IR1166STRPBF [INFINEON]

SmartRectifier CONTROL IC Secondary side high speed SR controller; 智能整流控制IC二次侧高速SR控制器
IR1166STRPBF
型号: IR1166STRPBF
厂家: Infineon    Infineon
描述:

SmartRectifier CONTROL IC Secondary side high speed SR controller
智能整流控制IC二次侧高速SR控制器

驱动器 MOSFET驱动器 驱动程序和接口 接口集成电路 光电二极管 控制器
文件: 总16页 (文件大小:512K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet PD-97237C  
IR1166SPbF  
SmartRectifierTM CONTROL IC  
Features  
50ns turn-off propagation delay  
Vcc range from 11.3V to 20V  
Direct sensing of MOSFET drain voltage  
Minimal component count  
Secondary side high speed SR controller  
DCM, CrCM and CCM flyback topologies  
200V proprietary IC technology  
Max 500KHz switching frequency  
Anti-bounce logic and UVLO protection  
4A peak turn off drive current  
Simple design  
Lead-free  
Compatible with 1W Standby, Energy Star, CECP, etc.  
Micropower start-up & ultra low quiescent current  
10.7V gate drive clamp  
Description  
Package  
IR1166S is a smart secondary side driver IC designed to drive N-Channel power MOSFETs  
used as synchronous rectifiers in isolated Flyback converters.  
The IC can control one or more paralleled N-MOSFETs to emulate the behavior of Schottky  
diode rectifiers. The drain to source voltage is sensed differentially to determine the polarity  
of the current and turn the power switch on and off in proximity of the zero current transi-  
tion.  
Ruggedness and noise immunity are accomplished using an advanced blanking scheme  
and double-pulse suppression which allow reliable operation in continuous, discontinuous  
8-Lead SOIC  
and critical current mode operation and both fixed and variable frequency modes.  
IR1166S Application Diagram  
Vin  
Rs  
Cs  
Rdc  
U1  
XFM  
Cdc  
1
2
3
4
8
7
6
5
VCC VGATE  
Ci  
OVT  
GND  
VS  
Co  
MOT  
RMOT  
EN  
VD  
Rg  
Q1  
IR1166S  
Rtn  
*Please note that this data sheet contains advanced information that could change before the product is released to production.  
www.irf.com  
1
IR1166S  
Absolute Maximum Ratings  
Stress beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.  
These are stress ratings only and functional operation of the device at these conditions are not implied. All  
voltages are absolute voltages referenced to GND. Thermal resistance and power dissipation are measured  
under board mounted and still air conditions.  
Parameters  
Symbol Min.  
Max. Units  
Remarks  
Supply Voltage  
Enable Voltage  
VCC  
VEN  
VD  
-0.3  
-0.3  
-3  
20  
20  
V
V
Cont. Drain Sense Voltage  
Pulse Drain Sense Voltage  
Source Sense Voltage  
Gate Voltage  
200  
200  
20  
V
VD  
-5  
V
VS  
-3  
V
VGATE  
TJ  
-0.3  
-40  
-55  
20  
V
VCC=20V, Gate off  
Operating Junction Temperature  
Storage Temperature  
Thermal Resistance  
150  
150  
128  
970  
1.5  
500  
°C  
°C  
TS  
Rθ  
°C/W SOIC-8  
mW SOIC-8, TAMB=25°C  
JA  
Package Power Dissipation  
ESD Protection  
PD  
VESD  
fsw  
kV  
Human Body Model*  
Switching Frequency  
kHz  
* Per EIA/JESD22-A114-B( discharging a 100pF capacitor through a 1.5kseries resistor).  
www.irf.com  
2
IR1166S  
Electrical Characteristics  
The electrical characteristics involve the spread of values guaranteed within the specified supply voltage and  
junction temperature range TJ from – 25° C to 125°C. Typical values represent the median values, which are  
related to 25°C. If not otherwise stated, a supply voltage of VCC =15V is assumed for test condition.  
Supply Section  
Parameters  
Supply Voltage Operating Range  
VCC Turn On Threshold  
Symbol Min.  
Typ.  
Max. Units  
Remarks  
VCC  
11.4  
9.8  
18  
V
V
VCC ON  
10.6  
9
11.3  
VCC Turn Off Threshold  
VCC UVLO  
8.4  
1.4  
9.7  
V
(Under Voltage Lock Out)  
VCC Turn On/Off Hysteresis  
VCC HYST  
ICC  
1.57  
1.7  
V
CLOAD=1nF, fsw = 400kHz  
CLOAD=10nF, fsw = 400kHz  
8
10  
65  
Operating Current  
mA  
47  
Quiescent Current  
Start-up Current  
IQCC  
ICC START  
ISLEEP  
VENHI  
1.7  
92  
2.2  
200  
200  
mA  
µA VCC=VCC ON - 0.1V  
Sleep Current  
145  
2.71  
1.6  
1.5  
µA VEN=0V, VCC =15V  
Enable Voltage High  
Enable Voltage Low  
Enable Pull-up Resistance  
3.2  
V
V
2.15  
1.2  
2
VENLO  
REN  
MΩ  
GBD  
Comparator Section  
Parameters  
Symbol Min.  
Typ.  
-3  
Max. Units  
Remarks  
OVT = 0V, VS=0V  
-7  
0
Turn-off Threshold  
VTH1  
-15  
-23  
-10.3  
-18.7  
-7  
mV OVT floating, VS=0V  
-15  
-50  
OVT = VCC, VS=0V  
Turn-on Threshold  
Hysteresis  
VTH2  
VHYST  
IIBIAS1  
IIBIAS2  
VOFFSET  
VCM  
-150  
mV  
mV  
63  
VD = -50mV  
µA  
VD = 200V  
µA  
Input Bias Current  
Input Bias Current  
Comparator Input Offset  
Input CM Voltage Range  
1
7.5  
100  
2
23  
mV  
V
GBD  
-0.15  
2
One-Shot Section  
Parameters  
Symbol Min.  
tBLANK  
Typ.  
15  
Max. Units  
Remarks  
Blanking pulse duration  
9
25  
µs  
V
VCC=10V - GBD  
VCC=20V - GBD  
VCC=10V - GBD  
2.5  
5.4  
40  
VTH3  
Reset Threshold  
Hysteresis  
V
mV  
VHYST3  
www.irf.com  
3
IR1166S  
Minimum On Time Section  
Parameters  
Symbol Min.  
Typ.  
Max. Units  
Remarks  
Ω,  
190  
2.4  
251  
290  
3.6  
ns  
µs  
RMOT =5k  
VCC=12V  
TONmin  
Minimum on time  
3
RMOT =75kΩ,  
VCC=12V  
Gate Driver Section  
Parameters  
Gate Low Voltage  
Gate High Voltage  
Rise Time  
Symbol Min.  
Typ.  
0.2  
10.7  
21  
Max. Units  
Remarks  
VGLO  
0.5  
V
V
IGATE = 200mA  
VGTH  
tr1  
9
12.5  
VCC=12V-18V (internally clamped)  
CLOAD = 1nF, VCC=12V  
CLOAD = 10nF, VCC=12V  
CLOAD = 1nF, VCC=12V  
CLOAD = 10nF, VCC=12V  
VDS to VGATE -100mV overdrive  
VDS to VGATE -100mV overdrive  
IGATE = 1A - GBD  
ns  
ns  
ns  
ns  
ns  
ns  
tr2  
181  
10  
Fall Time  
tf1  
tf2  
44  
Turn on Propagation Delay  
Turn off Propagation Delay  
Pull up Resistance  
tDon  
tDoff  
rup  
52  
80  
65  
35  
5
Pull down Resistance  
rdown  
IO source  
IO sink  
1.2  
1
IGATE = -200mA  
Output Peak Current (source)  
Output Peak Current (sink)  
A
CLOAD = 10nF - GBD  
4
A
CLOAD = 10nF - GBD  
** Guaranteed by Design  
STATE AND TRANSITIONS DIAGRAM  
POWER ON  
Gate Inactive  
UVLO MODE  
VCC < VCCon  
Gate Inactive  
ICC max = 200uA  
VCC > VCCon  
and  
ENABLE HIGH  
VCC < VCCuvlo  
or  
ENABLE LOW  
NORMAL  
Gate Active  
www.irf.com  
4
IR1166S  
Block Diagram  
MOT  
VCC  
VCC  
UVLO  
&
ENA  
REGULATOR  
VCC  
VD  
Min ON Time  
RESET  
VTH1  
VGATE  
COM  
VS  
DRIVER  
OVT  
Min OFF Time  
RESET  
Vgate  
VTH3  
VTH1  
VDS  
VTH3  
VTH2  
Lead Assignments & Definitions  
Lead Assignment  
Pin#  
Symbol  
VCC  
Description  
1
Supply Voltage  
Offset Voltage Trimming  
Minimum On Time  
Enable  
2
3
4
5
6
7
8
OVT  
MOT  
EN  
1
2
3
4
VCC  
OVT  
MOT  
EN  
8
7
6
5
VGATE  
GND  
VS  
VD  
FET Drain Sensing  
FET Source Sensing  
Ground  
VS  
VD  
GND  
GATE  
Gate Drive Output  
www.irf.com  
5
IR1166S  
Detailed Pin Description  
kelvin contact as close as possible to the power  
MOSFET source pin.  
GND: Ground  
This is ground potential pin of the integrated control  
circuit. The internal devices and gate driver are  
referenced to this point.  
VD: Drain Voltage Sense  
VD is the voltage sense pin for the power MOSFET  
Drain. This is a high voltage pin and particular care  
must be taken in properly routing the connection to  
the power MOSFET drain.  
Additional filtering and or current limiting on this pin is  
not recommended as it would limit switching perfor-  
mance of the IC.  
MOT: Minimum On Time  
The MOT programming pin controls the amount of  
minimum on time. Once VTH2 is crossed for the first  
time, the gate signal will become active and turn on  
the power FET. Spurious ringings and oscillations can  
trigger the input comparator off. The MOT blanks the  
input comparator keeping the FET on for a minimum  
time.  
VCC: Power Supply  
This is the supply voltage pin of the IC and it is  
monitored by the under voltage lockout circuit. It is  
possible to turn off the IC by pulling this pin below the  
minimum turn off threshold voltage, without damage  
to the IC.  
The MOT is programmed between 200ns and 3us  
(typ.) by using a resistor referenced to GND.  
OVT: Offset Voltage Trimming  
The OVT pin will program the amount of input offset  
To prevent noise problems, a bypass ceramic  
capacitor connected to Vcc and GND should be  
placed as close as possible to the IR1166S.  
This pin is internally clamped.  
voltage for the turn-off threshold VTH1  
.
The pin can be optionally tied to ground, to VCC or  
left floating, to select 3 ranges of input offset trimming.  
This programming feature allows for accomodating  
different RDSon MOSFETs.  
EN: Enable  
GATE: Gate Drive Output  
This pin is used to activate the IC “sleep” mode by  
pulling the voltage level below 2.5V (typ). In sleep  
mode the IC will consume a minimum amount of cur-  
rent. However all switching functions will be disabled  
and the gate will be inactive.  
This is the gate drive output of the IC. Drive voltage  
is internally limited and provides 1A peak source and  
4A peak sink capability. Although this pin can be  
directly connected to the power MOSFET gate, the  
use of minimal gate resistor is recommended,  
expecially when putting multiple FETs in parallel.  
Care must be taken in order to keep the gate loop as  
short and as small as possible in order to achieve  
optimal switching performance.  
VS: Source Voltage Sense  
VS is the differential sense pin for the power MOSFET  
Source. This pin must not be connected directly to  
the power ground pin (7) but must be used to create a  
www.irf.com  
6
IR1166S  
STATES OF OPERATION  
GENERAL DESCRIPTION  
The IR1166 Smart Rectifier IC can emulate the  
operation of diode rectifier by properly driving a  
Synchronous Rectifier (SR) MOSFET.  
UVLO/Sleep Mode  
The IC remains in the UVLO condition until the voltage  
on the VCC pin exceeds the VCC turn on threshold  
The direction of the rectified current is sensed by the  
voltage, VCC ON  
.
input comparator using the power MOSFET R  
as a shunt resistance and the GATE pin of the  
MOSFET is driven accordingly.  
Internal blanking logic is used to prevent spurious  
transitions and guarantee operation in continuous  
(CCM), discountinuous (DCM) and critical (CrCM)  
conduction mode.  
During the time the IC remains in the UVLO state, the  
gate drive circuit is inactive and the IC draws a  
quiescent current of ICC START. The UVLO mode is  
accessible from any other state of operation whenever  
the IC supply voltage condition of VCC < VCC UVLO  
occurs.  
The sleep mode is initiated by pulling the EN pin below  
2.5V (typ). In this mode the IC is essentially shut down  
and draws a very low quiescent supply current.  
DSon  
VGate  
Normal Mode  
The IC enters in normal operating mode once the  
UVLO voltage has been exceeded. At this point the  
gate driver is operating and the IC will draw a  
maximum of ICC from the supply voltage source.  
VDS  
VTH2  
VTH1  
VTH3  
Input comparator thresholds  
The modes of operation for a Flyback circuit differ  
mainly for the turn-off phase of the SR switch, while  
the turn-on phase of the secondary switch (which  
correspond to the turn off of the primary side switch)  
is identical.  
Turn-on phase  
When the conduction phase of the SR FET is initiated,  
current will start flowing through its body diode,  
generating a negative VDS voltage across it. The body  
diode has generally a much higher voltage drop than  
the one caused by the MOSFET on resistance and  
therefore will trigger the turn-on threshold V  
.
TH2  
At that point the IR1166 will drive the gate of MOSFET  
on which will in turn cause the conduction voltage VDS  
to drop down. This drop is usually accompained by  
some amount of ringing, that can trigger the input  
comparator to turn off; hence, a Minimum On Time  
(MOT) blanking period is used that will maintain the  
power MOSFET on for a minimum amount of time.  
The programmed MOT will limit also the minimum duty  
www.irf.com  
7
IR1166S  
cycle of the SR MOSFET and, as a consequence, the  
max duty cycle of the primary side switch.  
is blanked for a certain amount of time (TBLANK) after  
VTH1 has been triggered.  
The blanking time is internally set. As soon as VDS  
crosses the positive threshold VTH3 also the blanking  
time is terminated and the IC is ready for next  
conduction cycle.  
DCM/CrCM Turn-off phase  
Once the SR MOSFET has been turned on, it will  
remain on until the rectified current will decay to the  
level where V  
will cross the turn-off threshold VTH1.  
DS  
CCM Turn-off phase  
This will happen differently depending on the mode  
of operation.  
In DCM the current will cross the threshold with a  
relatively low dI/dt. Once the threshold is crossed, the  
current will start flowing again through the body diode,  
In CCM mode the turn off transition is much steeper  
and dI/dt involved is much higher. The turn on phase  
is identical to DCM or CrCM and therefore won’t be  
repeated here.  
During the SR FET conduction phase the current will  
decay linearly, and so will VDS on the SR FET.  
IPRIM  
VPRIM  
IPRIM  
VPRIM  
time  
T3  
T1  
T2  
ISEC  
VSEC  
time  
T2  
T1  
ISEC  
VSEC  
time  
Primary and secondary currents and  
voltages for DCM mode  
time  
Primary and secondary currents and  
voltages for CCM mode  
IPRIM  
VPRIM  
Once the primary switch will start to turn back on, the  
SR FET current will rapidly decrease crossing VTH1  
and turning the gate off.  
The turn off speed is critical to avoid cross conduction  
on the primary side and reduce switching losses.  
also in this case a blanking period will be applied, but  
given the very fast nature of this transition, it will be  
time  
T2  
T1  
ISEC  
VSEC  
reset as soon as VDS crosses VTH3  
.
time  
Primary and secondary currents and  
voltages for CrCM mode  
causing the VDS voltage to jump negative. Depending  
on the amount of residual current, VDS may trigger  
once again the turn on threshold: for this reason VTH2  
www.irf.com  
8
IR1166S  
VTH3  
ISEC  
VDS  
T1  
T2  
time  
VTH1  
VTH2  
Gate Drive  
Blanking  
time  
time  
MOT  
Secondary side CCM operation  
VTH3  
ISEC  
VDS  
T1  
T2  
time  
VTH1  
VTH2  
Gate Drive  
time  
Blanking  
MOT  
10us blanking  
Secondary side DCM/CrCM operation  
www.irf.com  
9
IR1166S  
11  
10  
9
10  
1
0.1  
0.01  
V
CC ON  
V
CC UVLO  
8
-50  
0
50  
100  
150  
5
10  
15  
20  
Temperature ( °C )  
Supply Voltage (V)  
Fig 1. Supply Current vs. Supply Voltage  
Fig 2. Under Voltage Lockout  
vs. Temp.  
0
0
-5  
-10  
-15  
-20  
-25  
-30  
-50  
-100  
-150  
OVT = GND  
OVT = Floating  
OVT = V  
CC  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Temperature ( °C )  
Temperature ( °C )  
Fig 4. VTH2 vs. Temp.  
Fig 3. VTH1 vs. Temp.  
www.irf.com  
10  
IR1166S  
-6  
100  
50  
0
VS = -150mV  
VS= 0V  
VS= +2V  
-9  
-12  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Temperature ( °C )  
Temperature ( °C )  
Fig 5. Comparator Hysteresis vs.  
Temp.  
Fig 6. VTH1 vs. Temp. and Common  
Mode (OVT=Floating)  
-50  
-100  
-150  
-50  
-100  
-150  
VS = -150mV  
VS= 0V  
VS= +2V  
VS = -150mV  
VS= 0V  
VS= +2V  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Temperature ( °C )  
Temperature ( °C )  
Fig 7. VTH2 vs. Temp. and Common  
Mode (OVT=GND)  
Fig 8. Comparator Hysteresis vs. Temp. and  
Common Mode (OVT=GND)  
www.irf.com  
11  
IR1166S  
4
3
2
1
0
50  
25  
0
T = -25°C  
J
RMOT = 5k  
RMOT= 75k  
T = 25°C  
J
T = 125°C  
J
-50  
0
50  
Temperature ( °C )  
100  
150  
0
50  
100  
150  
(V)  
200  
Drain Sense Voltage (V  
D)  
Fig 9. MOT vs. Temp.  
Fig 10. Input Bias Current vs. VD.  
20  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
Csync = 2nF  
Csync = 5nF  
Csync = 8nF  
Csync = 15nF  
Csync = 20nF  
Csync = 2nF  
Csync = 5nF  
Csync = 8nF  
Csync = 15nF  
Csync = 20nF  
19  
18  
17  
16  
15  
14  
13  
12  
11  
50 100 150 200 250 300 350 400 450 500  
50 100 150 200 250 300 350 400 450 500  
Max. Synchronous HEXFET Switching Frequency (kHz)  
Max. Synchronous HEXFET Switching Frequency (kHz)  
Fig 12. Max. VCC Voltage vs. Synchronous Rectifier  
Switching Freq, TJ=125 C, TIC = 85 C, external RG=2,  
1HEXFET Gate Resistance included  
Fig 11. Max. VCC Voltage vs. Synchronous Rectifier  
Switching Freq, TJ=125 C, TIC = 85 C, external RG=1,  
1HEXFET Gate Resistance included  
www.irf.com  
12  
IR1166S  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
Csync = 2nF  
Csync = 5nF  
Csync = 8nF  
Csync = 15nF  
Csync = 20nF  
Csync = 2nF  
Csync = 5nF  
Csync = 8nF  
Csync = 15nF  
Csync = 20nF  
50 100 150 200 250 300 350 400 450 500  
50 100 150 200 250 300 350 400 450 500  
Max. Synchronous HEXFET Switching Frequency (kHz)  
Maximum Synchronous HEXFET Switching Frequency (kHz)  
Fig 13. Max. VCC Voltage vs. Synchronous Rectifier  
Switching Freq, TJ=125 C, TIC = 85 C, external RG=4,  
1HEXFET Gate Resistance included  
Fig 14. Max VCC Voltage vs. Synchronous Rectifier  
Switching Freq, TJ=125 C, TIC = 85 C, external RG=6,  
1HEXFET Gate Resistance included  
Figures 11-14 shows the maximum allowable VCC voltage vs. maximum switching frequency for  
different loads which are calculated using the design methodology discussed in AN1087.  
www.irf.com  
13  
IR1166S  
VCC  
VCC ON  
VCC UVLO  
t
UVLO  
NORMAL  
UVLO  
Fig. 14 - V Under Voltage Lockout  
cc  
VTH1  
VDS  
VTH2  
tDon  
tDoff  
VGate  
90%  
50%  
10%  
trise  
tfall  
Fig. 15 - Timing Diagrams  
www.irf.com  
14  
IR1166S  
Case outline  
INCHES  
MIN MAX  
.0532 .0688  
MILLIMETERS  
DIM  
A
D
B
MIN  
1.35  
0.10  
0.33  
0.19  
4.80  
3.80  
MAX  
1.75  
0.25  
0.51  
0.25  
5.00  
4.00  
FOOTPRINT  
8X 0.72 [.028]  
5
A
A1 .0040 .0098  
b
c
.013  
.0075 .0098  
.189 .1968  
.020  
8
1
7
2
6
3
5
6
D
E
e
H
E
.1497 .1574  
.050 BASIC  
0.25 [.010]  
A
1.27 BASIC  
6.46 [.255]  
4
e 1 .025 BASIC  
0.635 BASIC  
H
K
L
y
.2284 .2440  
.0099 .0196  
5.80  
0.25  
0.40  
0°  
6.20  
0.50  
1.27  
8°  
.016  
0°  
.050  
8°  
3X 1.27 [.050]  
e
6X  
8X 1.78 [.070]  
K x 45°  
e1  
A
C
y
0.10 [.004]  
8X c  
8X L  
A1  
B
8X b  
7
0.25 [.010]  
C
A
NOTES:  
5
6
7
DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.  
MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].  
1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.  
2. CONTROLLING DIMENSION: MILLIMETER  
DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.  
MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].  
3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].  
4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.  
DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO  
A SUBSTRATE.  
01-6027  
01-0021 11 (MS-012AA)  
8-Lead SOIC  
Tape and Reel Information (SOIC 8-Lead only)  
TERMINAL NUMBER 1  
12.3 ( .484 )  
11.7 ( .461 )  
8.1 ( .318 )  
7.9 ( .312 )  
FEED DIRECTION  
NOTES:  
1. CONTROLLING DIMENSION : MILLIMETER.  
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).  
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.  
330.00  
(12.992)  
MAX.  
14.40 ( .566 )  
12.40 ( .488 )  
NOTES :  
1. CONTROLLING DIMENSION : MILLIMETER.  
2. OUTLINE CONFORMS TO EIA-481 & EIA-541.  
www.irf.com  
15  
IR1166S  
Part Marking Information  
IR1166S  
Order Information  
8-Lead SOIC IR1166SPbF  
8-Lead SOIC Tape and Reel IR1166STRPbF  
The SOIC-8 is MSL2 qualified  
This product has been designed and qualified for the Industrial market.  
Data and specifications subject to change without notice.  
Qualification Standards can be found at www.irf.com  
WORLD HEADQUARTERS: 233 Kansas Street, El Segundo, California 90245 Tel: (310) 252-7105  
Data and specifications subject to change without notice. 1/2009  
www.irf.com  
16  

相关型号:

IR1166S_15

Secondary side high speed SR controller
INFINEON

IR11672AS

ADVANCED SMART RECTIFIER TM CONTROL IC
INFINEON

IR11672ASPBF

ADVANCED SMART RECTIFIER TM CONTROL IC
INFINEON

IR11672ASTRPBF

ADVANCED SMART RECTIFIER TM CONTROL IC
INFINEON

IR11672AS_11

ADVANCED SMART RECTIFIER TM CONTROL IC
INFINEON

IR1167AS

Secondary side high speed SR controller
INFINEON

IR1167ASPBF

SmartRectifier CONTROL IC
INFINEON

IR1167ASPBF_09

SmartRectifierTM CONTROL IC
INFINEON

IR1167ASTRPBF

Buffer/Inverter Based MOSFET Driver, 7A, PDSO8, LEAD FREE, MS-012AA, SOIC-8
INFINEON

IR1167AS_15

Secondary side high speed SR controller
INFINEON

IR1167BS

SMARTRECTIFIERTM CONTROL IC
INFINEON

IR1167BSPBF

SmartRectifier CONTROL IC
INFINEON