IR2159PBF [INFINEON]

Fluorescent Light Controller, 0.5A, 95kHz Switching Freq-Max, PDIP16, PLASTIC, MS-001A, DIP-16;
IR2159PBF
型号: IR2159PBF
厂家: Infineon    Infineon
描述:

Fluorescent Light Controller, 0.5A, 95kHz Switching Freq-Max, PDIP16, PLASTIC, MS-001A, DIP-16

光电二极管
文件: 总25页 (文件大小:260K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Preliminary Data Sheet No. PD60169-E  
( )  
( )  
S
S
IR2159  
IR21591  
DIMMING BALLAST CONTROL IC  
Features  
Brown-out protection  
Automatic restart  
Micro-power startup  
Zener clampedVcc  
Over-temperature protection  
16-pin DIP and SOIC package types  
Ballast control and half-bridge driver in one IC  
Transformer-less lamp power sensing  
Closed-loop lamp power control  
Closed-loop preheat current control  
Programmable preheat time  
Programmable preheat current  
Programmable ignition-to-dim time  
0.5 to 5VDC dimming control input  
Min and max lamp power adjustments  
Parameter  
Deadtime  
Frequency  
Range  
IR2159  
1.8us  
See  
IR21591  
1.0us  
See  
Programmable minimum frequency  
Internal current sense blanking  
Graph 3  
Graph 4  
Full lamp fault protection  
Packages  
Description  
Description:The IR2159/IR21591 are complete dimming ballast controllers and 600V  
half-bridge drivers all in one IC.The architecture includes phase control for trans-  
former-less lamp power sensing and regulation which minimizes changes needed to  
adapt non-dimming ballasts for dimming. Externally programmable features such as  
preheat time and current, ignition-to-dim time, and a complete dimming interface with  
minimum and maximum settings provide a high degree of flexibility for the ballast  
design engineer. Protection from failure of a lamp to strike, filament failures, thermal  
overload, or lamp failure during normal operation, as well as an automatic restart  
function, have been included in the design. The heart of this control IC is a voltage-  
controlled oscillator with externally programmable minimum frequency.The IR2159/  
IR21591 are available in both 16 pin DIP and 16 pin narrow body SOIC packages.  
16 Lead SOIC  
(narrow body)  
16 Lead PDIP  
Typical Connection  
+ Rectified AC Line  
Single Lamp Dimmable  
+ DC Bus  
RVAC  
RPULL-UP  
RVDC  
CVDC  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VDC  
VCO  
CPH  
DIM  
HO  
VS  
CVCO  
CPH  
VB  
RDIM  
RMAX  
RMIN  
RFMIN  
RIPH  
VCC  
COM  
LO  
0.5 to 5VDC  
MAX  
MIN  
FMIN  
IPH  
CS  
SD  
RCS  
- DC Bus  
www.irf.com  
1
( )  
S
IR2159/IR21591  
Absolute Maximum Ratings  
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage  
parameters are absolute voltages referenced to COM, all currents are defined positive into any lead. The thermal  
resistance and power dissipation ratings are measured under board mounted and still air conditions.  
Symbol Definition  
Min.  
Max.  
Units  
V
High side floating supply voltage  
High side floating supply offset voltage  
High side floating output voltage  
Low side output voltage  
-0.3  
625  
B
S
V
V
- 25  
V
+ 25  
B
S
B
B
V
V
HO  
V
- 0.3  
V
+ 0.3  
V
LO  
-0.3  
V
+ 0.3  
CC  
I
Maximum allowable output current (either output)  
due to external power transistor miller effect  
Voltage controlled oscillator input voltage  
CPH current  
-500  
500  
OMAX  
mA  
V
-0.3  
-5  
6.0  
5
V
VCO  
I
mA  
CPH  
V
IPH voltage  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-5  
5.5  
5.5  
5.5  
5.5  
5.5  
5
IPH  
V
DIM  
Dimming control pin input voltage  
Maximum lamp power setting pin input voltage  
Minimum lamp power setting pin input voltage  
Current sense input voltage  
V
MAX  
V
V
MIN  
V
CS  
I
Shutdown pin current  
SD  
mA  
I
Supply current (note 1)  
25  
CC  
dV/dt  
Allowable offset voltage slew rate  
-50  
50  
V/ns  
P
Package power dissipation @ T +25°C  
(16 pin DIP)  
(16 pin SOIC)  
(16 pin DIP)  
1.60  
1.25  
75  
D
A
W
P
D
= (T  
-T )/Rth  
A JA  
JMAX  
Rth  
Thermal resistance, junction to ambient  
JA  
oC/W  
(16 pin SOIC)  
115  
150  
150  
300  
T
Junction temperature  
-55  
-55  
J
T
S
Storage temperature  
oC  
T
Lead temperature (soldering, 10 seconds)  
L
Note 1:  
This IC contains a zener clamp structure between the chip V  
and COM which has a nominal breakdown  
CC  
voltage of 15.6V (V  
). Please note that this supply pin should not be driven by a DC, low impedance  
CLAMP  
power source greater than the diode clamp voltage (V  
section.  
) as specified in the Electrical Characteristics  
CLAMP  
2
www.irf.com  
( )  
S
IR2159/IR21591  
Recommended Operating Conditions  
For proper operation the device should be used within the recommended conditions.  
Symbol  
Definition  
Min.  
Max.  
Units  
V
High side floating supply voltage  
Steady state high side floating supply offset voltage  
Supply voltage  
V
- 0.7  
V
BS  
CC  
CLAMP  
600  
V
V
-1  
S
V
V
V
CC  
CCUV+  
CLAMP (15.6)  
I
Supply current  
note 2  
10  
mA  
V
CC  
V
0
0
5
5
VCO  
VCO pin voltage  
DIM pin voltage  
V
V
DIM  
MAX pin current (note 3)  
MIN pin voltage  
-750  
1
0
MAX  
µA  
V
V
3
MIN  
R
Minimum frequency setting resistance  
Shutdown pin current  
10  
-1  
100  
1
FMIN  
kΩ  
I
SD  
CS  
mA  
I
Current sensing pin current  
Junction temperature  
-1  
1
T
-40  
125  
oC  
J
Note 2: Enough current should be supplied into the VCC lead to keep the internal 15.6V zener clamp diode on this lead  
regulating its voltage, V  
.
CLAMP  
Note 3: The MAX lead is a voltage-controlled current source. For optimum dim interface current mirror performance,  
this current should be kept between 0 and 750µA.  
Electrical Characteristics  
V
CC  
R
= V = V  
BS  
= 14V +/- 0.25V, V = 0.5V, V = 0.0V, R  
= 40k, C  
= 10 nF, V  
= 0.0V, R  
= 33k,  
BIAS  
CPH  
CS  
SD  
FMIN  
VCO  
DIM  
MAX  
= 56k, V  
= 0.0V, C  
= 1000pF, T = 25oC unless otherwise specified.  
LO,HO  
A
MIN  
Symbol Definition  
Min. Typ.  
Max.  
Units Test Conditions  
Supply Characteristics  
V
V
supply undervoltage positive going  
CC  
12.0  
12.5  
13.0  
CCUV+  
V
threshold  
supply undervoltage lockout hysteresis 1.5  
V
V
1.6  
200  
240  
1.7  
CCHYS  
QCCUV  
QCCFLT  
CC  
I
I
UVLO mode quiescent current  
Fault-mode quiescent current  
V
CC  
= 10V  
µA  
SD=5V, CS=2V, or  
Tj > TSD  
I
I
V
V
V
V
supply current @ FMIN (IR2159)  
supply current @ FMAX (IR2159)  
supply current @ FMIN (IR21591)  
supply current @ FMAX (IR21591)  
5.6  
6.6  
5.4  
6.8  
V
V
V
V
= 0V  
= 5V  
= 0V  
= 5V  
QCCFMIN  
CC  
CC  
CC  
CC  
VCO  
VCO  
VCO  
VCO  
mA  
V
QCCFMAX  
I
I
QCCFMIN  
QCCFMAX  
V
V
zener shunt clamp voltage  
14.5  
15.6  
16.5  
I
= 10mA  
CLAMP  
CC  
CC  
www.irf.com  
3
( )  
S
IR2159/IR21591  
Electrical Characteristics (cont.)  
V
CC  
= V = V  
BS  
= 14V +/- 0.25V, V = 0.5V, V = 0.0V, R  
= 40k, C  
= 10 nF, V  
= 0.0V, R  
= 33k,  
BIAS  
CS  
SD  
FMIN  
VCO  
DIM  
MAX  
R
MIN  
= 56k, V  
= 0.0V, C  
= 1000pF, T = 25oC unless otherwise specified.  
LO,HO  
A
TPH  
Symbol Definition  
Min. Typ.  
Max. Units Test Conditions  
Floating Supply Characteristics  
I
I
Quiescent V supply current  
BS  
Quiescent V supply current  
BS  
0
5
V
V
= V  
= V  
QBS0  
QBS1  
HO  
S
µA  
30  
4
HO  
B
V
Minimum requiredVBS voltage for proper  
HO functionality  
V
BSMIN  
µA  
I
Offset supply leakage current  
50  
V = V = 600V  
B S  
LK  
Oscillator I/O Characteristics  
f
VCO frequency range (IR2159)  
(See graph 3)  
25  
V
V
=0V, RFMIN=39KΩ  
=5V, RFMIN=10KΩ  
=0V, RFMIN=68KΩ  
=5V, RFMIN=10KΩ  
vco  
VCO  
95  
30  
VCO  
VCO  
kHz  
f
VCO frequency range (IR21591)  
(See graph 4)  
V
vco  
V
VCO  
230  
50  
5
d
Gate drive outputs duty cycle  
Fault-modeVCO pin voltage (UVLO,  
shutdown, over-current/temp.)  
Preheat modeVCO pin discharge current  
%
V
V
= 0V  
VCO  
V
VCOFLT  
IVCOPH  
1.0  
16.0  
VCPH < 5V  
µA  
IVCODIM Dim modeVCO pin discharge current  
Amplitude control VCO pin charging current  
LO output deadtime (IR2159)  
60.0  
>
V
CS IPH  
IVCOPK  
µA  
µs  
V
CPH  
< 5V, V  
1.8  
1.8  
1.0  
1.0  
t
t
t
t
DTLO  
DTHO  
DTLO  
DTHO  
HO output deadtime (IR2159)  
LO output deadtime (IR21591)  
HO output deadtime (IR21591)  
Gate Driver Output Characteristics  
VOL  
VOH  
tr  
Low-level output voltage  
High-level output voltage  
Turn-on rise time  
100  
100  
150  
mV  
ns  
V
- Vo  
BIAS  
tf  
Turn-off fall time  
100  
4
www.irf.com  
( )  
S
IR2159/IR21591  
Electrical Characteristics (cont.)  
V
CC  
= V = V  
BS  
= 14V +/- 0.25V, V = 0.5V, V = 0.0V, R  
= 40k, C  
= 10 nF, V  
= 0.0V, R  
= 33k,  
BIAS  
CS  
SD  
FMIN  
VCO  
DIM  
MAX  
R
MIN  
= 56k, V  
= 0.0V, C  
= 1000pF, T = 25oC unless otherwise specified.  
LO,HO  
A
TPH  
Symbol Definition  
Min.  
Typ.  
Max. Units Test Conditions  
Preheat Characteristics  
ICPH  
CPH pin charging current  
1.3  
5.0  
10  
µA  
VCPHIGN CPH pin ignition mode threshold voltage  
VCPHCLMP CPH pin clamp voltage  
V
IIPH  
IPH pin DC source current  
25.0  
µA  
IIPH = 1/RFMIN  
VCSTH  
VCPHFLT  
Peak preheat current regulation threshold  
CPH pin voltage during UVLO or fault  
0.7  
0.0  
V
VCSTH =(IIPH) x (RIPH)  
V
SD = 5V, or CS = 2V,  
> TSD  
or Tj  
Ignition Characteristics  
V
Peak over current threshold  
1.6  
V
VCPH < 5V  
CSTH  
Protection Characteristics  
V
Rising shutdown pin threshold voltage  
2.0  
5.1  
150  
2.1  
7.6  
1.6  
165  
SDTH+  
V
V
V
V
V
V
T
Rising VDC pin threshold voltage  
SD threshold hysteresis  
VDCTH+  
SDHYS  
VDCHYS  
SDCLMP  
CSTH  
mV  
VDC threshold hysteresis  
V
SD pin clamp voltage  
Peak over-current latch threshold voltage  
Thermal shutdown junction temperature  
ISD = 100mA  
>
5.1V  
V
CPH  
oC  
SD  
Phase Control  
V
R
Zero-crossing threshold voltage  
Phase control FB resistor (Internal)  
Zero-crossing internal blank time  
0.0  
5.7  
V
kΩ  
ns  
CSTHZX  
FB  
t
400  
Blank  
Dimming Interface  
V
DIM pin offset voltage  
DIM pin input voltage range  
0.0  
0.5  
DIMOFF  
V
V
V
V
V
5.0  
DIM  
V
= 5V  
= 0V  
DIM minimum reference voltage (MIN pin)  
DIM maximum reference voltage (MIN pin)  
DIM modeVCOThreshold (IR2159)  
DIM mode VCOThreshold (IR21591)  
1.0  
3.0  
0.5  
1.1  
MINMIN  
MINMAX  
DIMTH  
DIMTH  
DIM  
V
V
DIM  
Minimum Frequency Setting  
V
V
FMIN pin voltage during normal operation  
FMIN pin voltage during fault mode  
5.1  
0.0  
V
V
FMIN  
FMINFLT  
SD = 5V, or CS = 2V,  
> TSD  
or Tj  
www.irf.com  
5
( )  
S
IR2159/IR21591  
Block Diagram  
VCC  
60uA  
ICT  
VDIMTH  
RFB  
2
VCO  
15uA  
14 VB  
16 HO  
15 VS  
1uA  
PULSE  
FILTER &  
LATCH  
LEVEL  
SHIFT  
10 CYCLES  
IGNITION  
COUNTER  
ERR  
VDC  
CPH  
DIM  
1
3
S
R
Q
Q
1.3uA  
13  
VCC  
CT  
T
S
Q
Q
Q
Q
REF  
5.1V  
1.0V  
11 LO  
R1  
R2  
10V  
R
ICT  
15.6V  
12 COM  
S
R
Q
IDT+ICT  
5.1V  
4
400ns  
DELAY  
CT  
Q
IDIM  
FB  
5
6
MAX  
MIN  
10 CS  
4/RFMIN  
Q
Q
S
R
I
DIM/5  
3V  
S
R
Q
Q
OVER-  
TEMP  
DETECT  
IFMIN  
UNDER-  
VOLTAGE  
DETECT  
9
SD  
FMIN  
IPH  
7
8
2.0V  
5.1V  
7.6V  
5.1V  
1
0
1/RFMIN  
1.6V  
Lead Assignments & Definitions  
Pin # Symbol  
Description  
Pin Assignments  
1
2
3
4
VDC  
VCO  
CPH  
DIM  
Line input voltage detection  
Voltage controlled oscillator Input  
Preheat timing input  
0.5 to 5VDC dimming control input  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VDC  
VCO  
CPH  
DIM  
HO  
VS  
MAX  
5
6
7
Maximum lamp power setting  
Minimum lamp power setting  
Minimum frequency setting  
Peak preheat current reference  
VB  
MIN  
FMIN  
IPH  
VCC  
COM  
LO  
8
9
SD  
CS  
Shutdown input  
Current sensing input  
MAX  
MIN  
10  
11  
12  
13  
14  
15  
LO  
Low-side gate driver output  
IC power & signal ground  
Logic & low-side gate driver supply  
High-side gate driver floating supply  
COM  
VCC  
VB  
FMIN  
IPH  
CS  
SD  
VS  
High voltage floating return  
High-side gate driver output  
16  
HO  
6
www.irf.com  
( )  
S
IR2159/IR21591  
State Diagram  
Power Turned On  
UVLO Mode  
1/2-Bridge Off  
IQCC=200mA  
CPH=0V  
Oscillator Off  
(UV+)  
VCC < 10.9V  
VCC > 12.5V  
and  
SD > 2.0V  
(VCC Fault or Power Down)  
(Lamp Removal)  
or  
VDC > 5.1V (Bus OK)  
or  
and  
SD < 1.7V  
and  
VDC < 3.0V  
VCC < 10.9V  
(Power Turned Off)  
(dc Bus/ac Line Fault or Power Down)  
(Lamp OK)  
(T  
or  
T
< 165C  
)
SD > 2.0V  
jmax  
J
(Lamp Fault or Lamp Removal)  
T
> 165C  
FAULT Mode  
Fault Latch Set  
1/2-Bridge Off  
J
PREHEAT Mode  
(Over-Temperature)  
1/2-BridgeOscillator On  
VCSPK+VIPH (Peak Current Control)  
IQCC=240 A  
µ
CPH Charging@IPH+1 A  
µ
CPH=0V  
VCC=15.6V  
Oscillator Off  
DIM+Open Circuit  
Over-Current Disabled  
CPH > 5.1V  
CS > V CSTH (1.6V)  
(End of PREHEAT Mode)  
(Failure to Strike Lamp  
or Hard Switching)  
or  
TJ > 165C  
IGNITION Mode  
fPH ramps to fMIN  
CPH Charging@IPH+1µA  
DIM=Open Circuit  
(Over-Temperature)  
Over-Current Enabled  
VCO < V  
DIMTH  
CS > VCSTH (1.6V)  
(Over-Current or Hard Switching)  
(End of IGNITION Mode)  
or  
T
> 165C  
J
(Over-Temperature)  
DIM Mode  
PhaseCS=PhaseREF  
DIM=CPH  
Over-Current Enabled  
www.irf.com  
7
( )  
S
IR2159/IR21591  
Timing Diagram  
Non-strike fault condition with lamp exchange  
VCC  
15.6V  
UVLO+  
UVLO-  
VDC  
VDCTH+  
VDCTH-  
CPH  
5.1V  
VDIM  
VCO  
5V  
f
SD  
5V  
HO  
LO  
CS  
1.6V  
VIPH  
UVLO  
PH  
FLT SD  
PH  
DIM  
UVLO  
8
www.irf.com  
( )  
S
IR2159/IR21591  
External Components Selection Procedure  
(Note:  
BEGIN  
Please refer to  
"Typical Connection"  
diagram, page 1)  
Calculate RPULL-UP  
VACTURN  
ON  
RPULL  
=
UP  
IQCCUV  
Calculate RVDC  
5.1  
Set RVAC and RVDC such that the voltage  
on pin VDC will exceed 5.1 volts at the  
desired line turn-on voltage.  
RVAC  
RVDC  
VACTURN-ON  
VACTURN  
ON  
ON  
=
1−  
RVDC  
5.1  
VACTURN  
The minimun operating frequency must  
be lower than f100% of fIGN (whichever is  
lower). RFMIN also programs IMIN and  
Select RFMIN  
RFMIN  
fMIN  
Use Graph 5 or Graph 6  
IIPH, so RFMIN must be set first.  
Calculate RCS  
RCS sets the maximum ignition current  
which corresponds to the maximum  
ignition voltage across the lamp.  
RCS  
VIGN  
IIGN  
1.6  
=
RCS  
I
IGNPK  
Select & Calculate R IPH  
Use Graph 8 to find I  
,
The voltage at pin IPH is the reference  
for amplitude current control during  
preheat mode. RIPH must be set after  
IPH  
then calculate R IPH  
:
RIPH  
IPH  
VPH  
I
PH PK  
RCS  
RFMIN  
.
=
RIPH  
IIPH  
µ
During preheat, an internal 1.3  
A
Calculate CCPH  
2.6e 7  
CCPH tPH  
current source at pin CPH charges  
external capacitor CCPH. Preheat mode  
ends when VCPH exceeds 5.1 volts.  
CCPH  
tPH  
(
)
=
Calculate RMIN  
Find IMIN (Graph 7)  
RMIN sets the lower phase boundary  
corresponding to minimum lamp  
power when VDIM = 0 volts. RMIN must  
Calculate ϕMIN (Equations 8 & 9)  
Find VMIN (Graph 9)  
VMIN  
RMIN  
ϕMIN PLAMP  
be set after RFMIN  
.
RMIN  
=
IMIN  
RMAX sets the upper phase boundary  
corresponding to maximum lamp power  
when VDIM = 5 volts. RMAX must be set  
Calculate RMAX  
RMAX  
ϕMAX PLAMP  
Use Equation 15  
after RFMIN and RMIN  
.
www.irf.com  
9
( )  
S
IR2159/IR21591  
Characteristic Curves  
230  
190  
150  
110  
70  
125  
105  
85  
65  
45  
25  
RFMIN=10K  
RFMIN=16K  
RFMIN=20K  
RFMIN=27K  
RFMIN=39K  
RFMIN=68K  
30  
0
1
2
3
4
5
0
1
2
3
4
5
VVCO (V)  
Graph 1.Frequency vs VVCO (IR2159)  
Graph 2.Frequency vsVVCO (IR21591)  
230  
190  
150  
110  
70  
125  
105  
85  
V
=5V  
VCO  
V
=5V  
VCO  
65  
V
VCO  
=1.1V  
V
V
=0.5V  
VCO  
45  
V
VCO  
=0V  
=0V  
VCO  
25  
30  
10  
14  
18  
22  
RFMIN  
26  
30  
34  
38  
10  
20  
30  
RFMIN  
40  
K
50  
60  
70  
K
Graph 3.Frequency vs RFMIN (IR2159)  
Graph 4.Frequency vs RFMIN (IR21591)  
10  
www.irf.com  
( )  
S
IR2159/IR21591  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
170  
160  
150  
140  
130  
120  
110  
100  
90  
V =1.1V  
VCO  
V =0.5V  
VCO  
80  
10  
14  
18  
22  
26  
30  
34  
38  
10  
14  
18  
22  
26  
30  
34  
38  
RFMIN  
K
RFMIN  
K
Graph 5. Frequency vs RFMIN (IR2159)  
Graph 6.Frequency vs RFMIN (IR21591)  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
450  
400  
350  
300  
250  
200  
150  
100  
50  
10  
20  
30  
40  
50  
60  
70  
10  
20  
30  
40  
50  
60  
70  
RFMIN (K  
)
RFMIN (K  
)
Graph 7. IMIN vs RFMIN (IR2159/IR21591)  
Graph 8. IIPH vs RFMIN (IR2159/IR21591)  
www.irf.com  
11  
( )  
S
IR2159/IR21591  
0
-15  
-30  
-45  
-60  
-75  
-90  
30  
25  
20  
15  
10  
5
1
1.25 1.5 1.75  
2
2.25 2.5 2.75  
3
2
2.2  
2.4  
2.6  
2.8  
3
VMIN (V)  
VMIN (V)  
Graph 9. ϕ II /V I vs V  
(IR2159/IR21591)  
Graph 10. R  
vs V  
MIN MIN  
VS VS  
MIN  
150  
140  
130  
120  
110  
100  
90  
3
2.5  
2
1.5  
1
0.5  
0
-25  
0
25  
Temperature °C  
vs Temperature (IR2159/IR21591)  
50  
75  
100  
125  
-25  
0
25  
Temperature °C  
vsTemperature (IR2159/IR21591)  
50  
75  
100  
125  
Graph 11.I  
Graph 12.I  
MIN  
CPH  
12  
www.irf.com  
( )  
S
IR2159/IR21591  
6
5.6  
5.2  
4.8  
4.4  
4
40  
36  
32  
28  
24  
20  
-25  
0
25  
Temperature °C  
vsTemperature (IR2159/IR21591)  
50  
75  
100  
125  
-25  
0
25  
50  
75  
100  
125  
Temperature °C  
Graph 13.I  
Graph 14.V  
vsTemperature (IR2159/IR21591)  
IPH  
FMIN  
55  
50  
45  
40  
35  
30  
25  
110  
105  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
IR21591  
IR21591  
IR2159  
IR2159  
-25  
0
25  
50  
75  
100  
125  
-25  
0
25  
50  
75  
100  
125  
Temperature °C  
Temperature °C  
Graph 15.Frequency vs Temperature  
= 0V (IR2159/IR21591)  
Graph 16.Frequency vs Temperature  
= 2V (IR2159/IR21591)  
V
V
VCO  
VCO  
www.irf.com  
13  
( )  
S
IR2159/IR21591  
3
2.5  
2
IR2159  
1.5  
1
IR21591  
0.5  
0
-25  
0
25  
50  
75  
100  
125  
Temperature °C  
Graph 17.DeadTime vsTemperature  
(IR2159/IR21591)  
14  
www.irf.com  
( )  
S
IR2159/IR21591  
Functional Description  
400  
PH/IGN  
20  
10  
350  
Phase Control  
10%  
300  
250  
50%  
To understand phase control, a simplified model  
for the ballast output stage is used (Figure 1). The  
lamp and filaments are replaced with resistors,  
with the lamp inserted between the filament  
resistors (R1, R2, R3 and R4).  
200  
0
100%  
150  
100  
50  
-10  
-20  
-30  
PH/IGN  
10%  
50%  
0
-50  
-100  
100%  
R1  
R2  
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
L
Frequency [kHz]  
Rlamp  
Vin  
C
Figure 2, Typical output stage transfer function for  
different lamp power levels.  
R3  
R4  
In the time domain (Figure 3), the input current is  
shifted -90 degrees from the input half-bridge  
voltage during preheat and ignition, and  
somewhere between 0 and -90 degrees after  
ignition during running. Zero phase-shift  
corresponds to maximum power  
Figure 1, Dimming ballast output stage.  
During preheat and ignition (Figure 2), the circuit  
is a high-Q series LC with a strong input current to  
input voltage phase inversion from +90 to -90  
degrees at the resonance frequency. For operating  
frequencies slightly above resonance and higher,  
the phase is fixed at -90 degrees for the duration  
of preheat and ignition. During dimming, the circuit  
is an L in series with a parallel R and C, with a  
weak phase inversion at high lamp power and a  
strong phase inversion at low lamp power.  
Vin  
in  
I
ph/ign  
Iin  
run  
0
t
n
run  
nph/ign  
Figure 3, Typical ballast output stage waveforms.  
When the phase is calculated and plotted versus  
lamp power (Figure 4), the result is a linear dimming  
curve, even down to ultra-low light levels where  
the resistance of the lamp can change by orders  
of magnitude.  
www.irf.com  
15  
( )  
S
IR2159/IR21591  
The start-up capacitor (C1) is charged by current  
through resistor (R1) minus the start-up current  
drawn by the IC. This resistor is typically chosen  
to provide 2X the maximum start-up current at  
low line to guarantee start-up under the worst case  
condition. Once the capacitor voltage reaches the  
start-up threshold, and, the voltage on pinVDC is  
above 5.1V (see Brown-out Protection), the IC  
turns on and HO and LO begin to oscillate. The  
capacitor begins to discharge due to the increase  
in IC operating current (Figure 6).  
-60.0  
-65.0  
-70.0  
-75.0  
-80.0  
-85.0  
-90.0  
VC1  
0
5
10  
15  
Lamp Power [Watts]  
20  
25  
30  
C1  
INTERNAL  
CLAMP VOLTAGE  
DISCHARGE  
VUVLO+  
Figure 4, Lamp power vs. phase of output stage.  
VHYST  
VUVLO-  
DISCHARGE  
TIME  
Under-voltage Lock-Out (UVLO)  
CHARGE PUMP  
OUTPUT  
The IR2159 undervoltage lock-out is designed to  
maintain an ultra low quiescent current of less  
than 200uA, while guaranteeing the IC is fully  
functional before the high and low side output  
drivers are activated. Figure 5 shows an efficient  
supply voltage using the start-up current of the  
IR2159 together with a charge pump from the  
ballast output stage (R1, C1, C2, D1 and D2).  
R1  
& C1 TIME  
CONSTANT  
t
Figure 6, Start-up capacitor (C1) voltage.  
During the discharge cycle, the rectified current  
from the charge pump charges the capacitor above  
the minimum operating voltage of the device and  
the charge pump and internal 15.6V zener clamp  
of the IC take over as the supply voltage. The  
start-up capacitor and snubber capacitor must be  
selected such that worst case IC conditions are  
satisfied. A bootstrap diode (D3) and supply  
capacitor (C3) comprise the supply voltage for  
the high side driver circuitry. To guarantee that  
the high-side supply is charged up before the first  
pulse on pin HO, the first pulse from the output  
drivers comes from the LO pin. During UVLO,  
the high and low side driver outputs are low, pin  
VCO is pulled-up internally to 5V resetting the  
starting frequency to the maximum, and pin CPH  
is short-circuited internally to COM resetting the  
preheat time.  
VBUS(+)  
Rectified  
AC Line  
R3  
R1  
VDC  
HO  
Q1  
16  
15  
14  
13  
12  
11  
1
Half-Bridge  
Output  
VS  
VB  
C3  
D3  
C2  
D1  
VCC  
C1  
COM  
LO  
Q2  
RVDC  
CVDC  
D2  
RCS  
VBUS(-)  
Figure 5, Typical application of start-up circuitry.  
16  
www.irf.com  
( )  
S
IR2159/IR21591  
Brown-out Protection  
VBUS(+)  
In addition to the voltage on VCC being above  
the start-up threshold, pin VDC must also be  
above 5.1V for HO and LO to begin oscillating. A  
voltage divider (R3,RVDC) from the rectified AC  
line connected to pinVDC measures the rectified  
AC line input voltage to the ballast and programs  
the turn-on and turn-off line voltages. A filter  
capacitor (CVDC) is also connected to pin VDC  
that must be chosen such that the ripple is low  
enough and the lower turn-off threshold of 3V is  
not crossed during normal line conditions. This  
detection is necessary due to the possibility of  
the lamp extinguishing during low-line conditions  
before the IC is properly reset. Should a brown-  
out occur, the DC bus can drop to a level below  
the minimum required for the tank circuit to  
maintain the necessary lamp voltage. This  
detection will insure a clean turn-off before the  
DC bus drops too low and properly resets the  
IC to the preheat mode when the line returns.  
60uA  
HO  
VCO  
Q2  
16  
2
VCO  
CVCO  
Half  
Bridge  
Output  
1uA  
Half  
Bridge  
Driver  
VS  
LO  
15  
11  
ILOAD  
1uA  
CPH  
PH  
LOGIC  
3
7
Q2  
CCPH  
7.6V  
IFMIN  
FMIN  
RFMIN  
5.1V  
CS  
10  
12  
RCS  
1/RFMIN  
COM  
IPH  
8
IR2159  
RIPH  
Load  
Return  
VBUS(-)  
Figure 7, IR2159 preheat circuitry.  
An internal 1uA current source slowly discharges  
the external capacitor on pinVCO and the voltage  
on pin VCO begins to decrease. This decreases  
the frequency, which, for operating frequencies  
above resonance, increases the load current.  
When the peak voltage measured on pin CS,  
produced by a portion of the load current flowing  
through an external sense resistor (RCS), exceeds  
the voltage level on pin IPH, a 60uA internal  
current source is connected to pin VCO and the  
capacitor charges (Figure 8). This forces the  
frequency to increase and the load current to  
decrease. When the voltage on pin CS decreases  
below IPH, the 60uA current source is  
disconnected and the frequency decreases again.  
Preheat (PH)  
The IR2159 enters preheat mode when VCC  
exceeds the UVLO+ threshold andVDC exceeds  
5.1V. HO and LO begin to oscillate at the  
maximum operating frequency with 50% duty  
cycle and at the internally set dead-time of 2us.  
Pin CPH is disconnected from COM and an  
internal 1uA current source (Figure 7) charges  
the external timing capacitor on CPH linearly.  
www.irf.com  
17  
( )  
S
IR2159/IR21591  
HO  
LO  
VS  
VBUS(+)  
HO  
VCO  
Q2  
16  
2
VCO  
CVCO  
Half  
1uA  
Bridge  
Output  
Half  
Bridge  
Driver  
VS  
LO  
15  
11  
t
t
ILOAD  
VRCS  
1uA  
PH  
LOGIC  
CPH  
DIM  
3
4
VIPH  
Q2  
CCPH  
7.6V  
DIM  
INTERFACE  
0.5 to 5V  
RDIM  
FAULT  
LOGIC  
1.6V  
CS  
10  
12  
RCS  
COM  
PHASE  
CONTROL  
ICVCO  
IR2159  
Load  
Return  
60uA  
VBUS(-)  
t
t
-1uA  
Figure 9, IR2159 ignition circuitry.  
VCVCO  
The ignition ramp is then initiated as the capacitor  
on pinVCO discharges linearly through an internal  
1uA current source. The frequency decreases  
linearly towards the resonance frequency of the  
high-Q ballast output stage, causing the lamp  
voltage and load current to increase (Figure 10).  
The frequency continues to decrease until the lamp  
ignites or the current limit of the IR2159 is reached.  
If the current limit is reached, the IR2159 enters  
FAULT mode. The 1.6V threshold together with  
the external current sensing resistor on pin CS  
determine the maximum allowable peak ignition  
current (and therefore peak ignition voltage) of the  
ballast output stage. The peak ignition current  
must not exceed the maximum allowable current  
ratings of the output stage MOSFETs or IGBTs,  
and, the resonant inductor must not saturate  
at any time.  
Figure 8, Peak load current regulation timing diagram.  
This feedback keeps the peak preheat current  
regulated to the user-programmable setting on pin  
IPH for the duration of the preheat time. An  
internal current source connected to an external  
resistor on pin IPH sets a voltage reference for  
the peak pre-heat current. The pre-heat time  
continues until the voltage on pin CPH exceeds  
5V.  
Ignition (IGN)  
The IR2159 enters ignition mode when the voltage  
on pin CPH exceeds 5V. The peak current  
regulation reference voltage is disconnected from  
the user-programmable setting on pin IPH and is  
connected to a higher internal threshold of 1.6V  
(Figure 9).  
Should the lamp ignite, the frequency continues  
to decrease until the voltage on pinVCO reaches  
VDIMTH, corresponding to the minimum operating  
frequency set by the external resistor on pin FMIN,  
18  
www.irf.com  
( )  
S
IR2159/IR21591  
and the IR2159 enters DIM mode and the phase  
control loop is closed.  
down smoothly to the user setting. Should the  
ignition-to-dim time be too fast, however, the loop  
can respond faster than the ionization constant  
of the lamp (milliseconds) causing the VCO to  
over-shoot. This can result in a frequency that is  
higher than the minimum brightness frequency and  
can extinguish the lamp. The capacitor on pin  
CPH serves multiple functions by setting the  
preheat time, the travel rate just after ignition  
(together with resistor RDIM), and, serving as a  
filter capacitor on pin DIM during dimming to  
increase high-frequency noise immunity and  
minimize component count.  
VCPH  
5.1V  
RDIM & CTPH  
TIME CONSTANT  
VDIM  
t
VVCO  
IGN-TO-DIM  
TIME  
Dimming (DIM)  
t
To regulate lamp power, the error between the  
reference phase and the phase of the output stage  
current forces the VCO to steer the frequency in  
the proper direction, as determined by the transfer  
function of the output stage, such that the error is  
forced to zero.An internal 15uA current source is  
connected to pin VCO during dimming mode  
(Figure 11) to discharge the VCO capacitor and  
decrease the frequency towards lock.  
PH  
DIM  
IGN  
Figure 10, IR2159 ignition timing diagram.  
For a reliable ignition with minimal start-up flash,  
the resistor on FMIN should be set to 5kHz lower  
than the ignition frequency or the 100% brightness  
dimming frequency, whichever is lower.  
VBUS(+)  
Ignition-to-Dim (IGN-to-DIM)  
IR2159  
VCC  
When the VCO decreases below VDIMTH, the  
IR2159 enters dim mode.The phase control loop  
is closed and the phase of the load current is  
regulated against the user control input on pin DIM.  
To control the rate at which the dim setting  
changes from maximum brightness to the user  
setting (IGN-TO-DIM time, Figure 10), pin DIM is  
connected internally to pin CPH when the IR2159  
enters DIM mode. The resistor on pin DIM (RDIM)  
discharges the capacitor on pin CPH down to the  
user dim setting. The resistor can be selected for  
a fast time constant to minimize the amount of  
flash visible over the lamp just after ignition, or, a  
long time constant such that the brightness ramps  
RFB  
HO  
VCO  
Q2  
16  
2
VCO  
Half  
Bridge  
Output  
16uA  
CVCO  
Half  
Bridge  
Driver  
VS  
LO  
15  
11  
ILOAD  
CPH  
3
4
DIM  
INTERFACE  
Q2  
CCPH  
7.6V  
DIM  
0.5 to 5V  
RDIM  
FAULT  
LOGIC  
1.6V  
MAX  
CS  
5
6
10  
12  
RMAX  
RMIN  
MIN  
RCS  
PHASE  
CONTROL  
COM  
Load  
Return  
V
BUS(-)  
Figure 11, IR2159 dimming circuitry.  
www.irf.com  
19  
( )  
S
IR2159/IR21591  
Once lock is achieved, the phase detector (PDET)  
outputs short pulses to an open-drain PMOS that  
charges the VCO capacitor through an internal  
resistor (RFB) each time an error pulse occurs  
(Figure 12).This action "nudges" the integrator at  
the input of the VCO to keep the phase of the  
output stage current exactly locked in phase with  
the reference.  
VMIN  
5V  
V CT  
RMIN  
R M A X  
3V  
1V  
0
DIM  
RANGE  
USER  
SETTING  
0.5V  
5V  
LO  
VCS  
VDIM  
nREF  
E
0
E
-90  
E
-180  
t
n
Figure 13, Dimming interface  
LO  
The charging time of CT from 1V to 5.1V  
determines the on-time of output gate drivers HO  
and LO and corresponds to -180 degrees of  
possible phase shift in load current (minus  
deadtime). For the 0 to -90 degree dim range, the  
voltage on pin MIN is bounded between 1V and  
3V using pins MIN and MAX. An external resistor  
on pin MAX programs the minimum phase shift  
reference (maximum lamp power) corresponding  
to 5V on pin DIM, and an external resistor on pin  
MIN sets the maximum phase shift (minimum  
lamp power) corresponding to 0.5V on pin DIM.  
nREF  
nFB  
nERR  
VVCO  
t
Figure 12, Phase control timing diagram.  
The IR2159 includes a dimming interface for  
analog lamp power control. The DIM pin input  
requires a voltage in the range of 0.5 to 5VDC,  
with 5V corresponding to minimum phase shift  
(maximum lamp power). The output of the dim  
interface is the voltage on pin MIN, which is  
compared with the internal timing capacitor (CT)  
voltage to produce a frequency-independent digital  
reference phase (Figure 13).  
Current Sensing  
During dimming, the current sensing circuitry  
(Figure 14) detects over-current which can occur  
during hard-switching (see Fault section), and  
zero-crossing to measure the phase of the total  
load current. To reject any switching noise which  
can occur at the turn-on of the low-side MOSFET  
or IGBT, a digital current sense blanking circuit  
blanks out the signal from the zero-crossing  
20  
www.irf.com  
( )  
S
IR2159/IR21591  
detection comparator for 400ns after LO goes 'high'  
(Figure 15).  
VCS  
Switching  
Noise  
VBUS (+)  
t
IR2159  
HO  
Q2  
16  
L O  
Half  
Bridge  
Output  
JBLANK  
Half  
Bridge  
Driver  
VS  
LO  
15  
11  
ILOAD  
Dimming  
Range  
Q2  
FAULT  
LOGIC  
Figure 15, Current sense timing diagram.  
1.6V  
CS  
R1  
10  
12  
RCS  
PHASE  
CONTROL  
400ns  
BLANK  
COM  
Fault Mode (FAULT)  
Load  
Return  
During dimming, the peak current regulation circuit  
active during preheat and ignition is disabled.  
Should non-zero voltage switching at the output  
of the half-bridge occur (Figure 16), high current  
spikes will result. A lamp filament failure, lamp  
end-of-life, lamp removal, or a deadtime shorter  
than what is required for commutation, can all  
cause hard-switching.  
VBUS (-)  
Figure 14, Current sensing circuitry.  
The internal blank time reduces the dimming range  
slightly (Figure 15) when operating at minimum  
phase shift (maximum lamp power). The external  
programming resistor on pin MAX must be  
selected such that the minimum phase shift is  
set a safe margin away from the blank time. A  
series resistor (R1) is required to limit the amount  
of current flowing out of pin CS when the voltage  
across RCS goes below -0.7V. A filter capacitor  
at pin CS may be required due to other possible  
asynchronous noise sources present in the ballast  
system.  
L O A D  
R E M O V A L  
HO  
LO  
VS  
t
VCS  
1.6V  
t
N
O
R
M
A
L
H A R D  
S W I T C H I N G  
F A U L T  
O P E R A T I O N  
Figure 16, hard-switching with latch off  
www.irf.com  
21  
( )  
S
IR2159/IR21591  
Should the peak voltage on pin CS exceed 1.6V Ballast Output Stage  
at any time during dimming, the IR2159 enters  
FAULT mode and the high and low-side driver The components comprising the output stage are  
outputs, HO and LO, are both turned off . Cycling selected using a set of equations. Different ballast  
the supply voltage on VCC below or the voltage operating frequencies and their respective  
on pin SD will reset the IR2159 to preheat (PH) voltages and currents are calculated.  
mode (see STATE DIAGRAM).  
The inductor and capacitor values are obtained  
using equations (2) through (7). The results of  
these equations reveal the location of each  
operating frequency and the corresponding  
voltages and currents. For a given L, C, DC bus  
voltage, and pre-heat current, the resulting voltage  
over the lamp during pre-heat is given as:  
Ballast Design  
Lamp Requirements  
Before selecting component values for the ballast  
output stage and the programmable inputs of the  
IR2159, the following lamp requirements must first  
be defined:  
1
2
2
2
2
VDC  
VDC  
8
L
I 2ph  
(2)  
=
+
Vph  
π
π
C
Variable  
Description  
Filament pre-heat current  
Units  
Arms  
I ph  
The resulting operating frequency during pre-heat  
is given as:  
Filament pre-heat time  
s
tph  
Maximum lamp pre-heat voltage  
Lamp ignition voltage  
Vpp  
Vpp  
2
Iph  
Vph  
max  
=
fph  
[Hz] (3)  
π
CVph  
V
ign  
Lamp power at 100% brightness  
Lamp voltage at 100% brightness  
W
P
100%  
Vpp  
V
100%  
The resulting operating frequency during ignition  
is given as:  
Lamp power at 1% brightness  
Lamp voltage at 1% brightness  
W
P
1%  
Vpp  
V
1%  
4
VDC  
1+ π  
Minimum cathode heating current  
Arms  
ICath  
min  
Vign  
1
[Hz] (4)  
=
fign  
Table I, Typical lamp requirements  
2
π
LC  
The total load current during ignition is given as:  
Iign = fignCVign 2π  
[App] (5)  
22  
www.irf.com  
( )  
S
IR2159/IR21591  
The operating frequency [Hz] at maximum lamp  
power is given as:  
2
V
4
DC  
1
2
P2  
32 %  
P2  
32 %  
V%π  
LC2  
1
1
1
(8)  
(9)  
f% =  
+
2
LC C2V%4  
LC C2V%4  
π
2
2
4
VDC  
1
2
2
2
V
100%π  
32  
32  
P
100%  
1
1
1
P
(6)  
100%  
f100%  
=
+
180  
V%2  
2P  
V2  
2
LC C2V4  
LC C2V4  
LC2  
1
2 3 3  
2
π
100%  
100%  
ϕ% =  
tan [( C% L)2πf% 4 % LCπ f%]  
π
2P  
V%2  
P
%
%
The cathode heating current at minimum lamp  
power is given as:  
With the lamp requirements defined, the L and C  
of the ballast output stage selected, and the  
minimum and maximum phase calculated, the  
component values for setting the programmable  
inputs of the IR2159 are obtained with the following  
equations:  
V f1%πC  
1%  
ICath  
=
(7)  
1%  
2
Design Constraints  
(25e 6) ( fMIN 10000) (1e 10)  
RFMIN  
=
The inductor and capacitor values should be  
iterated until the following design constraints have  
been fulfilled (Table II).  
( fMIN 10000) (2e 14)  
[Ohms]  
(10)  
(11)  
2 (1.6)  
=
RCS  
Design Constraint  
Reason  
[Ohms]  
Iign  
Ignition during pre-  
heat  
V
< V  
phmax  
ph  
f
f > 5kHz  
Production tolerances  
ph  
I
ign  
[Ohms]  
[Farads]  
(12)  
(13)  
=
2
)
RIPH RFMIN RCS Iph  
< I  
Inductor saturation  
ign  
ignmax  
Lamp extinguishing  
during dimming  
ICath ICath  
1%  
min  
= (2.6 7)(  
tPH  
CCPH  
E
Table II, Ballast design constraints  
RFMIN  
ϕ1%  
[Ohms]  
(14)  
=
=
1−  
RMIN  
IR2159 Programmable Inputs  
4
45  
In order to program the MIN and MAX settings of  
the dimming interface, the phase of the output  
stage current at minimum and maximum lamp  
power must be calculated. This is obtained using  
the following equations:  
0.86  
RFMIN RMIN  
ϕ100%  
RMAX  
4
1−  
RMIN RFMIN  
45  
[Ohms]  
(15)  
www.irf.com  
23  
( )  
S
IR2159/IR21591  
This ballast design procedure has been summarized into the following 3 steps:  
Define  
Lamp  
Requirements  
Iterate L and C  
to fulfill  
constraints  
Calculate  
IR2159  
Programmable  
Inputs  
Figure 19, Simplified Ballast Design Procedure  
Case outline  
01-6015  
01-3065 00 (MS-001A)  
16 Lead PDIP  
24  
www.irf.com  
( )  
S
IR2159/IR21591  
01-6018  
01-3064 00 (MS-012AC)  
16 -Lead SOIC (narrow body)  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105  
Data and specifications subject to change without notice. 10/8/2001  
www.irf.com  
25  

相关型号:

IR2159S

DIMMING BALLAST CONTROL IC
INFINEON

IR2159SPBF

Fluorescent Light Controller, 0.5A, 95kHz Switching Freq-Max, PDSO16, SOIC-16
INFINEON

IR2161

HALOGEN CONVERTOR CONTROL IC
INFINEON

IR2161PBF

Half Bridge Based MOSFET Driver, PDIP8, PLASTIC, DIP-8
INFINEON

IR2161S

HALOGEN CONVERTOR CONTROL IC
INFINEON

IR2161SPBF

HALOGEN CONVERTOR CONTROL IC
INFINEON

IR2161STRPBF

HALOGEN CONVERTOR CONTROL IC
INFINEON

IR2161_15

HALOGEN CONVERTOR CONTROL IC
INFINEON

IR2166

PFC & BALLAST CONTROL IC
INFINEON

IR2166PBF

PFC & BALLAST CONTROL IC
INFINEON

IR2166S

PFC & BALLAST CONTROL IC
INFINEON

IR2166SPBF

PFC & BALLAST CONTROL IC
INFINEON