IR21084S [INFINEON]

HALF-BRIDGE DRIVER; 半桥驱动器
IR21084S
型号: IR21084S
厂家: Infineon    Infineon
描述:

HALF-BRIDGE DRIVER
半桥驱动器

驱动器
文件: 总23页 (文件大小:322K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet No. PD60161-R  
( ) & (PbF)  
( ) S  
IR2108 4  
Features  
HALF-BRIDGE DRIVER  
Packages  
Floating channel designed for bootstrap operation  
Fully operational to +600V  
Tolerant to negative transient voltage  
dV/dt immune  
14-Lead SOI
IR21084S  
8-Lead SOIC  
IR2108S  
Gate drive supply range from 10 to 20V  
Undervoltage lockout for both channels  
3.3V, 5V and 15V input logic compatible  
Cross-conduction prevention logic  
Matched propagation delay for both channels  
High side output in phase with HIN input  
Low side output out of phase with  
Logic and power ground +/- 5V offset.  
14-Lead PDIP  
IR21084  
8-Lead PDIP  
IR2108  
input  
LIN  
Internal 540ns dead-time, and  
programmable up to 5us with one  
2106/2301//2108//2109/2302/2304 Feature Comparison  
external R  
Lower di/dt gate driver for better  
noise immunity  
Available in Lead-Free  
resistor (IR21084)  
DT  
Cross-  
Input  
logic  
conduction  
prevention  
logic  
Part  
Dead-Time  
Ground Pins  
2106/2301  
21064  
2108  
21084  
2109/2302  
21094  
COM  
VSS/COM  
COM  
VSS/COM  
COM  
HIN/LIN  
HIN/LIN  
no  
none  
Internal 540ns  
Programmable 0.54~5 µs  
Internal 540ns  
Description  
yes  
The IR2108(4)(S) are high voltage, high speed  
power MOSFET and IGBT drivers with depen-  
dent high and low side referenced output  
channels. Proprietary HVIC and latch immune  
IN/SD  
yes  
yes  
Programmable 0.54~5 µs  
VSS/COM  
HIN/LIN  
Internal 100ns  
2304  
COM  
CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS  
or LSTTL output, down to 3.3V logic. The output drivers feature a high pulse current buffer stage designed for  
minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or  
IGBT in the high side configuration which operates up to 600 volts.  
Typical Connection  
up to 600V  
VCC  
VCC  
VB  
HO  
VS  
HIN  
LIN  
HIN  
LIN  
TO  
LOAD  
COM  
LO  
up to 600V  
IR21084  
HO  
VB  
IR2108  
VCC  
HIN  
LIN  
DT  
VCC  
HIN  
LIN  
VS  
TO  
LOAD  
(Refer to Lead Assignments for correct pin  
configuration). This/These diagram(s) show  
electrical connections only. Please refer to our  
Application Notes and DesignTips for proper  
circuit board layout.  
VSS  
COM  
LO  
VSS  
RDT  
www.irf.com  
1
( ) & (PbF)  
( ) S  
IR2108 4  
Absolute Maximum Ratings  
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage param-  
eters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured  
under board mounted and still air conditions.  
Symbol  
Definition  
High side floating absolute voltage  
High side floating supply offset voltage  
High side floating output voltage  
Min.  
-0.3  
Max.  
625  
Units  
V
B
S
V
V
B
- 25  
V
+ 0.3  
+ 0.3  
25  
B
V
V
V
S
- 0.3  
V
B
HO  
Low side and logic fixed supply voltage  
Low side output voltage  
-0.3  
-0.3  
CC  
V
V
LO  
V
V
V
V
+ 0.3  
+ 0.3  
+ 0.3  
+ 0.3  
CC  
CC  
CC  
CC  
DT  
Programmable dead-time pin voltage (IR21084 only)  
Logic input voltage (HIN & LIN)  
V
- 0.3  
SS  
SS  
CC  
V
IN  
V
V
- 0.3  
- 25  
V
SS  
Logic ground (IR21084 only)  
dV /dt  
Allowable offset supply voltage transient  
50  
V/ns  
W
S
P
D
Package power dissipation @ T +25°C  
(8 lead PDIP)  
(8 lead SOIC)  
(14 lead PDIP)  
(14 lead SOIC)  
(8 lead PDIP)  
(8 lead SOIC)  
(14 lead PDIP)  
(14 lead SOIC)  
-50  
1.0  
0.625  
1.6  
A
1.0  
Rth  
Thermal resistance, junction to ambient  
125  
200  
75  
JA  
°C/W  
°C  
120  
150  
150  
300  
T
T
Junction temperature  
J
Storage temperature  
S
T
Lead temperature (soldering, 10 seconds)  
L
Recommended Operating Conditions  
The Input/Output logic timing diagram is shown in figure 1. For proper operation the device should be used within the  
recommended conditions. The V and V offset rating are tested with all supplies biased at 15V differential.  
S
SS  
Symbol  
Definition  
Min.  
Max.  
Units  
VB  
High side floating supply absolute voltage  
High side floating supply offset voltage  
High side floating output voltage  
Low side and logic fixed supply voltage  
Low side output voltage  
V
+ 10  
V + 20  
S
S
V
Note 1  
600  
S
V
HO  
V
V
B
S
V
CC  
10  
0
20  
V
V
CC  
V
LO  
V
IN  
Logic input voltage  
IR2108  
COM  
V
CC  
V
CC  
IR21084  
V
SS  
DT  
Programmable dead-time pin voltage (IR21084 only)  
Logic ground (IR21084 only)  
V
V
SS  
CC  
V
-5  
5
SS  
°C  
T
A
Ambient temperature  
-40  
125  
Note 1: Logic operational for V of -5 to +600V. Logic state held for V of -5V to -V . (Please refer to the Design Tip  
S
S
BS  
DT97-3 for more details).  
2
www.irf.com  
( ) & (PbF)  
( ) S  
IR2108 4  
Dynamic Electrical Characteristics  
V
(V , V ) = 15V, V = COM, C = 1000 pF, T = 25°C, DT = VSS unless otherwise specified.  
BIAS CC BS  
L
A
SS  
Symbol  
Definition  
Min. Typ. Max. Units Test Conditions  
t
Turn-on propagation delay  
220  
200  
0
300  
280  
30  
V = 0V  
S
on  
off  
t
Turn-off propagation delay  
V
= 0V or 600V  
S
MT  
Delay matching  
t
- t  
| on off |  
t
Turn-on rise time  
150  
50  
220  
80  
V
V
= 0V  
= 0V  
nsec  
r
S
t
Turn-off fall time  
f
S
DT  
Deadtime: LO turn-off to HO turn-on(DT  
400  
4
540  
5
680  
6
RDT= 0  
LO-HO) &  
HO turn-off to LO turn-on (DT  
usec RDT = 200k (IR21084)  
HO-LO)  
HO-LO  
MDT  
Deadtime matching = DT  
- DT  
0
60  
RDT=0  
LO-HO  
|
|
nsec  
0
600  
RDT = 200k (IR21084)  
Static Electrical Characteristics  
V
(V , V ) = 15V, V = COM, DT= V  
and T = 25°C unless otherwise specified. The V , V and I  
SS A IL IH IN  
BIAS  
CC BS  
SS  
parameters are referenced to V /COM and are applicable to the respective input leads: HIN and LIN. The V , I and Ron  
SS  
O O  
parameters are referenced to COM and are applicable to the respective output leads: HO and LO.  
Symbol  
Definition  
Min. Typ. Max. Units Test Conditions  
V
Logic “1” input voltage for HIN & logic “0” for LIN  
2.9  
0.8  
1.4  
0.6  
50  
V
= 10V to 20V  
IH  
CC  
V
Logic “0” input voltage for HIN & logic “1” for LIN  
V
CC  
= 10V to 20V  
IL  
V
V
OH  
High level output voltage, V  
- V  
0.8  
0.3  
I
I
= 20 mA  
= 20 mA  
BIAS  
O
O
V
Low level output voltage, V  
OL  
LK  
O
O
I
Offset supply leakage current  
V = V = 600V  
B S  
µA  
I
Quiescent V  
Quiescent V  
supply current  
supply current  
20  
0.4  
75  
1.0  
130  
1.6  
V
= 0V or 5V  
= 0V or 5V  
RDT=0  
QBS  
QCC  
BS  
CC  
IN  
IN  
I
mA  
V
I
Logic “1” input bias current  
Logic “0” input bias current  
5
20  
2
HIN = 5V, LIN = 0V  
HIN = 0V, LIN = 5V  
IN+  
µA  
I
IN-  
V
V
CC  
and V supply undervoltage positive going  
8.0  
8.9  
9.8  
CCUV+  
BS  
V
threshold  
and V supply undervoltage negative going  
BSUV+  
V
V
CC  
7.4  
0.3  
8.2  
0.7  
9.0  
CCUV-  
BS  
V
V
threshold  
BSUV-  
V
Hysteresis  
CCUVH  
V
BSUVH  
I
Output high short circuit pulsed current  
Output low short circuit pulsed current  
120  
250  
200  
350  
V = 0V,  
O
O+  
PW 10 µs  
= 15V,  
mA  
I
V
O
O-  
PW 10 µs  
www.irf.com  
3
( ) & (PbF)  
( ) S  
IR2108 4  
Functional Block Diagram  
VB  
UV  
DETECT  
2108  
HO  
R
R
S
Q
PULSE  
FILTER  
HV  
LEVEL  
SHIFTER  
VSS/COM  
VS  
HIN  
LEVEL  
SHIFT  
PULSE  
GENERATOR  
DT  
DEADTIME &  
SHOOT-THROUGH  
PREVENTION  
VCC  
LO  
UV  
DETECT  
+5V  
VSS/COM  
LEVEL  
SHIFT  
DELAY  
LIN  
COM  
VSS  
VB  
UV  
21084  
DETECT  
HO  
R
Q
R
S
PULSE  
FILTER  
HV  
LEVEL  
SHIFTER  
VSS/COM  
LEVEL  
SHIFT  
HIN  
DT  
VS  
PULSE  
GENERATOR  
DEADTIME &  
SHOOT-THROUGH  
PREVENTION  
VCC  
LO  
UV  
DETECT  
+5V  
VSS/COM  
LEVEL  
SHIFT  
DELAY  
LIN  
COM  
VSS  
4
www.irf.com  
( ) & (PbF)  
( ) S  
IR2108 4  
Lead Definitions  
Symbol Description  
HIN  
Logic input for high side gate driver output (HO), in phase (referenced to COM for IR2108 and  
VSS for IR21084)  
Logic input for low side gate driver output (LO), out of phase (referenced to COM for IR2108  
and VSS for IR21084)  
LIN  
DT  
Programmable dead-time lead, referenced to VSS. (IR21084 only)  
Logic Ground (21084 only)  
VSS  
V
High side floating supply  
B
HO  
High side gate driver output  
V
V
High side floating supply return  
S
Low side and logic fixed supply  
CC  
LO  
Low side gate driver output  
COM  
Low side return  
Lead Assignments  
V
V
B
1
2
3
4
V
CC  
B
8
1
2
3
4
V
CC  
8
HO  
HO  
HIN  
LIN  
7
6
5
HIN  
LIN  
7
6
5
V
S
V
S
LO  
LO  
COM  
COM  
8 Lead PDIP  
8 Lead SOIC  
IR2108  
IR2108S  
14  
13  
12  
11  
10  
9
14  
13  
12  
11  
10  
9
1
V
CC  
1
2
3
4
5
6
7
V
CC  
V
V
2
3
4
5
6
7
HIN  
LIN  
DT  
B
HIN  
LIN  
B
HO  
HO  
V
S
V
S
DT  
VSS  
VSS  
COM  
LO  
COM  
LO  
8
8
14 Lead PDIP  
14 Lead SOIC  
IR21084  
IR21084S  
www.irf.com  
5
( ) & (PbF)  
( ) S  
IR2108 4  
HIN  
LIN  
LIN  
HO  
LO  
50%  
50%  
t
t
t
t
f
on  
off  
r
Figure 1. Input/Output Timing Diagram  
90%  
90%  
10%  
10%  
LO  
50%  
50%  
HIN  
HO  
t
t
t
f
t
on  
off  
90%  
r
90%  
50%  
50%  
HIN  
LIN  
10%  
10%  
Figure 2. Switching Time Waveform Definitions  
90%  
DT  
10%  
HO  
LO  
LO-HO  
DT  
HO-LO  
10%  
90%  
MDT=  
DT  
- DT  
LO-HO  
HO-LO  
Figure 3. Deadtime Waveform Definitions  
6
www.irf.com  
( ) & (PbF)  
( ) S  
IR2108 4  
500  
400  
300  
200  
100  
0
500  
400  
300  
200  
100  
0
Max.  
T yp.  
Max.  
Typ.  
-50 -25  
0
25 50 75 100 125  
10  
12  
14  
16  
18  
20  
Temperature (oC)  
V
BIAS Supply Voltage (V)  
Figure 4B. Turn-on Propagation Delay  
vs. Supply Voltage  
Figure 4A. Turn-on Propagation Delay  
vs. Temperature  
500  
500  
400  
300  
200  
100  
0
400  
300  
200  
100  
0
Max.  
T yp.  
Max.  
Typ.  
10  
12  
V
14  
16  
18  
20  
-50 -25  
0
25 50 75 100 125  
Temperature (oC)  
BIAS Supply Voltage (V)  
Figure 5A. Turn-off Propagation Delay  
vs.Temperature  
Figure 5B. Turn-off Propagation Delay  
vs. Supply Voltage  
www.irf.com  
7
( ) & (PbF)  
( ) S  
IR2108 4  
500  
400  
300  
200  
100  
0
500  
400  
300  
200  
100  
0
Max.  
Typ.  
Max.  
Typ.  
10  
12  
14  
16  
18  
20  
-50 -25  
0
25 50 75 100 125  
Temperature (oC)  
V
BIAS Supply Voltage (V)  
Figure 6A.Turn-on Rise Time  
vs. Temperature  
Figure 6B. Turn-on Rise Time  
vs. Supply Voltage  
200  
150  
100  
50  
200  
150  
100  
50  
Max.  
Max.  
Typ.  
Typ.  
0
0
-50 -25  
0
25 50  
75 100 125  
10  
12  
14  
16  
18  
20  
Temperature (oC)  
VBIAS Supply Voltage (V)  
Figure 7A. Turn-off Fall Time  
vs. Temperature  
Figure 7B. Turn-off Fall Time  
vs. Supply Voltage  
8
www.irf.com  
( ) & (PbF)  
( ) S  
IR2108 4  
1000  
800  
600  
400  
200  
1000  
800  
600  
400  
200  
Max.  
T yp.  
Max.  
Typ.  
Mi n.  
Min.  
10  
12  
14  
16  
18  
20  
-50 -25  
0
25 50 75 100 125  
Temperature (oC)  
V
BIAS Supply Voltage (V)  
Figure 8B. Deadtime vs. Supply Voltage  
Figure 8A. Deadtime vs. Temperature  
7
6
5
4
3
2
1
0
8
7
6
5
4
3
2
1
0
Max.  
Typ.  
Mi n.  
Max.  
0
50  
100  
RDT (K )  
150  
200  
-50 -25  
0
25  
50 75 100 125  
Temperature (oC)  
Figure 9A. Logic "1" Input Voltage  
vs. Temperature  
Figure 8C. Deadtime vs. RDT  
(IR21084 Only)  
www.irf.com  
9
( ) & (PbF)  
( ) S  
IR2108 4  
8
7
6
5
4
3
2
1
0
4.0  
3.2  
2.4  
1.6  
0.8  
0.0  
Max.  
Min.  
10  
12  
14  
16  
18  
20  
-50 -25  
0
25  
50  
75 100 125  
V
CC Supply Voltage (V)  
Temperature (oC)  
Figure 9B. Logic "1" Input Voltage  
vs. Supply Voltage  
Figure 10A. Logic "0" Input Voltage  
vs. Temperature  
4.0  
3.2  
2.4  
1.6  
0.8  
0.0  
4
3
2
1
0
Max .  
Min.  
Typ.  
-50 -25  
0
25  
50  
75 100 125  
10  
12  
14  
16  
18  
20  
Temperature (oC)  
V
CC Supply Voltage (V)  
Figure 10B. Logic "0" Input Voltage  
vs. Supply Voltage  
Figure 11A. High Level Output  
vs. Temperature  
10  
www.irf.com  
( ) & (PbF)  
( ) S  
IR2108 4  
1.5  
1.2  
0.9  
0.6  
0.3  
0
4
3
2
1
0
Max.  
Typ.  
Max.  
T yp.  
10  
12  
14  
16  
18  
20  
-50 -25  
0
25  
50  
75 100 125  
Temperature (oC)  
V
CC Supply Voltage (V)  
Figure 11B. High Level Output  
vs. Supply Voltage  
Figure 12A. Low Level Output  
vs. Temperature  
1.5  
1.2  
0.9  
0.6  
0.3  
0
500  
400  
300  
200  
100  
0
Max.  
T yp.  
Max.  
-50 -25  
0
25  
50  
75 100 125  
10  
12  
14  
16  
18  
20  
Temperature (oC)  
V
CC Supply Voltage (V)  
Figure 12B. Low Level Output  
vs. Supply Voltage  
Figure 13A. Offset Supply Leakage Current  
vs. Temperature  
www.irf.com  
11  
( ) & (PbF)  
( ) S  
IR2108 4  
500  
400  
300  
200  
100  
0
400  
300  
200  
100  
0
Max .  
Typ.  
Mi n.  
Max.  
0
100 200 300 400 500 600  
VB Boost Voltage (V)  
-50 -25  
0
25  
50  
75 100 125  
Temperature (oC)  
Figure 13B. Offset Supply Leakage Current  
vs. Temperature  
Figure 14A. VBS Supply Current  
vs. Temperature  
400  
300  
200  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Max.  
Typ.  
Min.  
Max.  
100  
T yp.  
Mi n.  
0
-50 -25  
0
25  
50  
75 100 125  
10  
12  
14  
16  
18  
20  
Temperature (oC)  
VBS Supply Voltage (V)  
Figure 14B. VBS Supply Current  
vs. Supply Voltage  
Figure 15A. VCC Supply Current  
vs. Temperature  
12  
www.irf.com  
( ) & (PbF)  
( ) S  
IR2108 4  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
60  
50  
40  
30  
20  
10  
0
Max.  
Typ.  
Min.  
Max.  
T yp.  
10  
12  
14  
16  
18  
20  
-50 -25  
0
25  
50  
75 100 125  
VCC Supply Voltage (V)  
Temperature (oC)  
Figure 15B. VCC Supply Current  
vs. Supply Voltage  
Figure 16A. Logic "1" Input Current  
vs. Temperature  
5
4
3
2
1
0
60  
50  
40  
30  
20  
10  
0
Max.  
Max .  
Typ.  
-50 -25  
0
25  
50  
75  
100 125  
10  
12  
14  
16  
18  
20  
Temperature (oC)  
VCC Supply Voltage (V)  
Figure 17A. Logic "0" Input Current  
vs. Temperature  
Figure 16B. Logic "1" Input Current  
vs. Supply Voltage  
www.irf.com  
13  
( ) & (PbF)  
( ) S  
IR2108 4  
12  
11  
10  
9
5
4
3
2
1
0
Max.  
Typ.  
Max.  
Mi n.  
8
7
-50 -25  
0
25  
50  
75 100 125  
10  
12  
14  
16  
18  
20  
Temperature (oC)  
VCC Supply Voltage (V)  
Figure 18. VCC Undervoltage Threshold (+)  
vs. Temperature  
Figure 17B. Logic "0" Input Current  
vs. Supply Voltage  
11  
10  
9
12  
11  
10  
9
Max.  
Typ.  
Mi n.  
Max.  
T yp.  
8
7
Min.  
8
6
7
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
Temperature (oC)  
Temperature (oC)  
Figure 19. VCC Undervoltage Threshold (-)  
vs. Temperature  
Figure 20. VBS Undervoltage Threshold (+)  
vs. Temperature  
14  
www.irf.com  
( ) & (PbF)  
( ) S  
IR2108 4  
11  
10  
9
500  
400  
300  
200  
100  
0
Max.  
Typ.  
T yp.  
Min.  
8
Min.  
7
6
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
Temperature (oC)  
Temperature (oC)  
Figure 22A. Output Source Current  
vs. Temperature  
Figure 21. VBS Undervoltage Threshold (-)  
vs. Temperature  
600  
500  
400  
300  
200  
100  
0
500  
400  
300  
200  
T yp.  
Min.  
T yp.  
100  
Min.  
0
-50 -25  
0
25  
50  
75 100 125  
10  
12  
14  
16  
18  
20  
Temperature (oC)  
VBIAS Supply Voltage (V)  
Figure 23A. Output Sink Current  
vs. Temperature  
Figure 22B. Output Source Current  
vs. Supply Voltage  
www.irf.com  
15  
( ) & (PbF)  
( ) S  
IR2108 4  
0
-2  
600  
500  
400  
300  
200  
100  
0
T yp.  
-4  
Typ.  
-6  
-8  
Min.  
-10  
10  
12  
14  
16  
18  
20  
10  
12  
14  
16  
18  
20  
VBS Flouting Supply Voltage (V)  
VBIAS Supply Voltage (V)  
Figure 24. Maximum Vs Negative Offset  
vs. Supply Voltage  
Figure 23B. Output Sink Current  
vs. Supply Voltage  
140  
140  
120  
100  
80  
120  
100  
80  
140V  
140V  
70V  
0V  
70V  
0V  
60  
60  
40  
40  
20  
20  
1
10  
100  
1000  
1
10  
100  
1000  
Frequency (KHz)  
Frequency (KHz)  
Figure 25. IR2108 vs. Frequency (IRFBC20),  
Rgate=33 , VCC=15V  
Figure 26. IR2108 vs. Frequency(IRFBC30),  
Rgate=22 , VCC=15V  
16  
www.irf.com  
( ) & (PbF)  
( ) S  
IR2108 4  
1 40V 70V  
140  
120  
100  
80  
140  
120  
100  
80  
0V  
140V  
70V  
0V  
60  
60  
40  
40  
20  
20  
1
10  
100  
1000  
1
10  
100  
1000  
Frequency (KHz)  
Frequency (KHz)  
Figure 27. IR2108 vs. Frequency (IRFBC40),  
Rgate=15 , VCC=15V  
Figure 28. IR2108 vs. Frequency (IRFPE50),  
Rgate=10 , VCC=15V  
140  
120  
100  
80  
140  
120  
100  
80  
1 40V  
70V  
0V  
60  
140V  
70V  
60  
40  
40  
0V  
20  
20  
1
10  
100  
1000  
1
10  
100  
1000  
Frequency (KHz)  
Frequency (KHz)  
Figure 29. IR21084 vs. Frequency (IRFBC20),  
gate=33 , VCC=15V  
Figure 30. IR21084 vs. Frequency (IRFBC30),  
Rgate=22 , VCC=15V  
R
www.irf.com  
17  
( ) & (PbF)  
( ) S  
IR2108 4  
1 40V  
140  
120  
100  
80  
140  
120  
100  
80  
70V  
0V  
140V  
70V  
0V  
60  
60  
40  
40  
20  
20  
1
10  
100  
1000  
1
10  
100  
1000  
Frequency (KHz)  
Frequency (KHz)  
Figure 31. IR21084 vs. Frequency (IRFBC40),  
Rgate=15 , VCC=15V  
Figure 32. IR21084 vs. Frequency (IRFPE50),  
gate=10 , VCC=15V  
R
140  
120  
100  
80  
140  
120  
100  
140V  
70V  
0V  
80  
60  
40  
20  
1 40V  
70V  
0V  
60  
40  
20  
1
10  
100  
1000  
1
10  
100  
1000  
Frequency (KHz)  
Frequency (KHz)  
Figure 34. IR2108S vs. Frequency (IRFBC30),  
Rgate=22 , VCC=15V  
Figure 33. IR2108S vs. Frequency (IRFBC20),  
Rgate=33 , VCC=15V  
18  
www.irf.com  
( ) & (PbF)  
( ) S  
IR2108 4  
140V 70V 0V  
140V70V  
140  
120  
100  
80  
140  
120  
100  
80  
0V  
60  
60  
40  
40  
20  
20  
1
10  
100  
1000  
1
10  
100  
1000  
Frequency (KHz)  
Frequency (KHz)  
Figure 36. IR2108S vs. Frequency  
(IRFPE50), Rgate=10 , VCC=15V  
Figure 35. IR2108S vs. Frequency (IRFBC40),  
Rgate=15 , VCC=15V  
140  
140  
120  
100  
80  
120  
100  
80  
140V  
70V  
0V  
60  
60  
140V  
70V  
0V  
40  
40  
20  
20  
1
10  
100  
1000  
1
10  
100  
1000  
Frequency (KHz)  
Frequency (KHz)  
Figure 38. IR21084S vs. Frequency(IRFBC30),  
Rgate=22 , VCC=15V  
Figure 37. IR21084S vs. Frequency (IRFBC20),  
Rgate=33 , VCC=15V  
www.irf.com  
19  
( ) & (PbF)  
( ) S  
IR2108 4  
1 40V 70V  
140  
120  
100  
80  
140  
120  
100  
80  
0V  
1 40V  
70V  
0V  
60  
60  
40  
40  
20  
20  
1
10  
100  
1000  
1
10  
100  
1000  
Frequency (KHz)  
Frequency (KHz)  
Figure 39. IR21084S vs. Frequency (IRFBC40),  
Rgate=15 , VCC=15V  
Figure 40. IR21084S vs. Frequency (IRFPE50),  
Rgate=10 , VCC=15V  
20  
www.irf.com  
( ) & (PbF)  
( ) S  
IR2108 4  
Case outlines  
01-6014  
01-3003 01 (MS-001AB)  
8-Lead PDIP  
INCHES  
MIN MAX  
.0532 .0688  
MILLIMETERS  
DIM  
A
D
B
MIN  
1.35  
0.10  
0.33  
0.19  
4.80  
3.80  
MAX  
1.75  
0.25  
0.51  
0.25  
5.00  
4.00  
FOOTPRINT  
8X 0.72 [.028]  
5
A
A1 .0040 .0098  
b
c
D
E
.013  
.0075 .0098  
.189 .1968  
.020  
8
1
7
2
6
3
5
6
H
E
.1497 .1574  
.050 BASIC  
0.25 [.010]  
A
e
1.27 BASIC  
0.635 BASIC  
6.46 [.255]  
4
e1 .025 BASIC  
H
K
L
.2284 .2440  
.0099 .0196  
5.80  
0.25  
0.40  
0°  
6.20  
0.50  
1.27  
8°  
.016  
0°  
.050  
8°  
3X 1.27 [.050]  
e
6X  
8X 1.78 [.070]  
y
e1  
A
K x 45°  
A
C
y
0.10 [.004]  
8X c  
8X L  
A1  
B
8X b  
7
0.25 [.010]  
C
NOTES:  
5
6
7
DIMENS ION DOES NOT INCLUDE MOLD PROT RUS IONS.  
MOLD PROTRUSIONS NOT TOEXCEED 0.15 [.006].  
1. DIMENSIONING& TOLERANCING PER ASME Y14.5M-1994.  
2. CONT ROLLING DIMENSION: MILLIMETER  
DIMENS ION DOES NOT INCLUDE MOLD PROT RUS IONS.  
MOLD PROTRUSIONS NOT TOEXCEED 0.25 [.010].  
3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].  
4. OUTLINE CONFORMS TOJEDECOUTLINE MS-012AA.  
DIMENS ION IS T HE LENGT H OF LEAD FOR SOLDERING T O  
A SUBSTRATE.  
01-6027  
01-0021 11 (MS-012AA)  
8-Lead SOIC  
www.irf.com  
21  
( ) & (PbF)  
( ) S  
IR2108 4  
01-6010  
01-3002 03 (MS-001AC)  
14-Lead PDIP  
01-6019  
01-3063 00 (MS-012AB)  
14-Lead SOIC (narrow body)  
22  
www.irf.com  
( ) & (PbF)  
( ) S  
IR2108 4  
ORDER INFORMATION  
Lead-Free Part  
8-Lead PDIP IR2108  
Basic Part (Non-Lead Free)  
8-Lead PDIP IR2108  
order IR2108  
order IR2108PbF  
8-Lead SOIC IR2108S order IR2108S  
14-Lead PDIP IR21084 order IR21084  
14-Lead SOICIR21084S order IR21084S  
8-Lead SOIC IR2108S order IR2108SPbF  
14-Lead PDIP IR21084 order IR21084PbF  
14-Lead SOICIR21084S order IR21084SPbF  
This product has been designed and qualified for the Industrial market.  
Qualification Standards can be found on IR’s Website.  
Data and specifications subject to change without notice.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.09/08/04  
www.irf.com  
23  

相关型号:

IR21084SPBF

HIGH AND LOW SIDE DRIVER
INFINEON

IR21084STRPBF

Half Bridge Based MOSFET Driver, 0.35A, CMOS, PDSO14, ROHS COMPLIANT, MS-012AB, SOIC-14
INFINEON

IR2108PBF

HIGH AND LOW SIDE DRIVER
INFINEON

IR2108S

HALF-BRIDGE DRIVER
INFINEON

IR2108SPBF

HIGH AND LOW SIDE DRIVER
INFINEON

IR2108STR

Half Bridge Based MOSFET Driver, 0.35A, CMOS, PDSO8, MS-012AA, SOIC-8
INFINEON

IR2109

HALF-BRIDGE DRIVER
INFINEON

IR21091

HALF-BRIDGE DRIVER
INFINEON

IR21091PBF

HALF-BRIDGE DRIVER
INFINEON

IR21091PBF

IC 0.35 A HALF BRDG BASED MOSFET DRIVER, PDIP8, LEAD FREE, PLASTIC, MS-001AB, DIP-8, MOSFET Driver
VISHAY

IR21091S

HALF-BRIDGE DRIVER
INFINEON

IR21091S

IC 0.35 A HALF BRDG BASED MOSFET DRIVER, PDSO8, MS-012AA, SOIC-8, MOSFET Driver
VISHAY