IR21593 [INFINEON]

DIMMING BALLAST CONTROL IC; 调光镇流器控制IC
IR21593
型号: IR21593
厂家: Infineon    Infineon
描述:

DIMMING BALLAST CONTROL IC
调光镇流器控制IC

稳压器 开关式稳压器或控制器 电源电路 开关式控制器 光电二极管
文件: 总25页 (文件大小:258K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet No. PD60194_A  
( )  
( )  
S
S
IR21592  
IR21593  
DIMMING BALLAST CONTROL IC  
Features  
Full lamp fault protection  
Brown-out protection  
Automatic restart  
Micro-power startup  
Zener clamped Vcc  
Over-temperature protection  
16-pin DIP and SOIC package types  
Ballast control and half-bridge driver in one IC  
Transformer-less lamp power sensing  
Closed-loop lamp power control  
Closed-loop preheat current control  
Programmable preheat time  
Programmable preheat current  
Lamp ignition detection  
Programmable ignition-to-dim time  
0.5 to 5VDC dimming control input  
Parameter  
Deadtime  
IR21592  
1.8us  
IR21593  
1.0us  
Min and max lamp power adjustments  
Programmable minimum frequency  
Frequency  
Range  
See  
Graph 11  
See  
Graph 12  
Internal current sense blanking  
Packages  
Description  
Description: The IR21592/IR21593 are complete dimming ballast controllers and 600V  
half-bridge drivers all in one IC. The architecture includes phase control for trans-  
former-less lamp power sensing and regulation which minimizes changes needed to  
adapt non-dimming ballasts for dimming. Externally programmable features such as  
preheat time and current, ignition-to-dim time, and a complete dimming interface with  
minimum and maximum settings provide a high degree of flexibility for the ballast  
design engineer. Protection from failure of a lamp to strike, filament failures, thermal  
overload, or lamp failure during normal operation, as well as an automatic restart  
function, have been included in the design. The heart of this control IC is a voltage-  
controlled oscillator with externally programmable minimum frequency. The IR21592/  
IR21593 are available in both 16 pin DIP and 16 pin narrow body SOIC packages.  
16 Lead SOIC  
(narrow body)  
16 Lead PDIP  
Typical Connection  
+ Rectified AC Line  
Single Lamp Dimmable  
+ DC Bus  
RVAC  
RPULL-UP  
RVDC  
CVDC  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VDC  
VCO  
CPH  
DIM  
HO  
VS  
CVCO  
CPH  
VB  
RDIM  
RMAX  
RMIN  
RFMIN  
RIPH  
VCC  
COM  
LO  
0.5 to 5VDC  
MAX  
MIN  
FMIN  
IPH  
CS  
SD  
RCS  
- DC Bus  
www.irf.com  
1
( )  
S
IR21592/IR21593  
Absolute Maximum Ratings  
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage  
parameters are absolute voltages referenced to COM, all currents are defined positive into any lead. The thermal  
resistance and power dissipation ratings are measured under board mounted and still air conditions.  
Symbol  
Definition  
Min.  
Max.  
Units  
V
High side floating supply voltage  
High side floating supply offset voltage  
High side floating output voltage  
Low side output voltage  
-0.3  
625  
B
V
S
V
- 25  
V
+ 25  
B
B
V
V
HO  
V
- 0.3  
V
+ 0.3  
S
B
V
LO  
-0.3  
V
+ 0.3  
CC  
I
Maximum allowable output current (either output)  
due to external power transistor miller effect  
Voltage controlled oscillator input voltage  
CPH current  
-500  
500  
OMAX  
mA  
V
-0.3  
-5  
6.0  
5
V
VCO  
I
mA  
CPH  
V
IPH voltage  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-5  
5.5  
5.5  
5.5  
5.5  
5.5  
5
IPH  
V
DIM  
Dimming control pin input voltage  
Maximum lamp power setting pin input voltage  
Minimum lamp power setting pin input voltage  
Current sense input voltage  
V
MAX  
V
V
MIN  
V
CS  
I
Shutdown pin current  
SD  
mA  
I
Supply current (note 1)  
25  
CC  
dV/dt  
Allowable offset voltage slew rate  
-50  
50  
V/ns  
P
Package power dissipation @ T +25°C  
(16 pin DIP)  
(16 pin SOIC)  
(16 pin DIP)  
1.60  
1.25  
75  
D
A
W
P
= (T  
-T )/Rth  
JA  
D
JMAX  
A
Rth  
Thermal resistance, junction to ambient  
JA  
oC/W  
(16 pin SOIC)  
115  
150  
150  
300  
T
Junction temperature  
-55  
-55  
J
T
Storage temperature  
S
L
oC  
T
Lead temperature (soldering, 10 seconds)  
Note 1:  
This IC contains a zener clamp structure between the chip V  
and COM which has a nominal breakdown  
CC  
voltage of 15.6V (V  
). Please note that this supply pin should not be driven by a DC, low impedance  
CLAMP  
power source greater than the diode clamp voltage (V  
section.  
) as specified in the Electrical Characteristics  
CLAMP  
2
www.irf.com  
( )  
S
IR21592/IR21593  
Recommended Operating Conditions  
For proper operation the device should be used within the recommended conditions.  
Symbol  
Definition  
Min.  
Max.  
Units  
V
High side floating supply voltage  
Steady state high side floating supply offset voltage  
Supply voltage  
V
- 0.7  
V
BS  
CC  
CLAMP  
600  
V
V
-1  
S
V
V
V
CC  
CC  
CCUV+  
CLAMP (15.6)  
10  
I
Supply current  
note 2  
mA  
V
V
0
5
5.0  
0
VCO  
VCO pin voltage  
DIM pin voltage  
V
0.5  
DIM  
V
MAX pin current (note 3)  
MIN pin voltage  
-750  
MAX  
µA  
V
1
3
MIN  
V
10  
V
Minimum required VBS voltage for proper HO functionality  
Minimum frequency setting resistance  
5
100  
BSMIN  
R
FMIN  
kΩ  
I
Shutdown pin current  
Current sensing pin current  
Junction temperature  
-1  
-1  
1
1
SD  
mA  
I
CS  
T
-40  
125  
oC  
J
Note 2: Enough current should be supplied into the VCC lead to keep the internal 15.6V zener clamp diode on this lead  
regulating its voltage, V  
.
CLAMP  
Note 3: The MAX lead is a voltage-controlled current source. For optimum dim interface current mirror performance,  
this current should be kept between 0 and 750µA.  
Electrical Characteristics  
V
CC  
= V = V  
BS  
= 14V +/- 0.25V, V = 0.5V, V = 0.0V, R  
= 40k, C  
= 10 nF, V  
= 0.0V, R  
= 33k,  
BIAS  
CS  
SD  
FMIN  
VCO  
DIM  
MAX  
R
MIN  
= 56k, V  
= 0.0V, C  
= 1000pF, T = 25oC unless otherwise specified.  
LO,HO  
A
CPH  
Symbol Definition  
Min. Typ.  
Max.  
Units Test Conditions  
Supply Characteristics  
V
V
supply undervoltage positive going  
12.0  
12.5  
13.0  
CCUV+  
CC  
V
threshold  
supply undervoltage lockout hysteresis 1.5  
V
V
1.6  
200  
240  
1.7  
330  
CCHYS  
CC  
I
UVLO mode quiescent current  
Fault-mode quiescent current  
70  
V
= 10V  
CC  
QCCUV  
µA  
I
SD=5V, CS=2V, or  
Tj > TSD  
QCCFLT  
I
V
V
V
V
supply current @ FMIN (IR21592)  
supply current @ FMAX (IR21592)  
supply current @ FMIN (IR21593)  
supply current @ FMAX (IR21593)  
5.6  
6.0  
5.4  
6.8  
V
V
V
V
= 0V  
= 5V  
= 0V  
= 5V  
CCFMIN  
CC  
CC  
CC  
CC  
VCO  
VCO  
VCO  
VCO  
I
mA  
V
CCFMAX  
I
I
CCFMIN  
CCFMAX  
V
V
CC  
zener shunt clamp voltage  
14.5  
15.6  
16.5  
I
= 10mA  
CLAMP  
CC  
www.irf.com  
3
( )  
S
IR21592/IR21593  
Electrical Characteristics (cont.)  
V
= V = V  
BS  
= 14V +/- 0.25V, V = 0.5V, V = 0.0V, R  
= 40k, C  
= 10 nF, V  
= 0.0V, R  
= 33k,  
CC  
BIAS  
CS  
SD  
FMIN  
VCO  
DIM  
MAX  
R
MIN  
= 56k, V  
= 0.0V, C  
= 1000pF, T = 25oC unless otherwise specified.  
LO,HO  
A
TPH  
Symbol Definition  
Min. Typ.  
Max. Units Test Conditions  
Floating Supply Characteristics  
I
V
V
supply current (low freq.)  
supply current (high freq.)  
0
50  
V
V
V
= 0V  
= 5V  
BSFMIN  
BS  
VCO  
VCO  
µA  
I
30  
BSFMAX  
BS  
I
LK  
Offset supply leakage current  
= V = 600V  
B S  
Oscillator I/O Characteristics  
f
VCO frequency range (IR21592)  
(See graph 11)  
15  
18  
22  
V
V
=0V, RFMIN=40KΩ  
=5V, RFMIN=40KΩ  
vco  
VCO  
V
73  
95  
30  
108  
VCO  
kHz  
f
VCO frequency range (IR21593)  
(See graph 12)  
=0V, RFMIN=40KΩ  
VCO  
=5V, RFMIN=40KΩ  
VCO  
vco  
V
230  
50  
5
d
Gate drive outputs duty cycle  
Fault-mode VCO pin voltage (UVLO,  
shutdown, over-current/temp.)  
Preheat mode VCO pin discharge current  
Dim mode VCO pin discharge current  
%
V
V
VCO  
= 2.5V  
V
VCOFLT  
1.0  
IVCOPH  
VCPH=2.5V, VIPH=0.5V  
V =2.5V, VCPH=5.5V,  
VCO  
16.0  
IVCODIM  
µA  
µA  
VIPH=0.5V, 1V Pulse at  
CS  
Amplitude control VCO pin charging current  
60  
IVCOPK  
V =0V, V =1V,  
CPH CS  
V =0.5V, V =2.5V  
IPH VCO  
1.8  
1.8  
1.0  
1.0  
t
LO output deadtime (IR21592)  
HO output deadtime (IR21592)  
LO output deadtime (IR21593)  
HO output deadtime (IR21593)  
DTLO  
µs  
t
t
V
=0V, V  
=1.5V,  
MIN  
DTHO  
VCO  
V
=0.5V  
DTLO  
IPH  
t
DTHO  
Gate Driver Output Characteristics  
tr  
Turn-on rise time  
48.5  
120  
65  
180  
145  
ns  
tf  
Turn-off fall time  
24.25  
4
www.irf.com  
( )  
S
IR21592/IR21593  
Electrical Characteristics (cont.)  
V
= V = V  
BS  
= 14V +/- 0.25V, V = 0.5V, V = 0.0V, R  
= 40k, C  
= 10 nF, V  
= 0.0V, R  
= 33k,  
CC  
BIAS  
CS  
SD  
FMIN  
VCO  
DIM  
MAX  
R
MIN  
= 56k, V  
= 0.0V, C  
= 1000pF, T = 25oC unless otherwise specified.  
LO,HO  
A
TPH  
Symbol Definition  
Min.  
Typ.  
Max. Units Test Conditions  
Preheat Characteristics  
ICPH  
CPH pin charging current  
0.8  
1.3  
2.1  
µA  
VCPH=VDIM=4.7V,  
VCS=1.0V  
VCPHIGN  
CPH pin ignition mode threshold voltage  
4.3  
5.0  
10  
5.7  
VCS=2.0V  
VCS=VDIM=VIPH=0V  
VCPH=VDIM=4.7V,  
V
VCPHCLMP CPH pin clamp voltage  
IIPH  
IPH pin DC source current  
µA  
25  
IIPH=1/RFMIN  
VCSTHPH  
Peak preheat current regulation threshold  
V
V
RIPH=27K, VMIN=0V,  
0.7  
VCPH=0V, VCSTH =  
(IIPH) x (RIPH)  
VCPHFLT  
CPH pin voltage during UVLO or fault  
0.0  
SD = 5V, or CS = 2V,  
> TSD  
or Tj  
Ignition Detection  
I
30  
IPH source current (Vcs rising)  
IPHIGN+  
VCS=0V, RIPH=18K,  
VCPH>5.1V  
µA  
I
IPH source current (Vcs falling)  
27.5  
IPHIGN-  
VCS =1.0V,  
VCPH>5.1V  
Protection Characteristics  
V
Rising shutdown pin threshold voltage  
1.6  
2.0  
1.6  
5.1  
150  
2.1  
7.6  
165  
2.6  
VCPH =VIPH=0V  
VCPH < 5V  
VCPH=VCS=VSD=0V  
SDTH+  
V
CSTH  
Peak over current threshold  
Rising VDC pin threshold voltage  
SD threshold hysteresis  
1.2  
1.9  
V
V
VDCTH+  
V
mV  
V
VCPH =VIPH=0V  
VCPH=VCS=VSD=0V  
ISD = 100mA  
SDHYS  
V
VDC threshold hysteresis  
VDCHYS  
V
SD pin clamp voltage  
SDCLMP  
oC  
T
SD  
Thermal shutdown junction temperature  
Phase Control  
VCPH =5.5V,VIPH=0.5V  
V
Zero-crossing threshold voltage  
0.0  
V
CSTHZX  
t
Zero-crossing internal blank time  
291  
400  
1030  
ns VCPH =5.5V,VIPH=0.5V  
Blank  
Dimming Interface  
V
DIM pin offset voltage  
0.5  
1.0  
3.0  
DIMOFF  
V
DIM minimum reference voltage (MIN pin)  
DIM maximum reference voltage (MIN pin)  
VCPH=5.5V,VIPH=0.5V  
VCPH =0.5V,VIPH=0.5V  
MINMIN  
V
V
MINMAX  
Minimum Frequency Setting  
V
FMIN  
FMIN pin voltage during normal operation  
FMIN pin voltage during fault mode  
4.6  
5.1  
0.0  
6.25  
V
VMIN=1.5V,VIPH=0.5V  
SD = 5V, or CS = 2V,  
V
V
FMINFLT  
> TSD  
or Tj  
www.irf.com  
5
( )  
S
IR21592/IR21593  
Block Diagram  
VCC  
60uA  
ICT  
RFB  
2
VCO  
V
15uA  
14  
16  
15  
VB  
HO  
VS  
1uA  
PULSE  
FILTER &  
LATCH  
LEVEL  
SHIFT  
ERR  
1
3
VDC  
CPH  
DIM  
S
R
Q
Q
1.0uA  
13  
11  
VCC  
LO  
CT  
S
Q
Q
T
Q
Q
REF  
5.1V  
1.0V  
R1  
R2  
10V  
R
ICT  
15.6V  
IDT  
+
12  
COM  
S
R
Q
Q
ICT  
5.1V  
4
400ns  
DELAY  
CT  
IDIM  
FB  
5
6
MAX  
MIN  
10  
CS  
0.1/R FMIN  
Q
Q
S
R
4/RFMIN  
IDIM/5  
IGN  
DET  
0.1/R FMIN  
OVER-  
TEMP  
DETECT  
3V  
S
Q
Q
IFMIN  
R
UNDER-  
VOLTAGE  
DETECT  
1/RFMIN  
7
8
FMIN  
IPH  
9
5.1V  
SD  
5.1V  
1
1.6V  
2.0V  
7.6V  
0
Lead Assignments & Definitions  
Pin # Symbol  
Description  
Pin Assignments  
1
2
3
VDC  
VCO  
CPH  
DIM  
Line input voltage detection  
Voltage controlled oscillator Input  
Preheat timing input  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VDC  
VCO  
CPH  
DIM  
HO  
VS  
4
0.5 to 5VDC dimming control input  
Maximum lamp power setting  
Minimum lamp power setting  
Minimum frequency setting  
Peak preheat current reference  
MAX  
MIN  
FMIN  
IPH  
5
VB  
6
7
8
9
VCC  
COM  
LO  
SD  
CS  
LO  
Shutdown input  
Current sensing input  
Low-side gate driver output  
IC power & signal ground  
Logic & low-side gate driver supply  
High-side gate driver floating supply  
MAX  
MIN  
10  
11  
12  
13  
14  
15  
16  
COM  
VCC  
VB  
FMIN  
IPH  
CS  
SD  
VS  
High voltage floating return  
High-side gate driver output  
HO  
6
www.irf.com  
( )  
S
IR21592/IR21593  
State Diagram  
Power Turned On  
UVLO Mode  
1/2-Bridge Off  
IQCC=200mA  
CPH=0V  
Oscillator Off  
(UV+)  
VCC < 10.9V  
VCC > 12.5V  
and  
SD > 2.0V  
(VCC Fault or Power Down)  
(Lamp Removal)  
or  
VDC > 5.1V  
and  
(Bus OK)  
or  
VDC < 3.0V  
VCC < 10.9V  
(Power Turned Off)  
(dc Bus/ac Line Fault or Power Down)  
SD < 1.7V  
and  
(Lamp OK)  
or  
SD > 2.0V  
T
< 165C  
(T  
)
J
jmax  
(Lamp Fault or Lamp Removal)  
T
> 165C  
FAULT Mode  
J
PREHEAT Mode  
(Over-Temperature)  
Fault Latch Set  
1/2-Bridge Off  
IQCC=240µA  
CPH=0V  
VCC=15.6V  
Oscillator Off  
1/2-BridgeOscillator On  
V
CSPK+VIPH (Peak Current Control)  
CPH Charging@IPH+1µA  
DIM+Open Circuit  
Over-Current Disabled  
CPH > 5.1V  
CS > V CSTH (1.6V)  
(End of PREHEAT Mode)  
(Failure to Strike Lamp  
or Hard Switching)  
or  
TJ > 165C  
IGNITION Mode  
fPH ramps to fMIN  
CPH Charging@IPH+1µA  
DIM=Open Circuit  
(Over-Temperature)  
CS > VCSTH (1.6V)  
Over-Current Enabled  
(Over-Current or Hard Switching)  
or  
T
> 165C  
J
VCS>VIPH(enable ignition detection)  
then  
(Over-Temperature)  
VCS<VIPH(ignition detected)  
DIM Mode  
PhaseCS=PhaseREF  
DIM=CPH  
Over-Current Enabled  
www.irf.com  
7
( )  
S
IR21592/IR21593  
Timing Diagram  
Non-strike fault condition with lamp exchange  
VCC  
15.6V  
UVLO+  
UVLO-  
VDC  
VDCTH+  
VDCTH-  
CPH  
5.1V  
VDIM  
VCO  
5V  
f
SD  
5V  
HO  
LO  
CS  
1.6V  
VIPH  
UVLO  
PH  
FLT SD  
PH  
DIM  
UVLO  
8
www.irf.com  
( )  
S
IR21592/IR21593  
External Components Selection Procedure  
(Note:  
BEGIN  
Please refer to  
"Typical Connection"  
diagram, page 1)  
Calculate RPULL-UP  
VACTURN ON  
RPULLUP  
=
IQCCUV  
Calculate RVDC  
5.1  
Set RVAC and RVDC such that the voltage  
on pin VDC will exceed 5.1 volts at the  
desired line turn-on voltage.  
RVAC  
RVDC  
VACTURN-ON  
VACTURN ON  
=
1−  
RVDC  
5.1  
VACTURN ON  
The minimum operating frequency must  
be lower than f100% of fIGN (whichever is  
lower). RFMIN also programs IMIN and  
Select RFMIN  
RFMIN  
fMIN  
Use Graph 5 or Graph 6  
I
IPH, so RFMIN must be set first.  
Calculate RCS  
RCS sets the maximum ignition current  
which corresponds to the maximum  
ignition voltage across the lamp.  
RCS  
VIGN  
IIGN  
1.6  
=
RCS  
I
IGNPK  
Select & Calculate RIPH  
Use Graph 8 to find IIPH  
then calculate RIPH  
RCS  
,
The voltage at pin IPH is the reference  
for amplitude current control during  
preheat mode. RIPH must be set after  
:
RIPH  
IPH  
VPH  
I
PH PK  
RFMIN  
.
=
RIPH  
IIPH  
During preheat, an internal 1.3 µA  
current source at pin CPH charges  
external capacitor CCPH. Preheat mode  
ends when VCPH exceeds 5.1 volts.  
Calculate CCPH  
CCPH 2.6e 7 tPH  
CCPH  
tPH  
=
(
)
Calculate RMIN  
Find IMIN (Graph 7)  
RMIN sets the lower phase boundary  
corresponding to minimum lamp  
power when VDIM = 0 volts. RMIN must  
Calculate ϕMIN (Equations 8 & 9)  
RMIN  
ϕMIN PLAMP  
Find VMIN (Graph 9)  
be set after RFMIN  
.
VMIN  
RMIN  
=
IMIN  
RMAX sets the upper phase boundary  
corresponding to maximum lamp power  
when VDIM = 5 volts. RMAX must be set  
Calculate RMAX  
RMAX  
ϕMAX PLAMP  
Use Equation 15  
after RFMIN and RMIN  
.
www.irf.com  
9
( )  
S
IR21592/IR21593  
Characteristic Curves  
200  
160  
120  
80  
120  
100  
VVCO=5V  
VVCO=5V  
80  
60  
40  
20  
0
VVCO=2V  
VVCO=0V  
VVCO=2V  
VVCO=0V  
50  
40  
0
10  
20  
30  
40  
RFMIN (K )  
60  
70  
10  
20  
30  
40  
RFMIN (K )  
50  
60  
70  
Graph 2. Frequency vs RFMIN (IR21593)  
Graph 1. Frequency vs RFMIN (IR21592)  
450  
400  
350  
300  
250  
200  
150  
100  
50  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
10  
20  
30  
40  
(K )  
50  
60  
70  
10  
20  
30  
40  
(K )  
50  
60  
70  
R
R
FMIN  
FMIN  
Graph 4. IIPH vs RFMIN (IR21592/IR21593)  
Graph 3. IMIN vs RFMIN (IR21592/IR21593)  
10  
www.irf.com  
( )  
S
IR21592/IR21593  
0
-15  
-30  
-45  
-60  
-75  
-90  
30  
25  
20  
15  
10  
5
1
1.25 1.5 1.75  
2
2.25 2.5 2.75  
3
2
2.2  
2.4  
2.6  
2.8  
3
VMIN (V)  
VMIN (V)  
Graph 5. ϕ II /V I vs V  
(IR21592/IR21593)  
Graph 6. R vs V  
MIN MIN  
VS VS  
MIN  
3
2.5  
2
150  
140  
130  
120  
110  
100  
90  
1.5  
1
0.5  
0
-25  
0
25  
50  
75  
100  
125  
-25  
0
25  
Temperature °C  
vs Temperature (IR21592/IR21593)  
50  
75  
100  
125  
Temperature °C  
Graph 7. I  
Graph 8. I  
vs Temperature (IR21592/IR21593)  
CPH  
MIN  
www.irf.com  
11  
( )  
S
IR21592/IR21593  
40  
36  
32  
28  
24  
20  
6
5.6  
5.2  
4.8  
4.4  
4
-25  
0
25  
50  
75  
100  
12
-25  
0
25  
50  
75  
100  
125  
Temperature °C  
Temperature °C  
Graph 9. I vs Temperature  
Graph 10. VFMIN vs Temperature  
(IR21592/IR21593)  
PH  
(IR21592/IR21593)  
160  
100  
V
VCO=5V  
V
VCO=5V  
80  
60  
40  
20  
0
120  
80  
40  
0
VVCO=3V  
VVCO=3V  
V
VCO=0V  
VVCO=0V  
-25  
0
25  
50  
75  
100  
125  
-25  
0
25  
50  
75  
100  
125  
Temperature °C  
Temperature °C  
Graph 11. Frequency vs Temperature (IR21592)  
RFMIN=39K  
Graph 12. Frequency vs Temperature (IR21593)  
RFMIN=39K  
12  
www.irf.com  
( )  
S
IR21592/IR21593  
6
5.6  
5.2  
4.8  
4.4  
4
40  
36  
32  
28  
24  
20  
-25  
0
25  
50  
75  
100  
125  
-25  
0
25  
50  
75  
100  
125  
Temperature °C  
Temperature °C  
Graph 13. I  
vs Temperature (IR21592/  
IR21593)  
Graph 14. V  
vs Temperature (IR21592/  
IR21593)  
IPH  
FMIN  
2
1.6  
1.2  
0.8  
0.4  
0
3
2.6  
2.2  
1.8  
1.4  
1
-25  
0
25  
50  
75  
100  
125  
-25  
0
25  
50  
75  
100  
125  
Temperature °C  
Temperature °C  
Graph 15. TDEAD vs Temperature (IR21592)  
Graph 16. TDEAD vs Temperature (IR21593)  
www.irf.com  
13  
( )  
S
IR21592/IR21593  
Functional Description  
400  
350  
300  
250  
200  
150  
100  
50  
PH/IGN  
20  
10  
Phase Control  
10%  
50%  
To understand phase control, a simplified model  
for the ballast output stage is used (Figure 1). The  
lamp and filaments are replaced with resistors,  
with the lamp inserted between the filament  
resistors (R1, R2, R3 and R4).  
0
100%  
-10  
-20  
-30  
PH/IGN  
10%  
0
50%  
-50  
-100  
100%  
R1  
R2  
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
L
Frequency [kHz]  
Rlamp  
Vin  
C
Figure 2, Typical output stage transfer function for  
different lamp power levels.  
R3  
R4  
In the time domain (Figure 3), the input current is  
shifted -90 degrees from the input half-bridge  
voltage during preheat and ignition, and  
somewhere between 0 and -90 degrees after  
ignition during running. Zero phase-shift  
corresponds to maximum power.  
Figure 1, Dimming ballast output stage.  
During preheat and ignition (Figure 2), the circuit  
is a high-Q series LC with a strong input current to  
input voltage phase inversion from +90 to -90  
degrees at the resonance frequency. For operating  
frequencies slightly above resonance and higher,  
the phase is fixed at -90 degrees for the duration  
of preheat and ignition. During dimming, the circuit  
is an L in series with a parallel R and C, with a  
weak phase inversion at high lamp power and a  
strong phase inversion at low lamp power.  
Vin  
Iin  
ph/ign  
Iin  
run  
0
t
n
run  
n
ph/ign  
Figure 3, Typical ballast output stage waveforms.  
When the phase is calculated and plotted versus  
lamp power (Figure 4), the result is a linear dimming  
curve, even down to ultra-low light levels where  
the resistance of the lamp can change by orders  
of magnitude.  
14  
www.irf.com  
( )  
S
IR21592/IR21593  
The start-up capacitor (C1) is charged by current  
through resistor (R1) minus the start-up current  
drawn by the IC. This resistor is typically chosen  
to provide 2X the maximum start-up current at  
low line to guarantee start-up under the worst case  
condition. Once the capacitor voltage reaches the  
start-up threshold, and, the voltage on pin VDC is  
above 5.1V (see Brown-out Protection), the IC  
turns on and HO and LO begin to oscillate. The  
capacitor begins to discharge due to the increase  
in IC operating current (Figure 6).  
-60.0  
-65.0  
-70.0  
-75.0  
-80.0  
-85.0  
-90.0  
VC1  
0
5
10  
15  
20  
25  
30  
C1  
INTERNAL  
CLAMP VOLTAGE  
DISCHARGE  
Lamp Power [Watts]  
VUVLO+  
Figure 4, Lamp power vs. phase of output stage.  
VHYST  
VUVLO-  
DISCHARGE  
TIME  
Under-voltage Lock-Out (UVLO)  
CHARGE PUMP  
OUTPUT  
The IR21592/IR21593 undervoltage lock-out is  
designed to maintain an ultra low quiescent  
current of less than 200uA, while guaranteeing  
the IC is fully functional before the high and low  
side output drivers are activated. Figure 5 shows  
an efficient supply voltage using the start-up  
current of the IR21592/IR21593 together with a  
charge pump from the ballast output stage (R1,  
C1, C2, D1 and D2).  
R1 & C1 TIME  
CONSTANT  
t
Figure 6, Start-up capacitor (C1) voltage.  
During the discharge cycle, the rectified current  
from the charge pump charges the capacitor above  
the minimum operating voltage of the device and  
the charge pump and internal 15.6V zener clamp  
of the IC take over as the supply voltage. The  
start-up capacitor and snubber capacitor must be  
selected such that worst case IC conditions are  
satisfied. A bootstrap diode (D3) and supply  
capacitor (C3) comprise the supply voltage for  
the high side driver circuitry. To guarantee that  
the high-side supply is charged up before the first  
pulse on pin HO, the first pulse from the output  
drivers comes from the LO pin. During UVLO,  
the high and low side driver outputs are low, pin  
VCO is pulled-up internally to 5V resetting the  
starting frequency to the maximum, and pin CPH  
is short-circuited internally to COM resetting the  
preheat time.  
VBUS(+)  
Rectified  
AC Line  
R3  
R1  
VDC  
HO  
Q1  
16  
15  
14  
13  
12  
11  
1
Half-Bridge  
Output  
VS  
VB  
C3  
D3  
C2  
D1  
VCC  
C1  
COM  
LO  
Q2  
RVDC  
CVDC  
D2  
RCS  
VBUS(-)  
Figure 5, Typical application of start-up circuitry.  
www.irf.com  
15  
( )  
S
IR21592/IR21593  
Brown-out Protection  
VBUS(+)  
In addition to the voltage on VCC being above  
the start-up threshold, pin VDC must also be  
above 5.1V for HO and LO to begin oscillating. A  
voltage divider (R3,RVDC) from the rectified AC  
line connected to pin VDC measures the rectified  
AC line input voltage to the ballast and programs  
the turn-on and turn-off line voltages. A filter  
capacitor (CVDC) is also connected to pin VDC  
that must be chosen such that the ripple is low  
enough and the lower turn-off threshold of 3V is  
not crossed during normal line conditions. This  
detection is necessary due to the possibility of  
the lamp extinguishing during low-line conditions  
before the IC is properly reset. Should a brown-  
out occur, the DC bus can drop to a level below  
the minimum required for the tank circuit to  
maintain the necessary lamp voltage. This  
detection will insure a clean turn-off before the  
DC bus drops too low and properly resets the  
IC to the preheat mode when the line returns.  
60uA  
HO  
VCO  
Q2  
16  
2
VCO  
CVCO  
Half  
Bridge  
Output  
1uA  
Half  
Bridge  
Driver  
VS  
LO  
15  
11  
ILOAD  
1uA  
CPH  
PH  
LOGIC  
3
7
Q2  
CCPH  
7.6V  
IFMIN  
FMIN  
RFMIN  
5.1V  
CS  
10  
12  
RCS  
1/RFMIN  
COM  
IPH  
8
IR21592/IR21593  
RIPH  
Load  
Return  
VBUS(-)  
Figure 7, IR21592/IR21593 preheat circuitry.  
An internal 1uA current source slowly discharges  
the external capacitor on pin VCO and the voltage  
on pin VCO begins to decrease. This decreases  
the frequency, which, for operating frequencies  
above resonance, increases the load current.  
When the peak voltage measured on pin CS,  
produced by a portion of the load current flowing  
Preheat (PH)  
The IR21592/IR21593 enters preheat mode  
when VCC exceeds the UVLO+ threshold and  
VDC exceeds 5.1V. HO and LO begin to  
oscillate at the maximum operating frequency through an external sense resistor (RCS), exceeds  
with 50% duty cycle and at the internally set  
dead-time of 2us (IR21592) or 1µs (IR21593). Pin  
CPH is disconnected from COM and an internal  
1uA current source (Figure 7) charges the external  
timing capacitor on CPH linearly.  
the voltage level on pin IPH, a 60uA internal  
current source is connected to pin VCO and the  
capacitor charges (Figure 8). This forces the  
frequency to increase and the load current to  
decrease. When the voltage on pin CS decreases  
below the voltge on pin IPH, the 60uA current  
source is disconnected and the frequency  
decreases again.  
16  
www.irf.com  
( )  
S
IR21592/IR21593  
HO  
LO  
VS  
VBUS(+)  
HO  
VCO  
Q2  
16  
2
VCO  
CVCO  
Half  
1uA  
Bridge  
Output  
Half  
Bridge  
Driver  
VS  
LO  
15  
11  
t
t
ILOAD  
VRCS  
PH  
LOGIC  
1uA  
CPH  
DIM  
3
4
VIPH  
Q2  
CCPH  
7.6V  
DIM  
INTERFACE  
0.5 to 5V  
RDIM  
FAULT  
LOGIC  
1.6V  
CS  
10  
12  
RCS  
COM  
PHASE  
CONTROL  
ICVCO  
IR21592/IR21593  
Load  
Return  
60uA  
VBUS(-)  
t
t
-1uA  
Figure 9, IR21592/IR21593 ignition circuitry.  
VCVCO  
The ignition ramp is then initiated as the  
capacitor on pin VCO discharges linearly  
through an internal 1uA current source. The  
frequency decreases linearly towards the  
resonance frequency of the high-Q ballast output  
stage, causing the lamp voltage and load current  
to increase (Figure 10). The frequency  
continues to decrease until the lamp ignites or  
the current limit of the IR21592/IR21593 is  
reached. If the current limit is reached, the  
IR21592/IR21593 enters FAULT mode. The 1.6V  
threshold together with the external current  
sensing resistor on pin CS determine the  
maximum allowable peak ignition current (and  
therefore peak ignition voltage) of the ballast  
output stage. The peak ignition current must not  
exceed the maximum allowable current ratings  
of the output stage MOSFETs or IGBTs, and,  
the resonant inductor must not saturate at  
any time.  
Figure 8, Peak load current regulation timing diagram.  
This feedback keeps the peak preheat current  
regulated to the user-programmable setting on pin  
IPH for the duration of the preheat time. An  
internal current source connected to an external  
resistor on pin IPH sets a voltage reference for  
the peak pre-heat current. The pre-heat time  
continues until the voltage on pin CPH exceeds  
5V.  
Ignition (IGN)  
The IR21592/IR21593 enters ignition mode when  
the voltage on pin CPH exceeds 5V. The peak  
current regulation reference voltage is  
disconnected from the user-programmable  
setting on pin IPH and is connected to a higher  
internal threshold of 1.6V (Figure 9).  
To prevent a "flash" across the lamp during  
ignition at low dim settings, an ignition detection  
www.irf.com  
17  
( )  
S
IR21592/IR21593  
load current is regulated against the user control  
input on pin DIM. To control the rate at which the  
dim setting changes from maximum brightness  
to the user setting (IGN-TO-DIM time, Figure 11),  
circuit measures the voltage at the CS pin and  
compares it against the voltage at the IPH pin.  
During the rising ignition ramp, the voltage at  
the IPH pin is increased to 20% above its value  
VCPH  
CS  
5.1V  
VIPH+ 20%  
RDIM & CTPH  
TIME CONSTANT  
VIPH+ 10%  
VIPH  
VDIM  
t
VVCO  
IGN-TO-DIM  
TIME  
t
PH  
IGN  
DIM  
PH  
DIM  
IGN  
Figure 10, IR21592/IR21593 ignition detection.  
Figure 11, IR21592/IR21593 ignition timing diagram.  
pin DIM is connected internally to pin CPH when  
the IR21592/IR21593 enters DIM mode. The  
resistor on pin DIM (RDIM) discharges the  
capacitor on pin CPH down to the user dim  
setting. The resistor can be selected for a fast  
time constant to minimize the amount of flash  
visible over the lamp just after ignition, or, a  
long time constant such that the brightness  
ramps down smoothly to the user setting. Should  
the ignition-to-dim time be too fast, however, the  
loop can respond faster than the ionization  
constant of the lamp (milliseconds) causing the  
VCO to over-shoot. This can result in a  
frequency that is higher than the minimum  
brightness frequency and can extinguish the  
lamp. The capacitor on pin CPH serves multiple  
functions by setting the preheat time, the travel  
rate just after ignition (together with resistor  
RDIM), and, serving as a filter capacitor on pin  
during preheat mode. When the voltage on the  
CS pin exceeds this voltage, the voltage on the  
IPH pin is decreased to VIPH Pre-Heat +10% and  
the ignition detection circuit is then active (See  
Figure 10). When the lamp ignites, the voltage on  
the CS pin will then fall below the voltage on the  
IPH pin and the IC enters DIM Mode and the phase  
control loop is closed. In order for the ignition  
detection circuit to function properly and for the IC  
to enter DIM mode, the voltage on the CS pin must  
first rise above VIPH Pre-Heat + 20% during the  
ignition ramp to activate the circuit, and then  
decreasebelowVIPHPre-Heat+10%whenthelamp  
ignites.  
Ignition-to-Dim (IGN-to-DIM)  
When the IR21592/IR21593 enters dim mode, the  
phase control loop is closed and the phase of the  
18  
www.irf.com  
( )  
S
IR21592/IR21593  
DIM during dimming to increase high-frequency  
noise immunity and minimize component count.  
VCS  
Dimming (DIM)  
t
To regulate lamp power, the error between the  
reference phase and the phase of the output stage  
current forces the VCO to steer the frequency in  
the proper direction, as determined by the transfer  
function of the output stage, such that the error is  
forced to zero. An internal 15uA current source is  
connected to pin VCO during dimming mode  
(Figure 12) to discharge the VCO capacitor and  
decrease the frequency towards lock.  
LO  
ν
REF  
ν FB  
ν
ERR  
VVCO  
VBUS(+)  
IR2159  
VCC  
t
RFB  
HO  
VCO  
Q2  
16  
2
VCO  
Figure 13, Phase control timing diagram.  
Half  
16uA  
Bridge  
Output  
CVCO  
Half  
Bridge  
Driver  
VS  
LO  
15  
11  
ILOAD  
The IR21592/IR21593 includes a dimming  
interface for analog lamp power control. The  
DIM pin input requires a voltage in the range of  
0.5 to 5VDC, with 5V corresponding to minimum  
phase shift (maximum lamp power). The output  
of the dim interface is the voltage on pin MIN,  
which is compared with the internal timing  
capacitor (CT) voltage to produce a frequency-  
independent digital reference phase (Figure 14).  
CPH  
3
4
DIM  
INTERFACE  
Q2  
CCPH  
7.6V  
DIM  
0.5 to 5V  
RDIM  
FAULT  
LOGIC  
1.6V  
MAX  
CS  
5
6
10  
12  
RMAX  
RMIN  
MIN  
RCS  
PHASE  
CONTROL  
COM  
Load  
Return  
VBUS(-)  
Figure 12, IR21592/IR21593 dimming circuitry.  
Once lock is achieved, the phase detector (PDET)  
outputs short pulses to an open-drain PMOS that  
charges the VCO capacitor through an internal  
resistor (RFB) each time an error pulse occurs  
(Figure 13). This action "nudges" the integrator at  
the input of the VCO to keep the phase of the  
output stage current exactly locked in phase with  
the reference.  
www.irf.com  
19  
( )  
S
IR21592/IR21593  
detection comparator for 400ns after LO goes 'high'  
(Figure 16).  
VMIN  
5V  
VCT  
RMIN  
VBUS(+)  
RMAX  
3V  
IR2159  
HO  
Q2  
16  
1V  
DIM  
RANGE  
Half  
0
Bridge  
Output  
USER  
SETTING  
Half  
Bridge  
Driver  
0.5V  
5V  
LO  
VS  
LO  
15  
11  
VDIM  
ILOAD  
ν
Q2  
REF  
Ε
0
Ε
-90  
Ε
-180  
ν
FAULT  
LOGIC  
1.6V  
CS  
R1  
10  
12  
RCS  
Figure 14, Dimming interface  
PHASE  
CONTROL  
400ns  
BLANK  
COM  
The charging time of CT from 1V to 5.1V  
determines the on-time of output gate drivers HO  
and LO and corresponds to -180 degrees of  
possible phase shift in load current (minus  
deadtime). For the 0 to -90 degree dim range, the  
voltage on pin MIN is bounded between 1V and  
3V using pins MIN and MAX. An external resistor  
on pin MAX programs the minimum phase shift  
reference (maximum lamp power) corresponding  
to 5V on pin DIM, and an external resistor on pin  
MIN sets the maximum phase shift (minimum  
lamp power) corresponding to 0.5V on pin DIM.  
Load  
Return  
VBUS(-)  
Figure 15, Current sensing circuitry.  
The internal blank time reduces the dimming range  
slightly (Figure 16) when operating at minimum  
phase shift (maximum lamp power). The external  
programming resistor on pin MAX must be  
selected such that the minimum phase shift is  
set a safe margin away from the blank time. A  
series resistor (R1) is required to limit the amount  
of current flowing out of pin CS when the voltage  
across RCS goes below -0.7V. A filter capacitor  
at pin CS may be required due to other possible  
asynchronous noise sources present in the ballast  
system.  
Current Sensing  
During dimming, the current sensing circuitry  
(Figure 15) detects over-current which can occur  
during hard-switching (see Fault section), and  
zero-crossing to measure the phase of the total  
load current. To reject any switching noise which  
can occur at the turn-on of the low-side MOSFET  
or IGBT, a digital current sense blanking circuit  
blanks out the signal from the zero-crossing  
20  
www.irf.com  
( )  
S
IR21592/IR21593  
Should the peak voltage on pin CS exceed 1.6V  
at any time during dimming, the IR21592/IR21593  
enters FAULT mode and the high and low-side  
driver outputs, HO and LO, are both turned off.  
Cycling the supply voltage on VCC below UVLO-  
or the voltage on pin SD above and below SD+  
and SD- will reset the IR21592/IR21593 to preheat  
(PH) mode (see STATE DIAGRAM).  
VCS  
Switching  
Noise  
t
LO  
ϑ
BLANK  
Ballast Design  
Dimming  
Range  
Lamp Requirements  
Figure 16, Current sense timing diagram.  
Before selecting component values for the ballast  
output stage and the programmable inputs of  
the IR21592/IR21593, the following lamp  
requirements must first be defined:  
Fault Mode (FAULT)  
During dimming, the peak current regulation circuit  
active during preheat and ignition is disabled.  
Should non-zero voltage switching at the output  
of the half-bridge occur (Figure 17), high current  
spikes will result. A lamp filament failure, lamp  
end-of-life, lamp removal, or a deadtime shorter  
than what is required for commutation, can all  
cause hard-switching.  
Variable  
Description  
Filament pre-heat current  
Units  
Arms  
I ph  
Filament pre-heat time  
s
tph  
Maximum lamp pre-heat voltage  
Lamp ignition voltage  
Vpp  
Vpp  
Vph  
max  
V
ign  
Lamp power at 100% brightness  
Lamp voltage at 100% brightness  
W
LOAD  
REMOVAL  
P
100%  
Vpp  
HO  
V
100%  
LO  
VS  
Lamp power at 1% brightness  
Lamp voltage at 1% brightness  
W
P
1%  
Vpp  
V
1%  
t
Minimum cathode heating current  
Arms  
VCS  
ICath  
min  
1.6V  
t
Table I, Typical lamp requirements  
NORMAL  
OPERATION  
HARD  
SWITCHING  
FAULT  
Figure 17, hard-switching with latch off  
www.irf.com  
21  
( )  
S
IR21592/IR21593  
Ballast Output Stage  
The operating frequency [Hz] at maximum lamp  
power is given as:  
The components comprising the output stage are  
selected using a set of equations. Different ballast  
operating frequencies and their respective  
voltages and currents are calculated.  
The inductor and capacitor values are obtained  
using equations (2) through (7). The results of  
these equations reveal the location of each  
operating frequency and the corresponding  
voltages and currents. For a given L, C, DC bus  
voltage, and pre-heat current, the resulting voltage  
over the lamp during pre-heat is given as:  
2
4VDC  
1−  
2
1
1
32P2  
1
32P2  
100%  
V
100%π  
(6)  
100%  
f100%  
=
+
2
2π LC C2V4  
LC C2V4  
LC2  
100%  
100%  
The cathode heating current at minimum lamp  
power is given as:  
V1% f1%πC  
ICath  
=
(7)  
1%  
2
1
2
2
Design Constraints  
2VDC  
2VDC  
8L  
I p2h  
(2)  
Vph =  
+
π
C
π
The inductor and capacitor values should be  
iterated until the following design constraints have  
been fulfilled (Table II).  
The resulting operating frequency during pre-heat  
is given as:  
Design Constraint  
Reason  
Ignition during pre-  
heat  
Production tolerances  
V
< V  
phmax  
ph  
2Iph  
fph =  
[Hz] (3)  
f
f > 5kHz  
ign  
ph  
πCVph  
Iign < Iign  
Inductor saturation  
max  
Lamp extinguishing  
during dimming  
ICath ICath  
1%  
min  
The resulting operating frequency during ignition  
is given as:  
Table II, Ballast design constraints  
π4 VDC  
1+  
IR21592/IR21593 Programmable Inputs  
Vign  
LC  
1
[Hz] (4)  
fign  
=
2π  
In order to program the MIN and MAX settings of  
the dimming interface, the phase of the output  
stage current at minimum and maximum lamp  
power must be calculated. This is obtained using  
the following equations:  
The total load current during ignition is given as:  
I
= f CV 2π  
ign ign  
[App] (5)  
ign  
22  
www.irf.com  
( )  
S
IR21592/IR21593  
2
4VDC  
V%π  
LC2  
1−  
2
1
1
32P2  
1
32P2  
%
%
(8)  
(9)  
f% =  
+
2
2π LC C2V%4  
LC C2V%4  
180  
ϕ% = tan [( C% L)2πf% 4 % LCπ f%]  
2P  
V%2  
V2  
2P  
V2  
1  
2 3 3  
%
π
P
%
%
With the lamp requirements defined, the L and C  
of the ballast output stage selected, and the  
minimum and maximum phase calculated, the  
component values for setting the programmable  
inputs of the IR21592/IR21593 are obtained with  
the following equations:  
(25e 6) ( fMIN 10000) (1e 10)  
RFMIN  
=
( fMIN 10000) (2e 14)  
[Ohms]  
(10)  
(11)  
2 (1.6)  
RCS  
=
[Ohms]  
[Ohms]  
Iign  
(12)  
(13)  
RIPH = RFMIN RCS Iph  
2
[Farads]  
[Ohms]  
CCPH = (2.6E 7)(tPH )  
RFMIN  
ϕ1%  
(14)  
RMIN  
=
=
1−  
4
45  
0.86 RFMIN RMIN  
RMAX  
ϕ100%  
4 RMIN RFMIN 1−  
45  
[Ohms]  
(15)  
www.irf.com  
23  
( )  
S
IR21592/IR21593  
This ballast design procedure has been summarized into the following 3 steps:  
Define  
Lamp  
Requirements  
Iterate L and C  
to fulfill  
constraints  
Calculate  
IR21592/IR21593  
Programmable  
Inputs  
Figure 19, Simplified Ballast Design Procedure  
Case outline  
01-6015  
01-3065 00 (MS-001A)  
16 Lead PDIP  
24  
www.irf.com  
( )  
S
IR21592/IR21593  
01-6018  
01-3064 00 (MS-012AC)  
16 -Lead SOIC (narrow body)  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105  
Data and specifications subject to change without notice.  
This product has been designed and qualfied for the industrial market.  
11/13/2003  
www.irf.com  
25  

相关型号:

IR21593PBF

DIMMING BALLAST CONTROL IC
INFINEON

IR21593S

DIMMING BALLAST CONTROL IC
INFINEON

IR21593SPBF

暂无描述
INFINEON

IR21593STR

Switching Regulator/Controller, PDSO16
INFINEON

IR2159PBF

Fluorescent Light Controller, 0.5A, 95kHz Switching Freq-Max, PDIP16, PLASTIC, MS-001A, DIP-16
INFINEON

IR2159S

DIMMING BALLAST CONTROL IC
INFINEON

IR2159SPBF

Fluorescent Light Controller, 0.5A, 95kHz Switching Freq-Max, PDSO16, SOIC-16
INFINEON

IR2161

HALOGEN CONVERTOR CONTROL IC
INFINEON

IR2161PBF

Half Bridge Based MOSFET Driver, PDIP8, PLASTIC, DIP-8
INFINEON

IR2161S

HALOGEN CONVERTOR CONTROL IC
INFINEON

IR2161SPBF

HALOGEN CONVERTOR CONTROL IC
INFINEON

IR2161STRPBF

HALOGEN CONVERTOR CONTROL IC
INFINEON