IR2156STRPBF [INFINEON]

Fluorescent Light Controller, 0.5A, PDSO14, LEAD FREE, MS-012AB, SOIC-14;
IR2156STRPBF
型号: IR2156STRPBF
厂家: Infineon    Infineon
描述:

Fluorescent Light Controller, 0.5A, PDSO14, LEAD FREE, MS-012AB, SOIC-14

光电二极管
文件: 总24页 (文件大小:496K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet No. PD60182-I  
( )&(PbF)  
S
IR2156  
BALLAST CONTROL IC  
Features  
Programmable dead time  
DC bus under-voltage reset  
Ballast control and half-bridge driver in one IC  
Shutdown pin with hysteresis  
Internal 15.6V zener clamp diode on Vcc  
Micropower startup (150µA)  
Programmable preheat frequency  
Programmable preheat time  
Internal ignition ramp  
Latch immunity and ESD protection  
Programmable over-current threshold  
Also available LEAD-FREE (PbF)  
Programmable run frequency  
Packages  
Description  
The IR2156 incorporates a high voltage half-bridge  
gate driver with a programmable oscillator and state  
diagram to form a complete ballast control IC. The  
IR2156 features include programmable preheat and  
run frequencies, programmable preheat time, program-  
mable dead-time, and programmable over-current pro-  
tection. Comprehensive protection features such as  
protection from failure of a lamp to strike,filament fail-  
ures, as well as an automatic restart function, have  
been included in the design. The IR2156 is available in  
both 14 lead PDIP and 14 lead SOIC packages.  
14 Lead SOIC  
(narrow body)  
14 Lead PDIP  
CFL Application Diagram  
RBUS  
L
FILTE  
L
R
DRECT1  
RSUPPLY  
F1  
DBOOT  
FILTE  
C
CELCAP1  
NC  
VB  
R
DCP2  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
VCC  
HO  
M1  
M2  
LRES  
VDC  
RT  
VS  
CVCC2 CVCC1  
N
LOCBOOT  
CCP  
RPH  
CT  
CS  
SD  
CRES  
RT  
CSNUB  
R1  
RPH  
CELCAP1  
CCS  
CPH  
COM  
RCS  
DCP1  
8
CT CVDC  
CCPH  
DRECT2  
www.irf.com  
1
( )&(PbF)  
S
IR2156  
Absolute Maximum Ratings  
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage  
parameters are absolute voltages referenced to COM, all currents are defined positive into any lead. The thermal  
resistance and power dissipation ratings are measured under board mounted and still air conditions.  
Symbol Definition  
Min.  
Max.  
Units  
V
B
High side floating supply voltage  
-0.3  
625  
V
High side floating supply offset voltage  
High side floating output voltage  
Low side output voltage  
V
- 25  
V
+ 0.3  
+ 0.3  
+ 0.3  
S
B
B
B
V
V
HO  
V
S
- 0.3  
V
V
LO  
-0.3  
V
CC  
I
Maximum allowable output current (HO, LO)  
due to external power transistor miller effect  
-500  
500  
OMAX  
mA  
V
VDC pin voltage  
-0.3  
-0.3  
-5  
V
V
+ 0.3  
+ 0.3  
VDC  
CC  
V
V
CT pin voltage  
CT  
CC  
I
CPH pin current  
5
CPH  
mA  
I
RPH pin current  
-5  
5
RPH  
V
RPH pin voltage  
-0.3  
-5  
V
+ 0.3  
CC  
V
RPH  
I
RT pin current  
5
mA  
RT  
V
RT pin voltage  
-0.3  
-0.3  
-5  
V
+ 0.3  
CC  
RT  
V
V
CS  
Current sense pin voltage  
Current sense pin current  
Shutdown pin current  
Supply current (note 1)  
Allowable offset voltage slew rate  
5.5  
5
I
CS  
I
-5  
5
mA  
SD  
I
-20  
-50  
20  
CC  
dV/dt  
50  
V/ns  
W
P
D
Package power dissipation @ T +25°C  
(14 pin PDIP)  
(14 pin SOIC)  
(14 pin PDIP)  
(14 pin SOIC)  
1.70  
1.00  
70  
A
P
D
= (T -T )/Rth  
JMAX A JA  
Rth  
JA  
Thermal resistance, junction to ambient  
o
C/W  
120  
150  
150  
300  
T
J
Junction temperature  
-55  
-55  
o
C
T
S
Storage temperature  
T
L
Lead temperature (soldering, 10 seconds)  
Note 1:  
This IC contains a zener clamp structure between the chip V  
and COM which has a nominal breakdown  
CC  
voltage of 15.6V. Please note that this supply pin should not be driven by a DC, low impedance power source  
greater than the V specified in the Electrical Characteristics section.  
CLAMP  
2
www.irf.com  
( )&(PbF)  
S
IR2156  
Recommended Operating Conditions  
For proper operation the device should be used within the recommended conditions.  
Symbol Definition  
Min.  
Max.  
Units  
V
High side floating supply voltage  
Minimum required VBS voltage for proper HO functionality  
Steady state high side floating supply offset voltage  
Supply voltage  
V
- 0.7  
V
CLAMP  
Bs  
CC  
V
5
V
CC  
BSMIN  
V
V
S
-1  
600  
V
CC  
V
V
CCUV+  
CLAMP  
I
Supply current  
note 2  
10  
mA  
pF  
CC  
C
T
CT lead capacitance  
1
220  
-1  
I
Shutdown lead current  
SD  
mA  
I
Current sense lead current  
Junction temperature  
-1  
-40  
1
CS  
o
C
T
J
125  
125  
25  
I
SD pin leakage current (@V =6V)  
SD  
SDLK  
µA  
I
CS pin leakage current (@V =3V)  
CS  
CSLK  
Note 2: Enough current should be supplied into the VCC lead to keep the internal 15.6V zener clamp diode on this lead  
regulating its voltage, V  
CLAMP  
.
Electrical Characteristics  
V
CC  
= V = V  
BS  
= 14V +/- 0.25V, V  
= Open, R = 39.0k, R = 100.0kC = 470 pF, V  
= 0.0V, V = 0.0V,  
CPH CS  
BIAS  
VDC  
o
T
PH  
,
T
V
SD  
= 0.0V, C  
= 1000pF, T = 25 C unless otherwise specified.  
LO, HO  
A
Symbol Definition  
Min.  
Typ.  
Max. Units Test Conditions  
Supply Characteristics  
V
V
supply undervoltage positive going  
10.5  
8.5  
11.5  
9.5  
12.5  
10.5  
V
rising from 0V  
CC  
CCUV+  
CC  
threshold  
V
V
V
supply undervoltage negative going  
V falling from 14V  
CC  
CCUV-  
CC  
V
threshold  
V
supply undervoltage lockout hysteresis  
1.5  
50  
2.0  
3.0  
UVHYS  
CC  
I
UVLO mode quiescent current  
Fault-mode quiescent current  
120  
200  
200  
470  
V
= 11V  
CC  
QCCUV  
I
SD = 5.1V, or  
CS > 1.3V  
µA  
QCCFLT  
I
Quiescent V  
supply current  
1.0  
1.0  
1.5  
1.5  
CT connected toCOM  
VCC =14V,RT=15kΩ  
RT = 15kΩ  
QCC  
CC  
mA  
I
V
supply current, f = 50kHz  
zener clamp voltage  
QCC50K  
CC  
CC  
C
= 470 pF  
T
V
V
14.5  
15.6  
16.5  
V
I
= 5mA  
CLAMP  
CC  
Floating Supply Characteristics  
I
V
V
= (CT = 0V)  
S
Quiescent VBS supply current  
Quiescent V supply current  
BS  
-5  
0
5
QBS0  
HO  
µA  
µA  
I
50  
V
= V (C = 14V)  
30  
QBS1  
HO B T  
I
LK  
Offset supply leakage current  
50  
V = V = 600V  
B S  
www.irf.com  
3
( )&(PbF)  
S
IR2156  
Electrical Characteristics  
V
= V = V  
BS  
= 14V +/- 0.25V, V  
= Open, R = 39.0k, R = 100.0kC = 470 pF, V  
= 0.0V, V = 0.0V,  
CPH CS  
CC  
BIAS  
VDC  
o
T
PH  
,
T
V
= 0.0V, C  
= 1000pF, T = 25 C unless otherwise specified.  
LO, HO  
A
SD  
Symbol Definition  
Min. Typ.  
Max. Units Test Conditions  
Oscillator, Ballast Control, I/O Characteristics  
f
f
Oscillator frequency  
28  
30  
32  
R =33.0k, VV = 5V  
DC  
osc  
T
kHz  
V
CPH  
= Open  
(Guaranteed by design)  
R =40k, R = 100K  
T PH  
Oscillator frequency  
Oscillator duty cycle  
37.6  
40  
43.9  
KHz  
osc  
C
T
= 470pF  
d
50  
8.3  
4.8  
0
%
V
C
V
Upper  
ramp voltage threshold  
CT+  
CT-  
T
T
V
= 14V  
CC  
C
V
Lower  
ramp voltage threshold  
C
>
or CS >  
1.3V  
V
Fault-mode  
pin voltage  
T
mV  
SD 5.1V  
only CT CAP should  
beconnected to CT  
CTFLT  
2.0  
2.0  
3
usec  
usec  
KΩ  
t
LO output deadtime  
DLO  
t
HO output deadtime  
Internal deadtime resistor  
DHO  
RDT  
Preheat Characteristics  
I
CPH pin charging current  
3.6  
4.3  
5.2  
µA  
V
=10V,CT=10V,  
CPH  
CPH  
VDC=5V  
0
mV  
>
SD 5.1V  
or CS >  
V
Fault-mode  
pin voltage  
CPH  
1.3V  
CPHFLT  
RPH Characteristics  
µA  
mV SD 5.1V  
I
Open circuit RPH pin leakage current  
0.1  
0
CT = 10V  
RPHLK  
>
or CS >  
1.3V  
V
Fault-mode pin voltage  
RPH  
RPHFLT  
RT Characteristics  
µA  
mV  
I
Open circuit RT pin leakage current  
0.1  
0
CT = 10V  
RTLK  
> or CS >  
SD 5.1V 1.3V  
V
Fault-mode pin voltage  
RT  
RTFLT  
Protection Characteristics  
V
Rising shutdown pin threshold voltage  
1.1  
5.1  
450  
1.25  
160  
135  
V
SDTH+  
V
Shutdown pin threshold hysteresis  
mV  
V
SDHYS  
V
Over-current sense threshold voltage  
Over-current sense propogation delay  
Over-current sense minimum pulse width  
1.44  
CSTH  
t
nsec  
nsec  
Delay from CS to LO  
CS  
V
V
pulse amplitude  
CS  
CSPW  
= V  
+100mV  
CSTH  
R
V
DC bus sensing resistor  
CPH to VDC offset voltage  
7.5  
10  
14  
kΩ  
V
>12V, VCT=0V  
CPH  
VDC  
VDC= 7V  
V =open,VVDC=0V  
CPH  
10.3  
10.9  
11.4  
V
CPH-VDC  
Gate Driver Output Characteristics  
VOL  
VOH  
tr  
Low-level output voltage  
High-level output voltage  
Turn-on rise time  
0
0
105  
100  
150  
Io = 0  
mV  
ns  
V
- Vo, Io = 0  
BIAS  
110  
55  
C
= C  
=1nF  
HO  
LO  
tf  
Turn-off fall time  
100  
4
www.irf.com  
( )&(PbF)  
S
IR2156  
Block Diagram  
Vcc  
S1  
RT  
R
VB  
HO  
VS  
S2  
Driver  
Logic  
High-  
Side  
40K  
CT  
R
Comp 1  
Driver  
T
Q
Q
VTH  
R
RDT  
2.5K  
Soft  
R
Start  
S3  
S4  
S6  
R
R
RPH  
Low-  
Side  
ICPH  
Schmitt 1  
LO  
CS  
Driver  
CPH  
VDC  
Fault  
Logic  
5.1V  
5.1V  
S
R1  
R2  
Q
Q
RVDC  
10K  
1.3V  
Comp 3  
SD  
5.1V  
Under-  
Voltage  
Detect  
Comp 2  
COM  
Lead Assignments & Definitions  
ꢀꢁꢂꢃ# ꢞꢟꢇ&ꢠꢡ ꢙꢈꢅ;ꢢꢁꢣꢉꢁꢠꢂ  
ꢀꢁꢂꢃꢄꢅꢅꢁꢆꢂꢇꢈꢂꢉꢅ  
ꢖꢠꢃ;ꢠꢂꢂꢈ;ꢉ  
!ꢠꢆꢁ;ꢃ}ꢃꢡꢠꢩ_ꢅꢁ`ꢈꢃꢆ^ꢉꢈꢃ`ꢢꢁꢨꢈꢢꢃꢅꢤꢣꢣꢡꢟ  
ꢖꢗ  
ꢘꢗꢗ  
ꢘꢙꢗ  
ꢕꢚ  
ꢖꢗ  
ꢘꢗꢗ  
ꢘꢙꢗ  
ꢕꢚ  
ꢊꢍ ꢘ"  
ꢊꢌ ꢛꢜ  
ꢔꢗꢃꢅꢉ^ꢢꢉ_ꢤꢣꢃ^ꢂ`ꢃꢙꢗꢃ&ꢤꢅꢃꢅꢈꢂꢅꢁꢂꢆꢃꢔꢂꢣꢤꢉ  
ꢝꢁꢂꢁꢇꢤꢇꢃꢥꢢꢈꢦꢤꢈꢂ;ꢟꢃꢉꢁꢇꢁꢂꢆꢃꢢꢈꢅꢁꢅꢉꢠꢢ  
ꢀꢢꢈꢧꢈ^ꢉꢃꢥꢢꢈꢦꢤꢈꢂ;ꢟꢃꢉꢁꢇꢁꢂꢆꢃꢢꢈꢅꢁꢅꢉꢠꢢ  
ꢜꢅ;ꢁꢡꢡ^ꢉꢠꢢꢃꢉꢁꢇꢁꢂꢆꢃ;^ꢣ^;ꢁꢉꢠꢢ  
ꢀꢢꢈꢧꢈ^ꢉꢃꢉꢁꢇꢁꢂꢆꢃ;^ꢣ^;ꢁꢉꢠꢢ  
ꢕꢀꢛ  
ꢗꢚ  
ꢊꢋ  
ꢊꢊ  
ꢘꢞ  
!ꢜ  
ꢗꢀꢛ  
ꢗꢜꢝ  
ꢞꢙ  
ꢔꢗꢃꢣꢠꢩꢈꢢꢃ}ꢃꢅꢁꢆꢂ^ꢡꢃꢆꢢꢠꢤꢂ`  
ꢕꢀꢛ  
ꢗꢚ  
ꢊꢑ ꢗꢞ  
ꢞꢧꢤꢉ`ꢠꢩꢂꢃꢁꢂꢣꢤꢉ  
ꢊꢑ  
ꢊꢊ  
ꢊꢋ  
ꢊꢌ  
ꢊꢍ  
ꢗꢞ  
!ꢜ  
ꢗꢤꢢꢢꢈꢂꢉꢃꢅꢈꢂꢅꢁꢂꢆꢃꢁꢂꢣꢤꢉ  
ꢞꢙ  
!ꢠꢩ_ꢅꢁ`ꢈꢃꢆ^ꢉꢈꢃ`ꢢꢁꢨꢈꢢꢃꢠꢤꢉꢣꢤꢉ  
ꢛꢁꢆꢧ_ꢅꢁ`ꢈꢃꢥꢡꢠ^ꢉꢁꢂꢆꢃꢢꢈꢉꢤꢢꢂ  
ꢗꢀꢛ  
ꢗꢜꢝ  
ꢘꢞ  
ꢛꢜ  
ꢘ"  
ꢛꢁꢆꢧ_ꢅꢁ`ꢈꢃꢆ^ꢉꢈꢃ`ꢢꢁꢨꢈꢢꢃꢠꢤꢉꢣꢤꢉ  
ꢛꢁꢆꢧ_ꢅꢁ`ꢈꢃꢆ^ꢉꢈꢃ`ꢢꢁꢨꢈꢢꢃꢥꢡꢠ^ꢉꢁꢂꢆꢃꢅꢤꢣꢣꢡꢟ  
www.irf.com  
5
( )&(PbF)  
S
IR2156  
State Diagram  
Power Turned On  
UVLO Mode  
1/2-Bridge Off  
IQCC 120µA  
CPH = 0V  
CT = 0V (Oscillator Off)  
CS > 1.3V  
(Lamp Removal)  
VCC < 9.5V  
or  
VCC > 11.5V (UV+)  
(VCC Fault or Power Down)  
SD > 5.1V  
or  
and  
or  
SD > 5.1V  
SD < 5.1V  
VCC < 9.5V (UV-)  
(Power Turned Off)  
(Lamp Fault or Lamp Removal)  
FAULT Mode  
PREHEAT Mode  
1/2-Bridge oscillating @ fPH  
RPH // RT  
Fault Latch Set  
1/2-Bridge Off  
IQCC 180µA  
CPH Charging @ ICPH = 5 µA  
CS Enabled @ CPH > 7.5V  
RVDC to COM = 12.6k@  
CPH > 7.5V  
CPH = 0V  
VCC = 15.6V  
CT = 0V (Oscillator Off)  
CPH > 10V  
(End of PREHEAT Mode)  
Ignition Ramp  
Mode  
CS > 1.3V  
(Failure to Strike Lamp)  
RPH>Open  
fPH ramps to fRUN  
CPH charging  
CPH > 13V  
CS > 1.3V  
RUN Mode  
(Lamp Fault)  
RPH = Open  
1/2-Bridge Oscillating @  
fRUN  
6
www.irf.com  
( )&(PbF)  
S
IR2156  
Timing Diagrams  
Normal operation  
VCC  
15.6V  
UVLO+  
UVLO-  
VDC  
VCC  
7.5V  
CPH  
frun  
fph  
FREQ  
HO  
LO  
CS  
Over-Current Threshold  
1.3V  
UVLO  
PH  
RUN  
UVLO  
RT  
RT  
RT  
RPH  
CT  
RPH  
CT  
RPH  
CT  
HO  
LO  
HO  
LO  
HO  
LO  
CS  
CS  
CS  
www.irf.com  
7
( )&(PbF)  
S
IR2156  
Timing Diagrams  
Fault condition  
VCC  
15.6V  
UVLO+  
UVLO-  
VDC  
VCC  
7.5V  
CPH  
frun  
FREQ  
SD  
fph  
HO  
LO  
CS  
1.3V  
UVLO  
PH  
PH  
RUN  
UVLO  
RT  
RT  
RT  
RPH  
CT  
RPH  
CT  
RPH  
CT  
HO  
LO  
HO  
HO  
LO  
LO  
CSTH  
CS  
CS  
CS  
8
www.irf.com  
( )&(PbF)  
S
IR2156  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
6
5
4
3
2
1
0
0
0.5  
1
1.5  
2
2.5  
3
40  
80  
120  
160  
200  
Frequency (KHz)  
DT ( S)  
µ
Graph 1. CT vs Dead Time (IR2156)  
Graph 2. I vs Frequency (IR2156)  
CC  
120  
110  
100  
90  
90  
80  
70  
60  
50  
40  
30  
RPH=15K  
RPH=15K  
RPH=30K  
RPH=100K  
80  
RPH=30K  
70  
60  
50  
40  
9
10  
11  
12  
13  
0
1
2
3
VCPH (V)  
VDC (V)  
Graph 3. Frequency vs V  
(IR2156)  
Graph 4. Frequency vs VDC (IR2156)  
CPH  
www.irf.com  
9
( )&(PbF)  
S
IR2156  
6
5
4
3
2
1
1000000  
100000  
10000  
1000  
0
0
4
13  
22  
31  
40  
5
10  
15  
RT (k  
)
VCPH (V)  
Graph 6. Frequency vs RT (IR2156)  
Graph 5. I  
vs V  
(IR2156)  
CPH  
CPH  
70  
60  
50  
40  
30  
20  
10  
0
2
1.5  
1
o
125 C  
o
75 C  
o
25 C  
o
-25 C  
0.5  
-10  
0
0
8
3
6
9
12  
15  
9
10  
11  
12  
13  
V
BS (V)  
VCC (V)  
Graph 8. I  
vs V vs Temp(IR2156)  
CC  
Graph 7. I  
vs V  
(IR2156)  
CC  
QBS  
QCC  
UVLO Hysteresis  
10  
www.irf.com  
( )&(PbF)  
S
IR2156  
1.5  
1.4  
1.3  
1.2  
1.1  
1
5
4.5  
4
3.5  
3
2.5  
2
-25  
0
25  
50  
75  
100  
125  
-25  
0
25  
50  
75  
100  
125  
Temperature °C  
Temperature °C  
+
Graph 9. V  
vs Temperature (IR2156)  
Graph 10. R vs Temperature (IR2156)  
DT  
CSTH  
15  
14  
13  
12  
11  
10  
14  
13  
12  
11  
10  
9
UV+  
UV-  
8
-25  
0
25  
50  
75  
100  
125  
-25  
0
25  
Temperature °C  
Graph 12. UV+, UV- vs Temperature (IR2156)  
50  
75  
100 125  
Temperature °C  
+
VDC  
Graph 11. R  
vs Temperature (IR2156)  
www.irf.com  
11  
( )&(PbF)  
S
IR2156  
35  
30  
25  
20  
15  
10  
5
6
5.75  
5.5  
SD+  
SD-  
5.25  
5
4.75  
4.5  
4.25  
4
0
-25  
0
25  
50  
75  
100  
125  
-25  
0
25  
50  
75  
100  
125  
Temperature °C  
Temperature °C  
Graph 13. SD+, SD- vs Temperature (IR2156)  
Graph 14. I vs Temperature (IR2156)  
LK  
20  
16  
12  
8
20  
16  
12  
8
-25  
25  
75  
-25  
25  
75  
125  
125  
4
4
0
0
0
5
10  
15  
20  
15  
15.5  
16  
16.5  
V
CC (V)  
V
CC (V)  
Graph 15. I  
vs V vs Temperature (IR2156)  
CC  
Graph 16. I  
vs V  
vs Temperature (IR2156)  
QCC  
QCC  
CC  
Internal Zener Diode Curve  
12  
www.irf.com  
( )&(PbF)  
S
IR2156  
1.6  
1.4  
1.2  
1
2
1.8  
1.6  
1.4  
1.2  
1
-25  
25  
75  
-25  
25  
75  
125  
125  
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
8.5  
9
9.5  
10  
10.5  
10  
10.5  
11  
11.5  
12  
12.5  
13  
VCC (V)  
VCC (V)  
Graph 17. I  
vs V vs Temperature (IR2156)  
CC  
Graph 18. I  
vs V vs Temperature (IR2156)  
QCC CC  
QCC  
+
V
V
-
CCUV  
CCUV  
70  
65  
60  
55  
50  
45  
40  
58.5  
58  
o
-25 C  
57.5  
57  
o
75 C  
56.5  
56  
o
125 C  
55.5  
55  
o
25 C  
54.5  
54  
11  
12  
13  
14  
-25  
0
25  
50  
75  
100  
125  
Temp°(C)  
VCC (V)  
vs V vs Temperature (IR2156)  
CC  
Graph 19. F  
Graph 20. F  
vs Temperature (IR2156)  
OSC  
OSC  
V
V
= 0V  
= 0V  
CPH  
CPH  
www.irf.com  
13  
( )&(PbF)  
S
IR2156  
3.5  
3
6
5.5  
5
-25  
25  
75  
o
125 C  
o
75 C  
2.5  
2
125  
o
25 C  
1.5  
1
o
-25 C  
4.5  
4
0.5  
0
11  
12  
13  
14  
15  
11  
12  
13  
14  
15  
VCC (V)  
VCC (V)  
Graph 21. I  
vs V  
vs Temperature (IR2156)  
Graph 22. I  
vs V  
vs Temperature (IR2156)  
CPH  
CC  
CPH  
CC  
V
CPH  
= V  
CC  
V
CPH  
= 0V  
200  
2.25  
2.2  
180  
160  
140  
120  
100  
80  
o
125 C  
o
125 C  
2.15  
2.1  
o
75 C  
o
25 C  
2.05  
2
o
75 C  
o
-25 C  
o
25 C  
1.95  
1.9  
60  
40  
1.85  
20  
o
-25 C  
0
1.8  
11  
11  
12  
13  
VCC (V)  
vs V vs Temperature (IR2156)  
RISE(HO) CC  
14  
15  
12  
13  
VCC (V)  
vs Temperature (IR2156)  
14  
15  
Graph 23. t  
vs V  
Graph 24. t  
DEAD  
CC  
CT = 1nF  
14  
www.irf.com  
( )&(PbF)  
S
IR2156  
250  
200  
150  
100  
50  
120  
100  
80  
60  
40  
20  
0
o
125 C  
o
125 C  
o
75 C  
o
25 C  
o
75 C  
o
25 C  
o
-25 C  
o
-25 C  
0
11  
12  
13  
14  
15  
11  
12  
13  
14  
15  
VCC (V)  
VCC (V)  
Graph 25. t  
vs V  
vs Temperature (IR2156)  
Graph 26. t  
vs V  
vs Temperature (IR2156)  
FALL(HO)  
CC  
RISE(LO)  
CC  
120  
o
125 C  
100  
80  
60  
40  
20  
0
o
75 C  
o
25 C  
o
-25 C  
11  
12  
13  
14  
15  
VCC (V)  
vs V vs Temperature (IR2156)  
CC  
Graph 27. t  
FALL(LO)  
www.irf.com  
15  
( )&(PbF)  
S
IR2156  
Functional Description  
VC1  
CVCC  
INTERNAL VCC  
DISCHARGE  
Under-voltage Lock-Out Mode (UVLO)  
ZENER CLAMP VOLTAGE  
VUVLO+  
The under-voltage lock-out mode (UVLO) is  
defined as the state the IC is in when VCC is  
below the turn-on threshold of the IC. To identify  
the different modes of the IC, refer to the State  
Diagram shown on page 6 of this document. The  
IR2156 undervoltage lock-out is designed to  
maintain an ultra low supply current of less than  
200uA, and to guarantee the IC is fully functional  
before the high and low side output drivers are  
activated. Figure 1 shows an efficient supply  
VHYST  
VUVLO-  
DISCHARGE  
TIME  
CHARGE PUMP  
OUTPUT  
RSUPPLY & CVCC  
TIME  
CONSTANT  
t
Figure 2, Supply capacitor (CVCC) voltage.  
voltage using the start-up current of the IR2156 During the discharge cycle, the rectified current  
together with a charge pump from the ballast from the charge pump charges the capacitor above  
output stage (RSUPPLY, CVCC, DCP1 and DCP2). the IC turn-off threshold. The charge pump and  
the internal 15.6V zener clamp of the IC take over  
VBUS(+)  
as the supply voltage. The start-up capacitor and  
RSUPPLY  
DBOOT  
snubber capacitor must be selected such that  
VB  
14  
enough supply current is available over all ballast  
operating conditions. A bootstrap diode (DBOOT)  
and supply capacitor (CBOOT) comprise the  
supply voltage for the high side driver circuitry.  
To guarantee that the high-side supply is charged  
up before the first pulse on pin HO, the first pulse  
from the output drivers comes from the LO pin.  
During undervoltage lock-out mode, the high- and  
low-side driver outputs HO and LO are both low,  
pin CT is connected internally to COM to disable  
the oscillator, and pin CPH is connected internally  
to COM for resetting the preheat time.  
CBOOT  
VCC  
HO  
M1  
M2  
2
13  
12  
Half-Bridge  
Output  
VS  
LO  
CVCC  
11  
8
IR2156  
CSNUB  
DCP1  
COM  
RCS  
DCP2  
VBUS(-)  
Figure 1, Start-up and supply circuitry.  
The start-up capacitor (CVCC) is charged by  
current through supply resistor (RSUPPLY) minus  
the start-up current drawn by the IC. This resistor  
is chosen to provide 2X the maximum start-up  
current to guarantee ballast start-up at low line  
input voltage. Once the capacitor voltage on VCC  
reaches the start-up threshold, and the SD pin is  
below 4.5 volts, the IC turns on and HO and LO  
begin to oscillate. The capacitor begins to  
discharge due to the increase in IC operating  
current (Figure 2).  
Preheat Mode (PH)  
The preheat mode is defined as the state the IC  
is in when the lamp filaments are being heated to  
their correct emission temperature. This is  
necessary for maximizing lamp life and reducing  
the required ignition voltage. The IR2156 enters  
preheat mode when VCC exceeds the UVLO  
positive-going threshold. HO and LO begin to  
16  
www.irf.com  
( )&(PbF)  
S
IR2156  
off) of the output gate drivers, HO and LO. The  
selected value of CT together with RDT therefore  
program the desired dead-time (see Design  
Equations, page 19, Equations 1 and 2). Once  
CT discharges below 1/3 VCC, MOSFET S3 is  
turned off, disconnecting RDT from COM, and  
MOSFET S1 is turned on, connecting RT and  
RPH again to VCC. The frequency remains at the  
preheat frequency until the voltage on pin CPH  
exceeds 13V and the IC enters Ignition Mode.  
During the preheat mode, both the over-current  
protection and the DC bus under-voltage reset are  
enabled when pin CPH exceeds 7.5V.  
oscillate at the preheat frequency with 50% duty  
cycle and with a dead-time which is set by the  
value of the external timing capacitor, CT, and  
internal deadtime resistor, RDT. Pin CPH is  
disconnected from COM and an internal 4µA  
current source (Figure 3)  
VBUS(+)  
HO  
RT  
M1  
13  
4
OSC.  
RT  
Half  
Bridge  
Output  
S4  
RPH  
Half-  
5
6
VS  
LO  
12  
11  
RPH  
Bridge  
Driver  
ILOAD  
CT  
Ignition Mode (IGN)  
M2  
CT  
The ignition mode is defined as the state the IC  
is in when a high voltage is being established  
across the lamp necessary for igniting the lamp.  
The IR2156 enters ignition mode when the voltage  
on pin CPH exceeds 13V.  
4uA  
CPH  
RCS  
7
CCPH  
COM  
8
IR2156  
Load  
Return  
V
BUS(-)  
Figure 3, Preheat circuitry.  
VBUS(+)  
VCC  
2
charges the external preheat timing capacitor on  
CPH linearly. The over-current protection on pin  
CS is disabled during preheat. The preheat  
frequency is determined by the parallel  
combination of resistors RT and RPH, together  
with timing capacitor CT. CT charges and  
discharges between 1/3 and 3/5 of VCC (see  
Timing Diagram, page 7). CT is charged  
exponentially through the parallel combination of  
RT and RPH connected internally to VCC through  
MOSFET S1. The charge time of CT from 1/3 to  
3/5 VCC is the on-time of the respective output  
gate driver, HO or LO. Once CT exceeds 3/5 VCC,  
MOSFET S1 is turned off, disconnecting RT and  
RPH from VCC. CT is then discharged  
exponentially through an internal resistor, RDT,  
through MOSFET S3 to COM. The discharge time  
of CT from 3/5 to 1/3 VCC is the dead-time (both  
S1  
HO  
VS  
RT  
M1  
13  
12  
4
OSC.  
RT  
Half  
S4  
RPH  
Bridge  
Half-  
5
6
Output  
RPH  
Bridge  
Driver  
ILOAD  
CT  
Fault  
Logic  
LO  
CS  
M2  
11  
10  
CT  
S3  
1.3V  
R1  
4uA  
Comp 4  
CPH  
CCS  
RCS  
7
CCPH  
8
COM  
IR2156  
Load  
Return  
V
BUS(-)  
Figure 4, Ignition circuitry.  
Pin CPH is connected internally to the gate of a  
p-channel MOSFET (S4) (see Figure 4) that  
connects pin RPH with pin RT. As pin CPH  
www.irf.com  
17  
( )&(PbF)  
S
IR2156  
DC Bus Under-voltage Reset  
exceeds 13V, the gate-to-source voltage of  
MOSFET S4 begins to fall below the turn-on  
threshold of S4. As pin CPH continues to ramp  
towards VCC, switch S4 turns off slowly. This  
results in resistor RPH being disconnected  
smoothly from resistor RT, which causes the  
operating frequency to ramp smoothly from the  
preheat frequency, through the ignition frequency,  
to the final run frequency. The over-current  
threshold on pin CS will protect the ballast against  
a non-strike or open-filament lamp fault condition.  
The voltage on pin CS is defined by the lower  
half-bridge MOSFET current flowing through the  
external current sensing resistor RCS. The resistor  
RCS therefore programs the maximum allowable  
peak ignition current (and therefore peak ignition  
voltage) of the ballast output stage. The peak  
ignition current must not exceed the maximum  
allowable current ratings of the output stage  
MOSFETs. Should this voltage exceed the internal  
threshold of 1.3V, the IC will enter FAULT mode  
and both gate driver outputs HO and LO will be  
latched low.  
Should the DC bus decrease too low during a  
brown-out line condition or over-load condition, the  
resonant output stage to the lamp can shift near  
or below resonance. This can produce hard-  
switching at the half-bridge which can damage  
the half-bridge switches. To protect against this,  
pin VDC measures the DC bus voltage and pulls  
down on pin CPH linearly as the voltage on pin  
VDC decreases 10.9V below VCC. This causes  
the p-channel MOSFET S4 (Figure 4) to close as  
the DC bus decreases and the frequency to shift  
higher to a safe operating point above resonance.  
The DC bus level at which the frequency shifting  
occurs is set by the external RBUS resistor and  
internal RVDC resistor. By pulling down on pin  
CPH, the ignition ramp is also reset. Therefore,  
should the lamp extinguish due to very low DC  
bus levels, the lamp will be automatically ignited  
as the DC bus increases again. The internal RVDC  
resistor is connected between pin VDC and COM  
when CPH exceeds 7.5V (during preheat mode).  
Fault Mode (FAULT)  
Run Mode (RUN)  
Should the voltage at the current sensing pin, CS,  
exceed 1.3 volts at any time after the preheat  
mode, the IC enters fault mode and both gate  
driver outputs, HO and LO, are latched in the 'low'  
state. CPH is discharged to COM for resetting  
the preheat time, and CT is discharged to COM  
for disabling the oscillator. To exit fault mode, VCC  
must be recycled back below the UVLO negative-  
going turn-off threshold, or, the shutdown pin, SD,  
must be pulled above 5.1 volts. Either of these  
will force the IC to enter UVLO mode (see State  
Diagram, page 6). Once VCC is above the turn-  
on threshold and SD is below 4.5 volts, the IC  
will begin oscillating again in the preheat mode.  
Once the lamp has successfully ignited, the  
ballast enters run mode. The run mode is defined  
as the state the IC is in when the lamp arc is  
established and the lamp is being driven to a given  
power level. The run mode oscillating frequency  
is determined by the timing resistor RT and timing  
capacitor CT (see Design Equations, page 19,  
Equations 3 and 4). Should hard-switching occur  
at the half-bridge at any time due to an open-  
filament or lamp removal, the voltage across the  
current sensing resistor, RCS, will exceed the  
internal threshold of 1.3 volts and the IC will enter  
FAULT mode. Both gate driver outputs, HO and  
LO, will be latched low.  
18  
www.irf.com  
( )&(PbF)  
S
IR2156  
Design Equations  
Step 3: Program Preheat Frequency  
Note: The results from the following design The preheat frequency is programmed with timing  
equations can differ slightly from experimental resistors RT and RPH, and timing capacitor CT.  
measurements due to IC tolerances, component The timing resistors are connected in parallel  
tolerances, and oscillator over- and under-shoot internally for the duration of the preheat time. The  
due to internal comparator response time.  
preheat frequency is therefore given as:  
Step 1: Program Dead-time  
1
fPH  
=
0.6 RT RPH  
RT + RPH  
[Hertz] (5)  
The dead-time between the gate driver outputs  
HO and LO is programmed with timing capacitor  
CT and an internal dead-time resistor RDT. The  
dead-time is the discharge time of capacitor CT  
from 3/5VCC to 1/3VCC and is given as:  
2 CT  
+ 2000  
or  
1
3333 RT  
1.12 CT fPH  
[Seconds]  
(1)  
(2)  
RPH  
=
tDT = CT 2000  
1
[Ohms] (6)  
RT −  
3333  
or  
1.12 CT fPH  
tDT  
CT =  
[Farads]  
2000  
Step 4: Program Preheat Time  
The preheat time is defined by the time it takes  
for the capacitor on pin CPH to charge up to 13  
volts (assuming Vcc = 15 volts). An internal  
current source of 4.3µA flows out of pin CPH. The  
preheat time is therefore given as:  
Step 2: Program Run Frequency  
The final run frequency is programmed with timing  
resistor RT and timing capacitor CT. The charge  
time of capacitor CT from 1/3VCC to 3/5VCC  
determines the on-time of HO and LO gate driver  
outputs. The run frequency is therefore given as:  
[Seconds] (7)  
tPH = CPH 3.02e6  
or  
1
CPH = tPH 0.331e 6  
fRUN  
or  
=
[Farads] (8)  
[Hertz] (3)  
2 CT (0.6 RT + 2000 )  
Step 5: Program Maximum Ignition Current  
The maximum ignition current is programmed with  
the external resistor RCS and an internal threshold  
of 1.25 volts. This threshold determines the over-  
current limit of the ballast, which can be exceeded  
when the frequency ramps down towards  
resonance during ignition and the lamp does not  
1
RT =  
3333  
[Ohms] (4)  
1.12 CT fRUN  
www.irf.com  
19  
( )&(PbF)  
S
IR2156  
Step 3: Program Preheat Frequency  
ignite. The maximum ignition current is given as:  
The preheat frequency is chosen such that the  
lamp filaments are adequately heated within the  
preheat time. A preheat frequency of 70kHz was  
chosen. Using Equation (6) gives the following  
result:  
1.25  
RCS  
IIGN  
=
[Amps Peak] (9)  
or  
1.25  
IIGN  
RCS  
=
1
[Ohms] (10)  
3333 RT  
1.12 CT fPH  
RPH  
=
1
RT −  
3333  
1.12 CT fPH  
Design Example: 42W-QUAD BIAX CFL  
1
3333 43000  
3333  
Note: The results from the following design  
example can differ slightly from experimental  
results due to IC tolerances, component  
tolerances, and oscillator over- and under-shoot  
due to internal comparator response time.  
1.12 470 pF 70000  
RPH  
=
1
43000 −  
1.02 470 pF 70000  
RPH = 53,33051kΩ  
Step 1: Program Dead-time  
Step 4: Program Preheat Time  
The dead-time is chosen to be 0.8µs. Using  
Equation (2) gives the following result:  
The preheat time of 500ms seconds was chosen.  
Using Equation (8) gives the following result:  
tDT  
2000  
0.8e6  
2000  
CT =  
=
= 400pF 470pF  
CPH = tPH 0.331e 6  
CPH = (500e 3) (0.331e 6)  
CPH = 0.166uF− > 0.22uF  
Step 2: Program Run Frequency  
The run frequency is chosen to be 43kHz. Using  
Equation (4) gives the following result:  
Step 5: Program Ignition Current  
1
RT =  
RT =  
3333  
1.12 CT fRUN  
The maximum ignition current is given by the  
maximum ignition voltage and is chosen as  
2.0Apk. Using Equation (10) gives the following  
result:  
1
3333  
1.12 470 pF 43000  
RT = 40,846Ω  
43kΩ  
20  
www.irf.com  
( )&(PbF)  
S
IR2156  
1.25  
IIGN  
RCS  
RCS  
=
=
1.3  
2.0  
= 0.625Ohms  
0.61Ohms  
Results  
A fully-functional ballast was designed, built and  
tested using the calculated values. The values  
were then adjusted slightly in order to fulfill various  
ballast parameters (Table 1). The ballast was  
designed using the 'Typical Application Schematic'  
given on page 1.  
Waveform 2. Lamp voltage during preheat, ignition  
and run modes  
ꢀꢁꢂꢁꢃꢄꢅꢄꢂꢆ  
ꢥꢣꢧꢃ  
ꢇꢄꢈꢉꢂꢊꢋꢅꢊꢌꢍꢆ  
ꢀꢢꢈꢧꢈ^ꢉꢃ‚ꢢꢈꢦꢤꢈꢂ;ꢟꢃ  
!^ꢇꢣꢃꢀꢢꢈꢧꢈ^ꢉꢃꢘꢠꢡꢉ^ꢆꢈꢃ  
ꢀꢢꢈꢧꢈ^ꢉꢃꢚꢁꢇꢈꢃ  
ꢎꢁꢏꢐꢄꢆ  
ꢏꢓꢪꢛꢫꢃ  
ꢍꢏꢑꢘꢣꢣꢃ  
ꢐꢑꢑꢇꢅꢃ  
ꢍꢬꢊꢃ  
ꢘꢣꢧꢃ  
ꢉꢣꢧꢃ  
ꢕꢩꢬꢕ;ꢃ  
ꢘꢁꢆꢂꢃ  
ꢉꢁꢆꢂꢃ  
‚ꢁꢡ^ꢇꢈꢂꢉꢃꢀꢢꢈꢧꢈ^ꢉꢃꢕ^ꢉꢁꢠꢃ  
ꢝ^ꢭꢁꢇꢤꢇꢃꢔꢆꢂꢁꢉꢁꢠꢂꢃꢘꢠꢡꢉ^ꢆꢈꢃ  
ꢔꢆꢂꢁꢉꢁꢠꢂꢃꢕ^ꢇꢣꢃꢚꢁꢇꢈꢃ  
ꢕꢤꢂꢂꢁꢂꢆꢃ‚ꢢꢈꢦꢤꢈꢂ;ꢟꢃ  
ꢕꢤꢂꢂꢁꢂꢆꢃ!^ꢇꢣꢃꢘꢠꢡꢉ^ꢆꢈꢃ  
ꢕꢤꢂꢂꢁꢂꢆꢃ"^ꢡꢡ^ꢅꢉꢃꢔꢂꢣꢤꢉꢃ  
ꢀꢠꢩꢈꢢꢃ  
ꢊꢎꢑꢑꢘꢣꢣꢃ  
ꢎꢑꢇꢅꢃ  
ꢥꢢꢤꢂꢃ  
ꢍꢐꢮꢎꢪꢛꢫꢃ  
ꢊꢓꢑꢘꢣꢪꢃ  
ꢍꢋꢯꢃ  
ꢘꢢꢤꢂꢃ  
ꢀꢁꢂꢃ  
Waveform 3, Half-bridge and current sense voltage  
during run mode  
Table 1, 42W-Quad Biax Ballast Measured Results  
Waveforms  
Waveform 4, Lamp voltage and current sense pin during  
a failure-to-strike lamp fault condition.  
Waveform 1. Lamp filament voltage during preheat  
www.irf.com  
21  
( )&(PbF)  
S
IR2156  
Case outline  
01-6010  
01-3002 03 (MS-001AC)  
14-Lead PDIP  
01-6019  
14-Lead SOIC (narrow body)  
01-3063 00 (MS-012AB)  
22  
www.irf.com  
( )&(PbF)  
S
IR2156  
Bill Of Materials  
Schematic: Typical Application Diagram, Page 1  
Lamp Type: 42W-Quad Biax  
Line Input Voltage: 120VAC  
ꢔꢉꢈꢇꢃ  
ꢰꢉꢟꢃ  
ꢙꢈꢅ;ꢢꢁꢣꢉꢁꢠꢂꢃ  
ꢙꢈꢅꢁꢆꢂ^ꢉꢠꢢꢃ  
ꢘ^ꢡꢤꢈꢃ  
ꢝ^ꢂꢤꢥ^;ꢉꢤꢢꢈꢢꢃ  
ꢀ^ꢢꢉꢃꢖꢠꢮꢃ  
ꢊꢃ  
ꢊꢃ  
‚ꢤꢅꢈꢃ  
‚ꢊꢃ  
ꢋꢃ  
ꢊꢃ  
ꢊꢃ  
ꢋꢃ  
ꢋꢃ  
ꢊꢃ  
ꢊꢃ  
ꢋꢃ  
ꢊꢃ  
ꢊꢃ  
ꢋꢃ  
ꢊꢃ  
ꢊꢃ  
ꢊꢃ  
ꢋꢃ  
ꢊꢃ  
ꢊꢃ  
ꢊꢃ  
ꢋꢃ  
ꢊꢃ  
ꢊꢃ  
ꢊꢃ  
ꢊꢃ  
ꢊꢃ  
ꢌꢑꢃ  
‚ꢁꢡꢉꢈꢢꢃꢗ^ꢣ^;ꢁꢉꢠꢢꢃ  
‚ꢁꢡꢉꢈꢢꢃꢔꢂ`ꢤ;ꢉꢠꢢꢃ  
ꢗ‚ꢔ!ꢚꢱꢕꢃ  
!‚ꢔ!ꢚꢱꢕꢃ  
ꢙꢕꢱꢗꢚꢊꢳꢃꢙꢕꢱꢗꢚꢋꢃ  
ꢗꢱ!ꢗꢄꢀꢊꢳꢃꢗꢱ!ꢗꢄꢀꢋꢃ  
!ꢕꢱꢞꢃ  
ꢑꢮꢊ ‚ꢲꢍꢑꢑꢘꢃ  
µ
ꢌꢌꢑµꢛꢲꢑꢮꢎꢄꢃ  
ꢊꢖꢍꢑꢑꢐꢃ  
ꢌꢃ  
ꢍꢃ  
ꢕꢈ;ꢉꢁꢥꢁꢈꢢꢃꢙꢁꢠ`ꢈꢃ  
ꢎꢃ  
ꢱꢡꢈ;ꢉꢢꢠꢡꢟꢉꢁ;ꢃꢗ^ꢣ^;ꢁꢉꢠꢢꢃ  
ꢕꢈꢅꢠꢂ^ꢂꢉꢃꢔꢂ`ꢤ;ꢉꢠꢢꢃ  
ꢗꢧ^ꢢꢆꢈꢃꢀꢤꢇꢣꢃꢗ^ꢣ^;ꢁꢉꢠꢢꢃ  
ꢗꢧ^ꢢꢆꢈꢃꢀꢤꢇꢣꢃꢙꢁꢠ`ꢈꢅꢃ  
ꢕꢈꢅꢠꢂ^ꢂꢉꢃꢗ^ꢣ^;ꢁꢉꢠꢢꢃ  
ꢞꢂꢤ&&ꢈꢢꢃꢗ^ꢣ^;ꢁꢉꢠꢢꢃ  
ꢛ^ꢡꢥ_"ꢢꢁ`ꢆꢈꢃꢝꢜꢞ‚ꢱꢚꢃ  
ꢗꢤꢢꢢꢈꢂꢉꢃꢞꢈꢂꢅꢈꢃꢕꢈꢅꢁꢅꢉꢠꢢꢃ  
!ꢁꢇꢁꢉꢃꢕꢈꢅꢁꢅꢉꢠꢢꢃ  
ꢍꢐµ‚ꢲꢋꢎꢑꢘꢃ  
ꢊꢮꢋꢎꢇꢛꢲꢊꢮꢎꢄꢃ  
ꢍꢐꢑꢣ‚ꢲꢊꢪꢘꢃ  
ꢊꢖꢍꢊꢍꢓꢃ  
ꢏꢃ  
ꢐꢃ  
ꢗꢗꢀꢃ  
ꢓꢃ  
ꢙꢗꢀꢊꢳꢃꢙꢗꢀꢋꢃ  
ꢗꢕꢱꢞꢃ  
ꢒꢃ  
ꢏꢮꢓꢂ‚ꢲꢊꢪꢘꢃ  
ꢍꢐꢑꢣ‚ꢲꢊꢪꢘꢃ  
ꢔꢕ‚ꢐꢌꢑꢃ  
ꢊꢑꢃ  
ꢊꢊꢃ  
ꢊꢋꢃ  
ꢊꢌꢃ  
ꢊꢍꢃ  
ꢊꢎꢃ  
ꢊꢏꢃ  
ꢊꢐꢃ  
ꢊꢓꢃ  
ꢊꢒꢃ  
ꢋꢑꢃ  
ꢋꢊꢃ  
ꢋꢋꢃ  
ꢋꢌꢃ  
ꢋꢍꢃ  
ꢚꢜꢚꢄ!ꢃ  
ꢗꢞꢖꢴ"ꢃ  
ꢝꢊꢳꢃꢝꢋꢃ  
ꢕꢗꢞꢃ  
ꢑꢮꢐꢎꢕꢲꢑꢮꢎꢯꢃ  
ꢊꢪꢲꢑꢮꢋꢎꢯꢃ  
ꢍꢐꢑꢣ‚ꢲꢊꢏꢘꢃ  
ꢕꢊꢃ  
‚ꢁꢡꢉꢈꢢꢃꢗ^ꢣ^;ꢁꢉꢠꢢꢃ  
ꢞꢤꢣꢣꢡꢟꢃꢗ^ꢣ^;ꢁꢉꢠꢢꢃ  
ꢞꢤꢣꢣꢡꢟꢃꢗ^ꢣ^;ꢁꢉꢠꢢꢃ  
"ꢠꢠꢉꢅꢉꢢ^ꢣꢃꢙꢁꢠ`ꢈꢃ  
"^ꢡꢡ^ꢅꢉꢃꢗꢠꢂꢉꢢꢠꢡꢃꢔꢗꢃ  
ꢕꢈꢅꢁꢅꢉꢠꢢꢃ  
ꢗꢗꢞꢃ  
ꢗ"ꢜꢜꢚꢳꢃꢗꢘꢗꢗꢊꢃ  
ꢗꢘꢗꢗꢋꢃ  
ꢙ"ꢜꢜꢚꢃ  
ꢔꢗꢊꢃ  
ꢑꢮꢊ ‚ꢲꢋꢎꢘꢃ  
µ
ꢋꢮꢋ ‚ꢲꢋꢎꢘꢃ  
µ
ꢊꢑꢙ‚ꢏꢃ  
ꢔꢕꢋꢊꢎꢏꢃ  
ꢕꢞꢴꢀꢀ!ꢵꢳꢃꢕ"ꢴꢞꢃ  
ꢕꢚꢃ  
ꢊꢝꢲꢑꢮꢋꢎꢯꢃ  
ꢌꢒꢪꢲꢑꢮꢋꢎꢯꢃ  
ꢍꢐꢑꢣ‚ꢲꢋꢎꢘꢃ  
ꢐꢎꢪꢲꢑꢮꢋꢎꢯꢃ  
ꢑꢮꢋꢋµ‚ꢲꢋꢎꢘꢃ  
ꢚꢁꢇꢁꢂꢆꢃꢕꢈꢅꢁꢅꢉꢠꢢꢃ  
ꢚꢁꢇꢁꢂꢆꢃꢗ^ꢣ^;ꢁꢉꢠꢢꢃ  
ꢀꢢꢈꢧꢈ^ꢉꢃꢕꢈꢅꢁꢅꢉꢠꢢꢃ  
ꢀꢢꢈꢧꢈ^ꢉꢃꢗ^ꢣ^;ꢁꢉꢠꢢꢃ  
ꢗ^ꢣ^;ꢁꢉꢠꢢꢃ  
ꢗꢚꢃ  
ꢕꢀꢛꢃ  
ꢗꢀꢛꢃ  
ꢗꢘꢙꢗꢃ  
ꢑꢮꢑꢊ ‚ꢲꢋꢎꢘꢃ  
µ
Device qualified to Industrial Level  
www.irf.com  
23  
( )&(PbF)  
S
IR2156  
LEADFREE PART MARKING INFORMATION  
Part number  
Date code  
IRxxxxxx  
YWW?  
IR logo  
?XXXX  
Pin 1  
Identifier  
Lot Code  
?
(Prod mode - 4 digit SPN code)  
MARKING CODE  
P
Lead Free Released  
Non-Lead Free  
Released  
Assembly site code  
Per SCOP 200-002  
ORDER INFORMATION  
Basic Part (Non-Lead Free)  
Leadfree Part  
14-Lead PDIP IR2156 order IR2156  
14-Lead SOIC IR2156S order IR2156S  
14-Lead PDIP IR2156 order IR2156PbF  
14-Lead SOIC IR2156S order IR2156SPbF  
Thisproduct has been designed and qualified for the industrial market.  
Qualification Standards can be found on IR’s Web Site http://www.irf.com  
Data and specifications subject to change without notice.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105  
10/25/2004  
24  
www.irf.com  

相关型号:

IR2157

FULLY INTEGRATED BALLAST CONTROL IC
INFINEON

IR21571

FULLY INTEGRATED BALLAST CONTROL IC
INFINEON

IR21571PBF

Fluorescent Light Controller, 0.5A, 50.5kHz Switching Freq-Max, PDIP16, LEAD FREE, MS-001AA, DIP-16
INFINEON

IR21571S

FULLY INTEGRATED BALLAST CONTROL IC
INFINEON

IR21571SPBF

Fluorescent Light Controller, 0.5A, 50.5kHz Switching Freq-Max, PDSO16, LEAD FREE, MS-012AC, SOIC-16
INFINEON

IR21571STR

暂无描述
INFINEON

IR21571STRPBF

Fluorescent Light Controller, 0.5A, 50.5kHz Switching Freq-Max, PDSO16, MS-012AC, SOIC-16
INFINEON

IR2157S

Ballast Control. Below Resonance Protection. Thermal Overload Protection. Protection from Failure to Strike. Programmable Preheat Time and Run Frequency. Programmable Deadtime in a 16-lead SOIC Narrow package
ETC

IR2157_07

FULLY INTEGRATED BALLAST CONTROL IC
INFINEON

IR2159

DIMMING BALLAST CONTROL IC
INFINEON

IR21591

DIMMING BALLAST CONTROL IC
INFINEON

IR21591PBF

Fluorescent Light Controller, 0.5A, 230kHz Switching Freq-Max, BICMOS, PDIP16, PLASTIC, MS-001A, DIP-16
INFINEON