
Continuous reverse drain  
current for Rth(j-c,max)  
limited by Tvj(max)  
Tc = 25 °C  
,
Tc = 100 °C  
69  
Peak reverse drain current,  
tp limited by Tvj(max)  
ISM  
VGS = 0 V  
128  
A
Table 6  
Characteristic values  
Symbol Note or test condition  
Parameter  
Values  
Typ.  
3.7  
Unit  
Min.  
Max.  
Drain-source reverse  
voltage  
VSD  
ISD = 40 A, VGS = 0 V  
Tvj = 25 °C  
Tvj = 100 °C  
Tvj = 175 °C  
5.5  
V
3.6  
3.5  
MOSFET forward recovery  
charge  
Qfr  
VDD = 1200 V, ISD = 40 A, Tvj = 25 °C  
1000  
1975  
nC  
A
VGS=-2 V, RGS(on) = 2 Ω,  
Tvj = 175 °C  
Qfr includes also QC  
MOSFET peak forward  
recovery current  
Ifrm  
VDD = 1200 V,  
Tvj = 25 °C  
27  
32  
ISD = 40 A, VGS=-2 V,  
diSD/dt = 1500 A/µs, Qfr  
includes also QC  
Tvj = 175 °C  
MOSFET forward recovery  
energy  
Efr  
Tvj  
VDD = 1200 V, ISD = 40 A, Tvj = 25 °C  
550  
µJ  
°C  
VGS=-2 V, RGS(on) = 2 Ω,  
Tvj = 175 °C  
1100  
Qfr includes also QC  
Virtual junction  
temperature  
-55  
175  
Datasheet  
6
Revision 1.10  
2023-01-16  
IMYH200R024M1H  
CoolSiC 2000 V SiC Trench MOSFET  
4 Characteristics diagrams  
4
Characteristics diagrams  
Reverse bias safe operating area (RBSOA)  
IDS = f(VDS  
Tvj ≤ 175 °C, VGS = 0/18 V, Tc = 25 °C  
Power dissipation as a function of case temperature  
limited by bond wire  
Ptot = f(Tc)  
)
250  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
200  
150  
100  
50  
0
0
300  
600  
900 1200 1500 1800 2100  
0
25  
50  
75  
100  
125  
150  
175  
Maximum DC drain to source current as a function of Maximum source to drain current as a function of case  
case temperature limited by bond wire  
temperature limited by bond wire  
IDS = f(Tc)  
ISD = f(Tc)  
VGS = 0 V  
120  
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
40  
20  
0
25  
50  
75  
100  
125  
150  
175  
25  
50  
75  
100  
125  
150  
175  
Datasheet  
7
Revision 1.10  
2023-01-16  
IMYH200R024M1H  
CoolSiC 2000 V SiC Trench MOSFET  
4 Characteristics diagrams  
Typical transfer characteristic  
Typical gate-source threshold voltage as a function of  
junction temperature  
VGS(th) = f(Tvj)  
IDS = f(VGS  
)
VDS = 20 V, tp = 20 µs  
ID = 24 mA  
1000  
6
5
4
3
2
1
0
800  
600  
400  
200  
0
-50 -25  
0
25  
50  
75 100 125 150 175  
0
4
8
12  
16  
20  
24  
28  
Typical output characteristic, VGS as parameter  
IDS = f(VDS  
Typical output characteristic, VGS as parameter  
IDS = f(VDS  
)
)
Tvj = 25 °C, tp = 20 µs  
Tvj = 175 °C, tp = 20 µs  
600  
300  
500  
400  
300  
200  
100  
0
250  
200  
150  
100  
50  
0
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10 12 14 16 18 20  
Datasheet  
8
Revision 1.10  
2023-01-16  
IMYH200R024M1H  
CoolSiC 2000 V SiC Trench MOSFET  
4 Characteristics diagrams  
Typical on-state resistance as a function of junction  
temperature  
RDS(on) = f(Tvj)  
Typical gate charge  
VGS = f(QG)  
ID = 40 A, VDS = 1200 V  
ID = 40 A  
80  
70  
60  
50  
40  
30  
20  
10  
0
18  
16  
14  
12  
10  
8
6
4
2
0
-2  
-50 -25  
0
25  
50  
75 100 125 150 175  
-10  
17  
43  
70  
97  
123  
150  
Typical capacitance as a function of drain-source  
voltage  
Typical reverse drain voltage as function of junction  
temperature  
C = f(VDS  
)
VSD = f(Tvj)  
f = 100 kHz, VGS = 0 V  
ISD = 40 A, VGS = 0 V  
5
4
3
2
1
0
10000  
1000  
100  
10  
1
1
-50 -25  
0
25  
50  
75 100 125 150 175  
10  
100  
1000  
Datasheet  
9
Revision 1.10  
2023-01-16  
IMYH200R024M1H  
CoolSiC 2000 V SiC Trench MOSFET  
4 Characteristics diagrams  
Typical reverse drain current as function of reverse  
drain voltage, VGS as parameter  
Typical reverse drain current as function of reverse  
drain voltage, VGS as parameter  
ISD = f(VSD  
)
ISD = f(VSD)  
Tvj = 25 °C, tp = 20 µs  
Tvj = 175 °C, tp = 20 µs  
200  
200  
160  
120  
80  
160  
120  
80  
40  
0
40  
0
0
1
2
3
4
5
0
1
2
3
4
5
Typical switching energy as a function of junction  
temperature, test circuit in Fig. F, 2nd device own  
body diode: VGS = -2 V  
Typical switching energy as a function of drain  
current, test circuit in Fig. F, 2nd device own body  
diode: VGS = -2 V  
E = f(Tvj)  
E = f(ID)  
VGS = -2/18 V, ID = 40 A, RG,ext = 2 Ω, VDD = 1200 V  
VGS = -2/18 V, Tvj = 175 °C, RG,ext = 2 Ω, VDD = 1200 V  
4000  
3200  
2400  
1600  
800  
6000  
5000  
4000  
3000  
2000  
1000  
0
0
25  
50  
75  
100  
125  
150  
175  
0
10  
20  
30  
40  
50  
60  
Datasheet  
10  
Revision 1.10  
2023-01-16  
IMYH200R024M1H  
CoolSiC 2000 V SiC Trench MOSFET  
4 Characteristics diagrams  
Typical switching energy losses as a function of gate  
Typical switching times as a function of gate  
resistance, test circuit in Fig. F, 2nd device own body resistance, test circuit in Fig. F, 2nd device own body  
diode: VGS = -2 V  
E = f(RG,ext  
diode: VGS = -2 V  
t = f(RG,ext  
)
)
VGS = -2/18 V, ID = 40 A, Tvj = 175 °C, VDD = 1200 V  
ID = 40 A, Tvj = 175 °C, VGS = -2/18 V, VDD = 1200 V  
12000  
500  
10000  
8000  
6000  
4000  
2000  
0
400  
300  
200  
100  
0
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
Typical reverse recovery charge as a function of  
Typical reverse recovery current as a function of  
revere drain current slope, test circuit in Fig. F, 2nd  
device own body diode: VGS = -2 V  
reverse drain current slope, test circuit in Fig. F, 2nd  
device own body diode: VGS = -2 V  
Qfr = f(diSD/dt )  
Ifrm = f(diSD/dt )  
VGS = -2/18 V, ISD = 40 A, VDD = 1200 V  
VGS = -2/18 V, ISD = 40 A, VDD = 1200 V  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0.00  
60  
50  
40  
30  
20  
10  
0
0
500  
1000  
1500  
2000  
2500  
3000  
0
500  
1000  
1500  
2000  
2500  
3000  
Datasheet  
11  
Revision 1.10  
2023-01-16  
IMYH200R024M1H  
CoolSiC 2000 V SiC Trench MOSFET  
4 Characteristics diagrams  
Typical switching energy losses as a function of dead Max. transient thermal impedance (MOSFET/diode)  
time / blanking time, test circuit in Fig. F, 2nd device  
own body diode: VGS = -5 V  
Zth(j-c),max = f(tp)  
D = tp/T  
E = f(tdead  
)
ID = 40 A, Tvj = 175 °C, RG,ext = 2 Ω, VDD = 1200 V  
120  
1
0.1  
100  
80  
60  
40  
20  
0
0.01  
0.001  
0.0001  
1E-6  
1E-5 0.0001 0.001  
0.01  
0.1  
1
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Datasheet  
12  
Revision 1.10  
2023-01-16  
IMYH200R024M1H  
CoolSiC 2000 V SiC Trench MOSFET  
5 Package outlines  
5
Package outlines  
PG-TO247-4-PLUS-NT14  
PACKAGE - GROUP  
NUMBER:  
PG-TO247-4-U04  
MILLIMETERS  
MILLIMETERS  
DIMENSIONS  
DIMENSIONS  
MIN.  
4.65  
2.16  
2.00  
0.60  
1.10  
---  
MAX.  
4.95  
2.66  
2.40  
0.80  
1.30  
0.15  
1.30  
2.10  
0.70  
26.70  
16.30  
20.20  
0.50  
6.65  
16.00  
MIN.  
12.00  
2.60  
5.00  
MAX.  
A
A1  
A2  
b
E1  
E2  
E3  
e
12.80  
3.00  
7.00  
7.62  
2.79  
2.54  
b1  
b2  
b3  
b4  
c
e1  
e2  
H
1.51  
5.50  
1.71  
---  
1.10  
1.70  
0.50  
26.00  
15.50  
19.40  
---  
K
N
4
D
L
14.30  
5.40  
5.40  
1.75  
9.00  
14.90  
5.70  
5.70  
2.25  
9.50  
D1  
D2  
D3  
D4  
E
L1  
L2  
ØP  
6.35  
15.60  
U
aaa  
bbb  
0.25  
0.25  
Figure 1  
Datasheet  
13  
Revision 1.10  
2023-01-16  
IMYH200R024M1H  
CoolSiC 2000 V SiC Trench MOSFET  
6 Testing conditions  
6
Testing conditions  
I,V  
VDS  
90%  
diSD/dt  
tfr = ta + tb  
Qfr = Qa + Qb  
ISD  
tfr  
ta  
tb  
10%  
t
VGS  
Qa  
Qb  
10% Ifrm  
td(on)  
td(off)  
Ifrm  
tr  
ton  
tf  
toff  
VSD  
Figure A. Definition of switching times  
VGS(t)  
90% VGS  
Figure B. Definition of body diode  
switching characteristics  
VGS,VDS  
Q
97% VDS  
VGS = 18 V  
10% VGS  
t
ID(t)  
1% ID  
t
VDS  
VDS(t)  
t, Q  
QGS,pl  
QG,tot  
QGD  
Figure D. Definition of QGD  
½Lσ  
Eon  
ʃ VDS*ID*dt  
=
Eoff  
ʃ VDS*ID*dt  
=
t4  
t2  
second  
device  
t3  
t1  
3% VDS  
t
L
Cσ  
t1  
t2  
t3  
t4  
VGS(off)  
Figure C. Definition of switching losses  
VDD  
τ1/r1  
τ2/r2  
τn/rn  
RG  
DUT  
Tj(t)  
p(t)  
r1  
r2  
r3  
½Lσ  
M
TC  
=
Figure F. Dynamic test circuit  
Parasitic inductance Lσ,  
Parasitic capacitor Cσ,  
=
Figure E. Thermal equivalent circuit  
Figure 2  
Datasheet  
14  
Revision 1.10  
2023-01-16  
IMYH200R024M1H  
CoolSiC 2000 V SiC Trench MOSFET  
Revision history  
Revision history  
Document revision  
Date of release Description of changes  
0.10  
2022-03-08  
Preliminary datasheet  
1.00  
1.01  
1.10  
2022-10-04  
2022-10-06  
2023-01-16  
Final datasheet  
Editorial changes  
Change of picture on page 1  
Change of product outline drawing on page 13  
Editorial changes  
Datasheet  
15  
Revision 1.10  
2023-01-16  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
Edition 2023-01-16  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
Important notice  
Please note that this product is not qualified  
according to the AEC Q100 or AEC Q101 documents  
of the Automotive Electronics Council.  
The information given in this document shall in no  
event be regarded as a guarantee of conditions or  
characteristics (“Bꢀschaffꢀnhꢀitsgarantiꢀ”).  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer’s compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer’s products and any use of the product of  
Infineon Technologies in customer’s applications.  
Warnings  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies officꢀ.  
©
2023 Infineon Technologies AG  
All Rights Reserved.  
Except as otherwise explicitly approved by Infineon  
Technologies in  
a written document signed by  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or  
any consequences of the use thereof can reasonably  
be expected to result in personal injury.  
Document reference  
IFX-ABD243-004  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer’s technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to such  
application.  

相关型号:

IMYH200R050M1H

The CoolSiC™ 2000 V 50 mΩ SiC MOSFET in TO-247PLUS-4-HCC package has been designed to offer increased power density without compromising the system’s reliability even under demanding high voltage and switching frequency conditions. The low power losses of CoolSiC™ technology provide increased reliability thanks to the .XT interconnection technology in a 2000 V optimized package, enabling top efficiency in applications such as string inverters, solar power optimizer, EV charging and energy storage systems.
INFINEON

IMYH200R075M1H

The CoolSiC™ 2000 V 75 mΩ SiC MOSFET in TO-247PLUS-4-HCC package has been designed to offer increased power density without compromising the system’s reliability even under demanding high voltage and switching frequency conditions. The low power losses of CoolSiC™ technology provide increased reliability thanks to the .XT interconnection technology in a 2000 V optimized package, enabling top efficiency in applications such as string inverters, solar power optimizer, EV charging and energy storage systems.
INFINEON

IMYH200R100M1H

The CoolSiC™ 2000 V 100 mΩ SiC MOSFET in TO-247PLUS-4-HCC package has been designed to offer increased power density without compromising the system’s reliability even under demanding high voltage and switching frequency conditions. The low power losses of CoolSiC™ technology provide increased reliability thanks to the .XT interconnection technology in a 2000 V optimized package, enabling top efficiency in applications such as string inverters, solar power optimizer, EV charging and energy storage systems.
INFINEON

IMZ1

TRANSISTOR | BJT | PAIR | COMPLEMENTARY | 40V V(BR)CEO | 100MA I(C) | SO
ETC

IMZ120R030M1H

IMZ120R030M1H是采用TO247-4封装的1200 V、30 mΩCoolSiC™ SiC MOSFET,它基于先进的沟槽半导体工艺,该工艺经过优化,兼具性能与可靠性。 与IGBT和MOSFET等传统硅(Si)基开关相比,SiC MOSFET具有诸多优势,例如1200V级开关中最低的栅极电荷和器件电容电平、抗换向体二极管无反向恢复损耗、 独立于温度的低开关损耗以及无阈值导通特性。因此,CoolSiC™ MOSFET非常适用于硬开关和谐振开关拓扑结构,如功率因素校正(PFC)电路、双向拓扑以及DC-DC转换器或DC-AC逆变器。
INFINEON

IMZ120R045M1

Power Field-Effect Transistor,
INFINEON

IMZ120R060M1H

Power Field-Effect Transistor,
INFINEON

IMZ120R090M1H

Power Field-Effect Transistor,
INFINEON

IMZ120R140M1H

IMZ120R140M1H是采用TO247-4封装的1200 V、140 mΩ CoolSiC™  SiC MOSFET,它基于先进的沟槽半导体工艺,该工艺经过优化,兼具性能与可靠性。 与IGBT和MOSFET等传统硅(Si)基开关相比,SiC MOSFET具有诸多优势,例如1200V级开关中最低的栅极电荷和器件电容电平、抗换向体二极管无反向恢复损耗、 独立于温度的低开关损耗以及无阈值导通特性。因此,CoolSiC™ MOSFET非常适用于硬开关和谐振开关拓扑结构,如功率因素校正(PFC)电路、双向拓扑以及DC-DC转换器或DC-AC逆变器。
INFINEON

IMZ120R220M1H

Power Field-Effect Transistor,
INFINEON

IMZ120R350M1H

Power Field-Effect Transistor, 4.7A I(D), 1200V, 0.598ohm, 1-Element, N-Channel, Silicon Carbide, Metal-oxide Semiconductor FET, TO-247,
INFINEON

IMZ1A

General purpose transistor (dual transistors)
ROHM