IR21281STR [INFINEON]

MOSFET Driver, CMOS, PDSO8,;
IR21281STR
型号: IR21281STR
厂家: Infineon    Infineon
描述:

MOSFET Driver, CMOS, PDSO8,

光电二极管
文件: 总16页 (文件大小:236K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet No. PD60143 revP  
( ) ( )  
IR2127 S /IR2128 S  
( )/ IR21281(S) &(PbF)  
IR21271 S  
CURRENT SENSING SINGLE CHANNEL DRIVER  
Features  
Product Summary  
Floating channel designed for bootstrap operation  
Fully operational to +600V  
V
600V max.  
OFFSET  
Tolerant to negative transient voltage dV/dt immune  
Application- specific gate drive range:  
Motor Drive: 12 to 20V (IR2127/IR2128)  
Automotive: 9 to 20V (IR21271/IR21281)  
Undervoltage lockout  
3.3V, 5V and 15V input logic compatible  
ꢀꢁꢂꢃꢄ lead indicates shutdown has occured  
Output in phase with input (IR2127/IR21271)  
I +/-  
O
200 mA / 420 mA  
V
OUT  
12 - 20V  
9 - 20V  
(IR2127/IR2128) (IR21271/IR21281)  
V
CSth  
250 mV or 1.8V  
Output out of phase with input (IR2128/IR21281)  
Avaliable in Lead-Free  
t
(typ.)  
200 & 150 ns  
on/off  
Description  
Packages  
The IR2127/IR2128/IR21271/IR21281(S) is a high  
voltage, high speed power MOSFET and IGBT driver.  
Proprietary HVIC and latch immune CMOS technolo-  
gies enable ruggedized monolithic construction. The  
logic input is compatible with standard CMOS or  
LSTTL outputs, down to 3.3V. The protection circuity  
detects over-current in the driven power transistor  
and terminates the gate drive voltage. An open drain  
signal is provided to indicate that an over-  
ꢀꢁꢂꢃꢄ  
8-Lead PDIP  
8-Lead SOIC  
current shutdown has occurred. The output driver  
features a high pulse current buffer stage designed for minimum cross-conduction. The floating channel can  
be used to drive an N-channel power MOSFET or IGBT in the high side or low side configuration which  
operates up to 600 volts.  
Typical Connection  
ꢆꢆ  
ꢆꢆ  
ꢌꢍ  
ꢌꢍ  
ꢉꢊ  
ꢆꢈ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃꢄ  
ꢆꢊꢋ  
IR2127/IR21271  
ꢆꢆ  
ꢆꢆ  
ꢌꢍ  
ꢌꢍ  
ꢉꢊ  
ꢆꢈ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃꢄ  
ꢆꢊꢋ  
(Refer to Lead Assignments for correct pin configuration).  
This/These diagram(s) show electrical connections only.  
Please refer to our Application Notes and DesignTips for  
proper circuit board layout.  
IR2128/IR21281  
www.irf.com  
1
IR2127(S)/IR21271(S)/IR2128(S)/IR21281(S) & (PbF)  
Absolute Maximum Ratings  
Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage param-  
eters are absolute voltages referenced to COM. The Thermal Resistance and Power Dissipation ratings are measured  
under board mounted and still air conditions.  
Symbol  
Definition  
High Side Floating Supply Voltage  
High Side Floating Offset Voltage  
High Side Floating Output Voltage  
Logic Supply Voltage  
Min.  
Max.  
Units  
V
B
-0.3  
625  
V
S
V
- 25  
V
+ 0.3  
+ 0.3  
25  
B
B
V
HO  
V
S
- 0.3  
V
B
V
CC  
-0.3  
-0.3  
-0.3  
V
V
Logic Input Voltage  
V
V
+ 0.3  
IN  
CC  
V
FLT  
FAULT Output Voltage  
+ 0.3  
CC  
V
Current Sense Voltage  
V
S
- 0.3  
V
B
+ 0.3  
50  
CS  
dV /dt  
s
Allowable Offset Supply Voltage Transient  
-55  
V/ns  
W
P
D
Package Power Dissipation @ T +25°C  
A
(8 Lead DIP)  
(8 Lead SOIC)  
(8 Lead DIP)  
(8 Lead SOIC)  
1.0  
0.625  
125  
200  
150  
150  
300  
Rth  
JA  
Thermal Resistance, Junction to Ambient  
°C/W  
T
J
Junction Temperature  
°C  
T
S
Storage Temperature  
T
L
Lead Temperature (Soldering, 10 seconds)  
Recommended Operating Conditions  
The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the  
recommended conditions. The V offset rating is tested with all supplies biased at 15V differential.  
S
Symbol  
Definition  
Min.  
Max.  
Units  
V
B
High Side Floating Supply Voltage  
(IR2127/IR2128)  
V
+ 12  
V
+ 20  
+ 20  
S
S
S
(IR21271/IR21281)  
V
+ 9  
V
S
V
S
High Side Floating Offset Voltage  
High Side Floating Output Voltage  
Logic Supply Voltage  
Note 1  
600  
V
HO  
V
S
V
B
V
V
CC  
10  
0
20  
V
Logic Input Voltage  
V
IN  
CC  
CC  
V
FLT  
FAULT Output Voltage  
0
V
V
Current Sense Signal Voltage  
Ambient Temperature  
V
S
V + 5  
S
CS  
T
A
-40  
125  
°C  
Note 1: Logic operational for V of -5 to +600V. Logic state held for V of -5V to -V . (Please refer to the Design Tip  
S S BS  
DT97-3 for more details).  
2
www.irf.com  
IR2127(S)/IR21271(S)/IR2128(S)/IR21281(S) & (PbF)  
Dynamic Electrical Characteristics  
V
(V , V ) = 15V, C = 1000 pF and T = 25°C unless otherwise specified. The dynamic electrical characteristics  
BIAS CC BS  
L
A
are measured using the test circuit shown in Figure 3.  
Symbol  
Definition  
Turn-On Propagation Delay  
Turn-Off Propagation Delay  
Turn-On Rise Time  
Min. Typ. Max. Units Test Conditions  
t
on  
200  
150  
80  
250  
200  
130  
65  
V = 0V  
S
t
V = 600V  
S
off  
t
r
t
Turn-Off Fall Time  
40  
ns  
f
t
Start-Up Blanking Time  
500  
700  
240  
340  
900  
360  
510  
bl  
t
CS Shutdown Propagation Delay  
CS to FAULT Pull-Up Propagation Delay  
cs  
t
flt  
Static Electrical Characteristics  
V
(V , V ) = 15V and T = 25°C unless otherwise specified. The V , V and I parameters are referenced to  
O O S  
BIAS CC BS  
A
IN TH  
IN  
COM. The V and I parameters are referenced to V .  
Symbol  
Definition  
Min. Typ. Max. Units Test Conditions  
V
Logic “1” Input Voltage  
Logic “0” Input Voltage  
Logic “0” Input Voltage  
Logic “1” Input Voltage  
CS Input Positive  
(IR2127/IR21271)  
(IR2128/IR21281)  
(IR2127/IR21271)  
(IR2128/IR21281)  
(IR2127/IR2128)  
(IR21271/IR21281)  
IH  
3.0  
V
V
IL  
VCC = 10V to 20V  
0.8  
V
180  
1.5  
250  
1.8  
320  
2.1  
100  
100  
50  
mV  
V
CSTH+  
Going Threshold  
V
High Level Output Voltage, V  
- VO  
BIAS  
IO = 0A  
IO = 0A  
OH  
mV  
V
Low Level Output Voltage, VO  
Offset Supply Leakage Current  
OL  
I
V
V
= V = 600V  
S
LK  
B
I
Quiescent V Supply Current  
BS  
200  
60  
400  
120  
15  
QBS  
= 0V or 5V  
IN  
I
Quiescent V Supply Current  
CC  
QCC  
µA  
I
Logic “1” Input Bias Current  
Logic “0” Input Bias Current  
“High” CS Bias Current  
“High” CS Bias Current  
7.0  
V
V
= 5V  
= 0V  
= 3V  
= 0V  
IN+  
IN  
I
IN-  
1.0  
1.0  
1.0  
IN  
I
V
CS  
CS+  
I
V
CS  
CS-  
V
V
Supply Undervoltage  
(IR2127/IR2128)  
8.8  
10.3  
7.2  
11.8  
8.2  
BSUV+  
BS  
Positive Going Threshold  
Supply Undervoltage  
BS  
(IR21271/IR21281) 6.3  
(IR2127/IR2128)  
(IR21271/IR21281) 6.0  
V
V
V
7.5  
9.0  
6.8  
10.6  
7.7  
BSUV-  
Threshold  
Negative Going  
I
Output High Short Circuit Pulsed Current  
Output Low Short Circuit Pulsed Current  
FAULT - Low on Resistance  
200  
420  
250  
500  
125  
V = 0V, V = 5V  
O IN  
O+  
PW 10 µs  
= 15V, V = 0V  
IN  
mA  
I
V
O-  
O
PW 10 µs  
Ron, FLT  
www.irf.com  
3
IR2127(S)/IR21271(S)/IR2128(S)/IR21281(S) & (PbF)  
Functional Block Diagram IR2127/IR21271  
ꢆꢆ  
ꢂꢅ  
ꢎꢐꢄꢐꢆꢄ  
ꢉꢅ  
ꢃꢐꢅꢐꢃ  
ꢈꢉꢌꢀꢄ  
ꢇꢂꢀꢀꢐꢑ  
ꢉꢊ  
ꢒꢂꢃꢈꢐ  
ꢀꢌꢃꢄꢐꢑ  
ꢂꢒ  
ꢈꢉꢌꢀꢄꢐꢑꢈ  
ꢌꢍ  
ꢒꢂꢃꢈꢐ  
ꢓꢐꢍ  
ꢎꢐꢃꢁꢗ  
ꢒꢂꢃꢈꢐ  
ꢓꢐꢍ  
ꢀꢁꢂꢃꢄ  
ꢆꢈ  
ꢎꢊꢏꢍ  
ꢈꢉꢌꢀꢄꢐꢑ  
ꢒꢂꢃꢈꢐ  
ꢀꢌꢃꢄꢐꢑ  
ꢆꢊꢋ  
Functional Block Diagram IR2128/IR21281  
VB  
VCC  
UV  
DETECT  
R
R
S
Q
5V  
HV  
LEVEL  
SHIFT  
BUFFER  
HO  
VS  
PULSE  
FILTER  
UP  
SHIFTERS  
IN  
PULSE  
GEN  
VB  
DELAY  
PULSE  
GEN  
Q
R
S
FAULT  
-
+
CS  
DOWN  
SHIFTER  
PULSE  
FILTER  
Q
R
S
COM  
4
www.irf.com  
IR2127(S)/IR21271(S)/IR2128(S)/IR21281(S) & (PbF)  
Lead Definitions  
Symbol  
Description  
VCC  
IN  
Logic and gate drive supply  
Logic input for gate driver output (HO), in phase with HO (IR2127/IR21271)  
out of phase with HO (IR2128/IR21281)  
Indicates over-current shutdown has occurred, negative logic  
Logic ground  
ꢀꢁꢂꢃꢄ  
COM  
VB  
High side floating supply  
High side gate drive output  
HO  
VS  
High side floating supply return  
Current sense input to current sense comparator  
CS  
Lead Assignments  
8 Lead PDIP  
8 Lead SOIC  
IR2127/IR21271  
IR2127S/IR21271S  
8 Lead PDIP  
8 Lead SOIC  
IR2128/IR21281  
IR2128S/IR21281S  
www.irf.com  
5
IR2127(S)/IR21271(S)/IR2128(S)/IR21281(S) & (PbF)  
IN  
50%  
50%  
IN  
(IR2128/  
(IR2128/  
IR21281)  
IR21281)  
IN  
(IR2127/  
50%  
50%  
IR21271)  
IN  
CS  
(IR2127/  
t
on  
t
t
off  
t
f
r
IR21271)  
90%  
90%  
ꢀꢁꢂꢃꢄ  
HO  
10%  
10%  
Figure 2. Switching Time Waveform Definition  
HO  
Figure 1. Input/Output Timing Diagram  
IN  
50%  
(IR2128/  
IR21281)  
IN  
50%  
t
(IR2127/  
IR21271)  
bl  
CS  
90%  
HO  
ꢀꢁꢂꢃꢄ  
Figure 3. Start-up Blanking Time Waveform Definitions  
V
CSTH  
V
CSTH  
CS  
CS  
t
cs  
t
flt  
90%  
HO  
90%  
ꢀꢁꢂꢃꢄ  
Figure 4. CS Shutdown Waveform Definitions  
Figure 5. CS to  
Waveform Definitions  
ꢀꢁꢂꢃꢄ  
6
www.irf.com  
IR2127(S)/IR21271(S)/IR2128(S)/IR21281(S) & (PbF)  
500  
400  
300  
200  
100  
0
500  
400  
M ax.  
300  
M
ax.  
200  
Typ.  
100  
0
T yp  
10  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
o
Temperature ( C)  
VBIAS Supply Voltage (V)  
Figure 10B Turn-On Time vs. Supply Voltage  
Figure 10A Turn-On Time vs. Temperature  
500  
400  
300  
350  
300  
250  
200  
150  
100  
50  
M
ax  
200  
100  
0
T yp .  
0
-50  
-25  
0
25  
50  
75  
100  
125  
0
2
4
6
8
10 12 14 16 18 20  
o
Temperature ( C)  
InputVoltage (V)  
Figure 10C Turn-On Time vs. Input Voltage  
Figure 11A Turn-Off Time vs. Temperature  
400  
350  
300  
250  
500  
400  
300  
200  
100  
0
Max  
.
M
ax.  
200  
150  
Typ  
.
T yp .  
100  
50  
0
10  
12  
14  
16  
18  
20  
0
2
4
6
8
10 12 14 16 18 20  
VBIAS Supply Voltage (V)  
Input Voltage (V)  
Figure 11C Turn-OffTime vs. Input Voltage  
Figure 11B Turn-Off Time vs. Supply Voltage  
www.irf.com  
7
IR2127(S)/IR21271(S)/IR2128(S)/IR21281(S) & (PbF)  
500  
500  
400  
300  
400  
300  
M
ax.  
200  
100  
0
200  
100  
0
M
ax  
T yp .  
T yp  
-50  
10  
12  
14  
16  
18  
20  
-25  
0
25  
50  
o
75  
100  
125  
Temperature ( C)  
VBIAS Supply Voltage (V)  
Figure 12A Turn-On Rise Time vs. Temperature  
Figure 12B Turn-On Rise Time vs. Supply Voltage  
200  
150  
100  
200  
150  
100  
Max.  
M
ax.  
50  
0
Typ.  
50  
T yp  
0
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
o
Temperature ( C)  
VBIAS Supply Voltage (V)  
Figure 13A Turn-Off Fall Time vs. Temperature  
Figure 13B Turn-Off Fall Time vs. Voltage  
1600  
1400  
1200  
1000  
1600  
1400  
1200  
1000  
M
ax.  
M
ax.  
T yp .  
800  
600  
400  
200  
0
800  
600  
400  
200  
0
T yp  
in .  
M
in .  
M
10  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
Temperature ( C)  
50  
75  
100  
125  
o
Vcc Supply Voltage (V)  
Figure 14B Start-Up Blanking Time  
vs Voltage  
Figure 14A Start-Up Blanking Time vs. Temperature  
8
www.irf.com  
IR2127(S)/IR21271(S)/IR2128(S)/IR21281(S) & (PbF)  
500  
500  
400  
300  
200  
100  
0
M
A X .  
400  
300  
200  
100  
0
M
ax  
T yp .  
T yp .  
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
o
Temperature ( C)  
Vcc Supply Voltage (V)  
Figure 15A CS Shutdown Propagation Delay  
vs. Temperature  
Figure 15B CS Shutdown Propagation Delay  
vs. Voltage  
800  
700  
800  
700  
600  
500  
Max.  
Typ  
600  
500  
400  
300  
200  
100  
0
M
ax.  
400  
300  
200  
T yp  
100  
0
-50  
-25  
0
25  
50  
o
Temperature ( C)  
75  
100  
125  
10  
12  
14  
16  
VCC Supply Voltage (V)  
18  
20  
Figure 16A CS to FAULT Pull-Up Propagation Delay  
vs. Temperature  
Figure 16B CS to FAULT Pull-Up Propagation Delay  
vs. Voltage  
8
7
6
5
4
8
7
6
5
4
M
in .  
M
in .  
3
2
1
0
3
2
1
0
-50  
-25  
0
25  
50  
o
Temperature ( C)  
75  
100  
125  
10  
12  
14  
16  
18  
20  
VCC Supply Voltage (V)  
Figure 17B  
Figure 17A  
Logic “1” Input Voltage (IR2127/IR21271)  
Logic “0” Input Voltage (IR2128/IR21281)  
vs Voltage  
Logic “1” Input Voltage (IR2127/IR21271)  
Logic “0” Input Voltage (IR2128/IR21281)  
vs Temperature  
www.irf.com  
9
IR2127(S)/IR21271(S)/IR2128(S)/IR21281(S) & (PbF)  
4
3.2  
2.4  
1.6  
0.8  
0
4
3.2  
2.4  
1.6  
0.8  
0
M
ax  
-50  
-25  
0
25  
50  
o
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature ( C)  
VCC Supply Voltage (V)  
Figure 18A  
Figure 18B  
Logic “0” Input Voltage (IR2127/IR21271)  
Logic “1” Input Voltage (IR2128/IR21281)  
vs Temperature  
Logic “0” Input Voltage (IR2127/IR21271)  
Logic “1” Input Voltage (IR2128/IR21281)  
vs Voltage  
500  
400  
500  
400  
Max.  
M
ax.  
300  
300  
200  
100  
0
T yp .  
200  
Typ.  
100  
Min.  
M
in .  
0
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
o
Temperature ( C)  
Vcc Supply Voltage (V)  
Figure 19A CS Input Positive Going Voltage  
vs Temperature (IR2127/IR2128)  
Figure 19B CS Input Positive Going Voltage  
vs Voltage (IR2127/IR2128)  
1
0.8  
0.6  
0.4  
1
0.8  
0.6  
0.4  
M ax.  
0.2  
M ax.  
0.2  
0
0
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
o
Temperature ( C)  
Vcc Supply Voltage (V)  
Figure 20A High Level Output vs Temperature  
Figure 20B High Level Output vs Voltage  
10  
www.irf.com  
IR2127(S)/IR21271(S)/IR2128(S)/IR21281(S) & (PbF)  
1
0.8  
0.6  
0.4  
0.2  
0
1
0.8  
0.6  
0.4  
M ax.  
M ax.  
0.2  
0
-50  
-25  
0
25  
50  
o
Temperature ( C)  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Vcc Supply Voltage (V)  
Figure 21A Low Level Output vs Temperature  
Figure 21B Low Level Output vs Voltage  
500  
400  
300  
200  
500  
400  
300  
200  
100  
0
100  
M ax.  
M ax.  
0
-50  
-25  
0
25  
50  
75  
100  
125  
0
100  
200  
300  
400  
500  
600  
o
Temperature ( C)  
VB Boost Voltage (V)  
Figure 22B Offset Supply Current  
vs Voltage  
Figure 22A Offset Supply Current  
vs Temperature  
800  
700  
600  
500  
400  
300  
200  
100  
0
800  
700  
600  
500  
400  
300  
200  
100  
0
Max.  
Typ.  
M
ax.  
T yp .  
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
Vcc Supply Voltage (V)  
18  
20  
o
Temperature ( C)  
Figure 23B VBS Supply Current  
vs Voltage  
Figure 23A VBS Supply Current  
vs Temperature  
www.irf.com  
11  
IR2127(S)/IR21271(S)/IR2128(S)/IR21281(S) & (PbF)  
300  
250  
300  
250  
200  
150  
100  
200  
150  
100  
M ax  
M
ax  
T yp  
50  
0
T yp  
50  
0
10  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
50  
o
Temperature ( C)  
75  
100  
125  
Vcc Supply Voltage (V)  
Figure 24B Vcc Supply Current  
vs Voltage  
Figure 24A Vcc Supply Current  
vs Temperature  
40  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
M
ax.  
M
ax.  
T yp  
T yp  
-50  
0
0
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
o
Temperature ( C)  
Vcc Supply Voltage (V)  
Figure 25A Logic “1” Input Current  
vs Temperature  
Figure 25B Logic “1” Input Current  
vs Voltage  
5
4
3
2
1
0
5
4
3
2
1
0
M ax.  
Max.  
-50  
-25  
0
25  
Temperature ( C)  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
o
Vcc Supply Voltage (V)  
Figure 26A Logic “0” Input Current  
vs Temperature  
Figure 26B Logic “0” Input Current  
vs Voltage  
12  
www.irf.com  
IR2127(S)/IR21271(S)/IR2128(S)/IR21281(S) & (PbF)  
5
4
3
5
4
3
2
2
1
0
M ax.  
1
M ax.  
0
10  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
50  
o
Temperature ( C)  
75  
100  
125  
Vcc Supply Voltage (V)  
Figure 27B “High” CS Bias Current  
vs Voltage  
Figure 27A “High” CS Bias Current  
vs Temperature  
5
4
3
2
1
0
5
4
3
2
1
0
M ax.  
M ax.  
-50  
-25  
0
Temperature ( C)  
25  
50  
75  
100  
125  
10  
12  
14  
VCC Supply Voltage (V)  
16  
18  
20  
o
Figure 28B “Low” CS Bias Current vs Voltage  
Figure 28A “Low” CS Bias Current  
vs Temperature  
15  
14  
13  
15  
14  
13  
12  
11  
10  
9
M
ax.  
M
ax.  
T yp  
in .  
12  
11  
10  
9
T yp .  
in .  
M
M
8
8
7
7
6
6
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
o
Temperature ( C)  
VCC Supply Voltage (V)  
Figure 29B VBS Undervoltage Threshold (+)  
vs Voltage (IR2127/IR2128)  
Figure 29A VBS Undervoltage Threshold (+)  
vs Temperature (IR2127/IR2128)  
www.irf.com  
13  
IR2127(S)/IR21271(S)/IR2128(S)/IR21281(S) & (PbF)  
15  
15  
14  
13  
14  
13  
12  
12  
11  
10  
9
M
ax.  
M
ax.  
11  
10  
9
T yp .  
in .  
T yp .  
in .  
M
M
8
8
7
7
6
6
10  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
o
Temperature ( C)  
Vcc Supply Voltage (V)  
Figure 30B VBS Undervoltage Threshold (-)  
vs Voltage (IR2127/IR2128)  
Figure 30A VBS Undervoltage Threshold (-)  
vs Temperature (IR2127/IR2128)  
500  
400  
300  
500  
400  
T yp .  
300  
200  
200  
100  
0
M
in .  
T yp .  
100  
M
in .  
0
-50  
-25  
0
25  
50  
o
Temperature ( C)  
75  
100  
125  
10  
12  
14  
16  
18  
20  
VBIAS Supply Voltage (V)  
Figure 31A Output Source Current vs Temperature  
Figure 31B Output Source Current vs Voltage  
800  
800  
700  
600  
500  
700  
T yp .  
600  
500  
M
in .  
400  
300  
200  
100  
0
400  
300  
200  
100  
0
Typ.  
Min.  
-50  
-25  
0
25  
50  
o
75  
100  
125  
10  
12  
14  
16  
VBIAS Supply Voltage (V)  
18  
20  
Temperature ( C)  
Figure 32A Output Sink Current vs Temperature  
Figure 32B Output Sink Current vs Voltage  
14  
www.irf.com  
IR2127(S)/IR21271(S)/IR2128(S)/IR21281(S) & (PbF)  
Case outlines  
01-6014  
8-Lead PDIP  
01-3003 01 (MS-001AB)  
INC HES  
MILLIMETERS  
DIM  
A
D
B
MIN  
.0532  
A1 .0040  
MAX  
.0688  
.0098  
.020  
MIN  
1.35  
0.10  
0.33  
0.19  
4.80  
3.80  
MAX  
1.75  
0.25  
0.51  
0.25  
5.00  
4.00  
FOOTPRINT  
8X 0.72 [.028]  
5
A
b
c
D
E
e
.013  
.0075  
.189  
.1497  
.0098  
.1968  
.1574  
8
1
7
2
6
3
5
6
H
E
0.25 [.010]  
A
.050 BASIC  
1.27 BASIC  
0.635 BASIC  
6.46 [.255]  
4
e 1 .025 BASIC  
H
K
L
.2284  
.0099  
.016  
0°  
.2440  
.0196  
.050  
8°  
5.80  
0.25  
0.40  
0°  
6.20  
0.50  
1.27  
8°  
3X 1.27 [.050]  
e
6X  
8X 1.78 [.070]  
y
K x 45°  
e1  
A
A
C
y
0.10 [.004]  
8X c  
8X L  
A1  
B
8X b  
7
0.25 [.010]  
C
NOTES:  
5
6
7
DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.  
MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].  
DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.  
MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].  
DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO  
A SUBSTRATE.  
1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.  
2. CONTROLLING DIMENSION: MILLIMETER  
3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].  
4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.  
01-6027  
01-0021 11 (MS-012AA)  
8-Lead SOIC  
www.irf.com  
15  
IR2127(S)/IR21271(S)/IR2128(S)/IR21281(S) & (PbF)  
ORDER INFORMATION  
Basic Part (Non-Lead Free)  
Lead-Free Part  
8-Lead PDIP IR2127  
order IR2127  
8-Lead PDIP IR2127  
order IR2127PbF  
8-Lead SOIC IR2127S order IR2127S  
8-Lead PDIP IR21271 order IR21271  
8-Lead SOIC IR21271S order IR21271S  
8-Lead SOIC IR2127S order IR2127SPbF  
8-Lead PDIP IR21271 order IR21271PbF  
8-Lead SOIC IR21271S order IR21271SPbF  
8-Lead PDIP IR2128  
order IR2128  
8-Lead PDIP IR2128  
order IR2128PbF  
8-Lead SOIC IR2128S order IR2128S  
8-Lead SOIC IR2128S order IR2128SPbF  
8-Lead PDIP IR21281 order IR21281PbF  
8-Lead SOIC IR21281S order IR21281SPbF  
8-Lead PDIP IR21281 order IR21281  
8-Lead SOIC IR21281S order IR21281S  
This product has been designed and qualified for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
Data and specifications subject to change without notice.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.  
7/18/2005  
16  
www.irf.com  

相关型号:

IR21281STRPBF

MOSFET Driver, CMOS, PDSO8,
INFINEON

IR2128C

Buffer/Inverter Based MOSFET Driver, CMOS,
INFINEON

IR2128PBF

CURRENT SENSING SINGLE CHANNEL DRIVER
INFINEON

IR2128S

CURRENT SENSING SINGLE CHANNEL DRIVER
INFINEON

IR2128SPBF

CURRENT SENSING SINGLE CHANNEL DRIVER
INFINEON

IR2128STR

暂无描述
INFINEON

IR2128STRPBF

暂无描述
INFINEON

IR2130

3-PHASE BRIDGE DRIVER
INFINEON

IR21303C

3-PHASE BRIDGE DRIVER
INFINEON

IR2130D

3-PHASE DRIVER
INFINEON

IR2130J

3-PHASE BRIDGE DRIVER
INFINEON

IR2130JPBF

3-PHASE BRIDGE DRIVER
INFINEON