IR2301 [INFINEON]

HIGH AND LOW SIDE DRIVER; 高端和低端驱动器
IR2301
型号: IR2301
厂家: Infineon    Infineon
描述:

HIGH AND LOW SIDE DRIVER
高端和低端驱动器

驱动器 接口集成电路 光电二极管
文件: 总22页 (文件大小:314K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet No. PD60162 Rev. V  
( )  
S
IR2106(4)  
HIGH AND LOW SIDE DRIVER  
Features  
Fully operational to +600V  
Tolerant to negative transient voltage  
dV/dt immune  
Packages  
Floating channel designed for bootstrap operation  
Gate drive supply range from 10 to 20V (IR2106(4))  
Undervoltage lockout for both channels  
3.3V, 5V and 15V input logic compatible  
Matched propagation delay for both channels  
Logic and power ground +/- 5V offset.  
Lower di/dt gate driver for better noise immunity  
Outputs in phase with inputs (IR2106)  
8-Lead SOIC  
8-Lead PDIP  
14-Lead SOIC  
14-Lead PDIP  
Description  
2106/2301//2108//2109/2302/2304Feature Comparison  
The IR2106(4)(S) are high voltage,  
high speed power MOSFET and  
IGBT drivers with independent high  
and low side referenced output chan-  
nels. Proprietary HVIC and latch  
immune CMOS technologies enable  
ruggedized monolithic construction.  
The logic input is compatible with  
standard CMOS or LSTTL output,  
down to 3.3V logic. The output driv-  
Cross-  
Input  
logic  
conduction  
prevention  
logic  
Part  
Dead-Time  
Ground Pins  
Ton/Toff  
2106/2301  
21064  
2108  
21084  
2109/2302  
21094  
COM  
VSS/COM  
COM  
VSS/COM  
COM  
HIN/LIN  
HIN/LIN  
no  
none  
220/200  
220/200  
Internal 540ns  
Programmable 0.54~5µs  
Internal 540ns  
yes  
IN/SD  
yes  
yes  
750/200  
160/140  
Programmable 0.54~5µs  
VSS/COM  
HIN/LIN  
Internal 100ns  
2304  
COM  
ers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating  
channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which  
operates up to 600 volts.  
Typical Connection  
up to 600V  
VCC  
VCC  
HIN  
LIN  
VB  
HO  
VS  
HIN  
LIN  
TO  
LOAD  
COM  
LO  
IR2106  
up to 600V  
HO  
VB  
VS  
VCC  
HIN  
VCC  
HIN  
LIN  
TO  
LOAD  
LIN  
(Refer to Lead Assignments for cor-  
rect pin configuration). This/These  
diagram(s) show electrical connec-  
tions only. Please refer to our Appli-  
cation Notes and DesignTips for  
proper circuit board layout.  
IR21064  
VSS  
COM  
LO  
VSS  
www.irf.com  
1
( )  
S
IR2106(4)  
Absolute Maximum Ratings  
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage param-  
eters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured  
under board mounted and still air conditions.  
Symbol  
Definition  
High side floating absolute voltage  
High side floating supply offset voltage  
High side floating output voltage  
Low side and logic fixed supply voltage  
Low side output voltage  
Min.  
Max.  
Units  
V
-0.3  
625  
B
V
V
- 25  
V
+ 0.3  
+ 0.3  
25  
S
B
S
B
V
HO  
V
- 0.3  
V
B
V
CC  
-0.3  
-0.3  
V
V
V
+ 0.3  
+ 0.3  
+ 0.3  
LO  
CC  
CC  
V
IN  
Logic input voltage  
V
- 0.3  
V
SS  
CC  
V
Logic ground (IR21064 only)  
V
- 25  
V
CC  
SS  
dV /dt  
S
Allowable offset supply voltage transient  
50  
V/ns  
W
P
D
Package power dissipation @ T +25°C  
(8 lead PDIP)  
1.0  
A
(8 lead SOIC)  
(14 lead PDIP)  
(14 lead SOIC)  
(8 lead PDIP)  
(8 lead SOIC)  
(14 lead PDIP)  
(14 lead SOIC)  
-50  
0.625  
1.6  
1.0  
Rth  
Thermal resistance, junction to ambient  
125  
200  
75  
JA  
°C/W  
°C  
120  
150  
150  
300  
T
T
Junction temperature  
J
Storage temperature  
S
T
L
Lead temperature (soldering, 10 seconds)  
2
www.irf.com  
( )  
S
IR2106(4)  
Recommended Operating Conditions  
The Input/Output logic timing diagram is shown in figure 1. For proper operation the device should be used within the  
recommended conditions. The V and V offset rating are tested with all supplies biased at 15V differential.  
S
SS  
Symbol  
Definition  
Min.  
S
Max.  
Units  
VB  
High side floating supply absolute voltage IR2106(4)  
High side floating supply offset voltage  
High side floating output voltage  
Low side and logic fixed supply voltage IR2106(4)  
Low side output voltage  
V
+ 10  
V + 20  
S
V
Note 1  
600  
S
V
HO  
V
V
B
S
V
CC  
10  
0
20  
V
V
V
CC  
LO  
V
Logic input voltage  
V
V
IN  
SS  
-5  
CC  
V
Logic ground (IR21064 only)  
5
SS  
T
A
Ambient temperature  
-40  
125  
°C  
Note 1: Logic operational for V of -5 to +600V. Logic state held for V of -5V to -V . (Please refer to the Design Tip  
S
S
BS  
DT97-3 for more details).  
Dynamic Electrical Characteristics  
V
(V , V ) = 15V, V = COM, C = 1000 pF, T = 25°C.  
L A  
SS  
BIAS CC BS  
Symbol  
Definition  
Min. Typ. Max. Units Test Conditions  
t
Turn-on propagation delay  
Turn-off propagation delay  
Delay matching, HS & LS turn-on/off  
Turn-on rise time  
220  
200  
0
300  
280  
30  
V = 0V  
S
on  
t
V
S
= 0V or 600V  
off  
MT  
nsec  
t
t
150  
50  
220  
80  
V
V
= 0V  
= 0V  
r
S
S
Turn-off fall time  
f
www.irf.com  
3
( )  
S
IR2106(4)  
Static Electrical Characteristics  
V
(V , V ) = 15V, V = COM and T = 25°C unless otherwise specified. The V , V and I parameters are  
CC BS SS A IL IH IN  
BIAS  
referenced to V /COM and are applicable to the respective input leads. The V , I and Ron parameters are referenced to  
SS  
O O  
COM and are applicable to the respective output leads: HO and LO.  
Symbol  
Definition  
Logic “1” input voltage (IR2106(4))  
Min. Typ. Max. Units Test Conditions  
2.9  
VCC = 10V to 20V  
V
IH  
VCC = 10V to 20V  
V
Logic “0” input voltage (IR2106(4))  
20  
60  
0.8  
1.4  
0.6  
50  
IL  
V
V
OH  
High level output voltage, V  
- V  
0.8  
0.3  
I
I
= 20 mA  
= 20 mA  
BIAS  
O
O
V
Low level output voltage, V  
O
OL  
LK  
O
I
Offset supply leakage current  
Quiescent V supply current  
V = V = 600V  
B S  
I
75  
130  
180  
V
= 0V or 5V  
= 0V or 5V  
QBS  
QCC  
BS  
IN  
IN  
I
Quiescent V  
supply current  
120  
V
CC  
µA  
I
Logic “1” input bias current  
VIN = 5V (IR2106(4))  
Logic “0” input bias current  
VIN = 0V (IR2106(4))  
and V supply undervoltage positive going  
IN+  
5
20  
I
IN-  
2
V
V
CC  
8.0  
8.9  
9.8  
CCUV+  
BS  
V
threshold  
BSUV+  
V
V
and V supply undervoltage negative going  
7.4  
0.3  
8.2  
0.7  
9.0  
CCUV-  
CC  
BS  
V
V
threshold  
BSUV-  
V
Hysteresis  
CCUVH  
V
BSUVH  
I
Output high short circuit pulsed current  
Output low short circuit pulsed current  
120  
250  
200  
350  
V = 0V,  
O
O+  
PW 10 µs  
= 15V,  
mA  
I
V
O
O-  
PW 10 µs  
4
www.irf.com  
( )  
S
IR2106(4)  
Functional Block Diagrams  
VB  
UV  
IR2106  
DETECT  
HO  
R
R
S
Q
PULSE  
FILTER  
HV  
LEVEL  
SHIFTER  
VSS/COM  
VS  
HIN  
LEVEL  
SHIFT  
PULSE  
GENERATOR  
VCC  
LO  
UV  
DETECT  
VSS/COM  
LEVEL  
LIN  
DELAY  
COM  
SHIFT  
VB  
UV  
IR21064  
DETECT  
HO  
R
R
S
Q
PULSE  
FILTER  
HV  
LEVEL  
SHIFTER  
VSS/COM  
LEVEL  
VS  
HIN  
PULSE  
SHIFT  
GENERATOR  
VCC  
LO  
UV  
DETECT  
VSS/COM  
LEVEL  
LIN  
DELAY  
COM  
SHIFT  
VSS  
www.irf.com  
5
( )  
S
IR2106(4)  
Lead Definitions  
Symbol Description  
HIN  
LIN  
Logic input for high side gate driver output (HO), in phase  
Logic input for low side gate driver output (LO), in phase  
Logic Ground (IR21064 only)  
High side floating supply  
VSS  
V
B
HO  
High side gate drive output  
V
V
High side floating supply return  
Low side and logic fixed supply  
Low side gate drive output  
S
CC  
LO  
COM  
Low side return  
Lead Assignments  
V
V
B
1
2
3
4
V
1
2
3
4
V
CC  
B
8
7
8
CC  
HO  
HO  
HIN  
LIN  
HIN  
LIN  
7
6
5
V
S
V
S
6
5
LO  
LO  
COM  
COM  
8 Lead PDIP  
8 Lead SOIC  
IR2106  
IR2106S  
14  
13  
12  
11  
10  
9
14  
1
V
CC  
1
2
3
4
5
6
7
V
CC  
V
V
13  
12  
11  
10  
9
2
3
4
5
6
7
HIN  
LIN  
HIN  
LIN  
B
B
HO  
HO  
V
S
V
S
VSS  
COM  
LO  
VSS  
COM  
LO  
8
8
14 Lead PDIP  
14 Lead SOIC  
IR21064  
IR21064S  
6
www.irf.com  
( )  
S
IR2106(4)  
HIN  
LIN  
HO  
LO  
Figure 1. Input/Output Timing Diagram  
50%  
50%  
HIN  
LIN  
t
on  
t
t
f
t
off  
r
90%  
90%  
HO  
LO  
10%  
10%  
Figure 2. Switching Time Waveform Definitions  
50%  
50%  
HIN  
LIN  
LO  
HO  
10%  
MT  
MT  
90%  
LO  
HO  
Figure 3. Delay Matching Waveform Definitions  
www.irf.com  
7
( )  
S
IR2106(4)  
500  
400  
500  
400  
300  
200  
100  
0
M ax.  
Typ.  
300  
M ax  
200  
Typ.  
100  
0
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (oC)  
VBIAS Supply Voltage (V)  
Figure 4A. Turn-on Propagation Delay  
vs. Temperature  
Figure 4B. Turn-on Propagation Delay  
vs. Supply Voltage  
500  
400  
300  
200  
100  
0
500  
400  
300  
200  
100  
0
M ax.  
Typ.  
M ax.  
Typ.  
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (oC)  
VBIAS Supply Voltage (V)  
Figure 5A. Turn-off Propagation Delay  
vs. Temperature  
Figure 5B. Turn-off Propagation Delay  
vs. Supply Voltage  
8
www.irf.com  
( )  
S
IR2106(4)  
500  
400  
300  
500  
400  
300  
200  
100  
0
M ax.  
Typ.  
200  
100  
0
M ax.  
Typ.  
10  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
VBIAS Supply Voltage (V)  
Figure 6A. Turn-on Rise Time  
vs. Temperature  
Figure 6B. Turn-on Rise Time  
vs. Supply Voltage  
200  
200  
150  
100  
50  
150  
100  
M ax.  
M ax.  
Typ.  
Typ.  
50  
0
0
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (oC)  
VBIAS Supply Voltage (V)  
Figure 7A. Turn-off Fall Time  
vs. Temperature  
Figure 7B. Turn-off Fall Time  
vs. Supply Voltage  
www.irf.com  
9
( )  
S
IR2106(4)  
8
7
6
5
4
8
7
6
5
4
3
2
M ax.  
3
M ax.  
2
1
0
1
0
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (oC)  
VCC Supply Voltage (V)  
Figure 8A. Logic “1” Input Voltage  
vs. Temperature  
Figure 8B. Logic “1” Input Voltage  
vs. Supply Voltage  
4.0  
4.0  
3.2  
3.2  
2.4  
1.6  
0.8  
0.0  
2.4  
1.6  
M in.  
M in.  
0.8  
0.0  
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (oC)  
VCC Supply Voltage (V)  
Figure 9A. Logic “0” Input Voltage  
vs. Temperature  
Figure 9B. Logic “0” Input Voltage  
vs. Supply Voltage  
10  
www.irf.com  
( )  
S
IR2106(4)  
4
4
3
2
1
0
3
2
M ax.  
Typ.  
M ax.  
Typ.  
1
0
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (oC)  
VBIAS Supply Voltage (V)  
Figure 10A. High Level Output Voltage  
vs. Temperature  
Figure 10B. High Level Output Voltage  
vs. Supply Voltage  
1.5  
1.2  
0.9  
1.5  
1.2  
0.9  
0.6  
0.3  
0
Max.  
Typ.  
0.6  
0.3  
0
M ax.  
Typ.  
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (oC)  
VBIAS Supply Voltage (V)  
Fi  
11A L  
L
l O
 
t  
t
Figure 11A. Low Level Output Voltage  
vs. Temperature  
Figure 11B. Low Level Output Voltage  
vs. Supply Voltage  
www.irf.com  
11  
( )  
S
IR2106(4)  
500  
400  
300  
500  
400  
300  
200  
100  
0
200  
100  
M ax.  
0
M ax.  
-50  
-25  
0
25  
50  
75  
100  
125  
0
100  
200  
300  
400  
500  
600  
Temperature (oC)  
VB Boost Voltage (V)  
Figure 12A. Offset Supply Leakage Current  
vs. Temperature  
Figure 12B. Offset Supply Leakage Current  
vs. Supply Voltage  
400  
300  
400  
300  
200  
100  
0
200  
100  
0
M ax.  
Typ.  
M ax.  
Typ.  
M in.  
M in.  
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (oC)  
Figure 13A. V Supply Current  
VBS Supply Voltage (V)  
Figure 13B. V  
BS  
Supply Current  
BS  
vs. Temperature  
vs. Supply Voltage  
12  
www.irf.com  
( )  
S
IR2106(4)  
400  
300  
200  
100  
0
400  
300  
M ax.  
200  
100  
M ax.  
Typ.  
M in.  
Typ.  
M in.  
0
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
o
Tem perature  
(
C)  
VCC Supply Voltage (V)  
Figure 14A. Quiescent V  
Supply Current  
Figure 14B. Quiescent V  
Supply Current  
CC  
CC  
vs. Temperature  
vs. V  
Supply Voltage  
CC  
60  
50  
40  
30  
20  
60  
50  
40  
30  
20  
10  
0
M ax.  
Typ.  
M ax.  
Typ.  
10  
0
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (oC)  
VCC Supply Voltage (V)  
Figure 15A. Logic “1” Input Current  
vs. Temperature  
Figure 15B. Logic “1” Bias Current  
vs. Supply Voltage  
www.irf.com  
13  
( )  
S
IR2106(4)  
5
4
3
2
1
0
5
4
3
M ax.  
M ax.  
2
1
0
10  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
VCC Supply Voltage (V)  
Temperature (oC)  
Fi  
16B L
 
i "0"
 
I  
C
Figure 16A. Logic “0” Input Current  
vs. Temperature  
Figure 16B. Logic “0” Input Currentt  
vs. Supply Voltage  
12  
11  
11  
10  
9
10  
9
M ax.  
Typ.  
M ax.  
Typ.  
M in.  
8
M in.  
8
7
7
6
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Figure 18. V  
Undervoltage Threshold (-)  
CC  
vs. Temperature  
Figure 17. V  
Undervoltage Threshold (+)  
CC  
vs. Temperature  
14  
www.irf.com  
( )  
S
IR2106(4)  
12  
11  
10  
9
11  
10  
9
M ax.  
M ax.  
Typ.  
Typ.  
M in.  
8
M in.  
7
8
6
7
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Figure 19. V  
Undervoltage Threshold (+)  
Figure 20. V  
Undervoltage Threshold (-)  
BS  
BS  
vs. Temperature  
vs. Temperature  
500  
500  
400  
300  
200  
100  
0
400  
300  
Typ.  
M in.  
200  
100  
0
Typ.  
M in.  
10  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
VBIAS Supply Voltage (V)  
Figure 21A. Output Source Current  
vs. Temperature  
Figure 21B. Output Source Current  
vs. Supply Voltage  
www.irf.com  
15  
( )  
S
IR2106(4)  
600  
600  
500  
500  
Typ.  
400  
400  
300  
200  
M in.  
300  
Typ.  
M in.  
200  
100  
0
100  
0
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (oC)  
VBIAS Supply Voltage (V)  
Figure 22A. Output Sink Current  
vs. Temperature  
Figure 22B. Output Sink Currentt  
vs. Supply Voltage  
0
-2  
140  
120  
100  
80  
Typ.  
-4  
140V  
70V  
0V  
-6  
60  
40  
-8  
20  
-10  
1
10  
100  
1000  
10  
12  
14  
16  
18  
20  
VBS Floating Supply Voltage (V)  
Frequency (KHz)  
Figure 23. Maximum V Negative Offset  
S
Figure 24. IR2106 vs. Frequency (IRFBC20),  
vs. Supply Voltage  
Rgate=33, VCC=15V  
16  
www.irf.com  
( )  
S
IR2106(4)  
140  
120  
100  
80  
140  
120  
100  
80  
140V  
140V  
70V  
0V  
70V  
0V  
60  
60  
40  
40  
20  
20  
1
10  
100  
1000  
1
10  
100  
1000  
Frequency (KHz)  
Frequency (KHz)  
Figure 25. IR2106 vs. Frequency (IRFBC30),  
Figure 26. IR2106 vs. Frequency (IRFBC40),  
Rgate=22 , VCC=15V  
Rgate=15 , VCC=15V  
140V 70V  
0V  
140  
120  
100  
80  
140  
120  
100  
80  
60  
140V  
70V  
60  
40  
40  
0V  
20  
20  
1
10  
100  
1000  
1
10  
100  
1000  
Frequency (KHz)  
Frequency (KHz)  
Figure 28. IR21064 vs. Frequency (IRFBC20),  
Rgate=33 , VCC=15V  
Figure 27. IR2106 vs. Frequency (IRFPE50),  
Rgate=10 , VCC=15V  
www.irf.com  
17  
( )  
S
IR2106(4)  
140  
120  
100  
80  
140  
120  
100  
80  
140V  
70V  
0V  
140V  
70V  
0V  
60  
60  
40  
40  
20  
20  
1
1
10  
100  
1000  
10  
100  
1000  
Frequency (KHz)  
Frequency (KHz)  
Figure 29. IR21064 vs. Frequency (IRFBC30),  
Figure 30. IR21064 vs. Frequency (IRFBC40),  
Rgate=22 , VCC=15V  
Rgate=15 , VCC=15V  
140V  
70V  
140  
140  
120  
100  
80  
120  
100  
80  
0V  
140V  
70V  
0V  
60  
60  
40  
40  
20  
20  
1
10  
100  
1000  
1
10  
100  
1000  
Frequency (KHz)  
Frequency (KHz)  
Figure 32. IR2106S vs. Frequency (IRFBC20),  
Figure 31. IR21064 vs. Frequency (IRFPE50),  
Rgate=33 , VCC=15V  
R
gate
=10 , V
CC
=15V  
18  
www.irf.com  
( )  
S
IR2106(4)  
140V70V  
140  
120  
100  
80  
140  
120  
100  
80  
140V  
70V  
0V  
0V  
60  
60  
40  
40  
20  
20  
1
10  
Frequency (KHz)  
Figure 34. IR2106S vs. Frequency (IRFBC40),  
100  
1000  
1
10  
100  
1000  
Frequency (KHz)  
Figure 33. IR2106S vs. Frequency (IRFBC30),  
Rgate=15 , VCC=15V  
Rgate=22 , VCC=15V  
140V70V 0V  
140  
120  
100  
80  
140  
120  
100  
80  
60  
60  
140V  
70V  
0V  
40  
40  
20  
20  
1
10  
100  
1000  
1
10  
100  
1000  
Frequency (KHz)  
Frequency (KHz)  
Figure 35. IR2106S vs. Frequency  
Figure 36. IR21064S vs. Frequency (IRFBC20),  
(IRFPE50), Rgate=10 , VCC=15V  
Rgate=33 , VCC=15V  
www.irf.com  
19  
( )  
S
IR2106(4)  
140  
120  
100  
80  
140  
120  
100  
80  
140V  
70V  
0V  
140V  
70V  
0V  
60  
60  
40  
40  
20  
20  
1
1
10  
100  
1000  
10  
100  
1000  
Frequency (KHz)  
Frequency (KHz)  
Figure 37. IR21064S vs. Frequency (IRFBC30),  
Figure 38. IR21064S vs. Frequency (IRFBC40),  
Rgate=22 , VCC=15V  
Rgate=15 , VCC=15V  
140V70V  
0V  
140  
120  
100  
80  
60  
40  
20  
1
10  
100  
1000  
Frequency (KHz)  
Figure 39. IR21064S vs. Frequency (IRFPE50),  
Rgate=10 , VCC=15V  
20  
www.irf.com  
( )  
S
IR2106(4)  
Case Outlines  
01-6014  
01-3003 01 (MS-001AB)  
8 Lead PDIP  
IN C HES  
MIN MAX  
.0532 .0688  
MILLIMETERS  
DIM  
A
D
B
MIN  
1.35  
0.10  
0.33  
0.19  
4.80  
3.80  
MAX  
1.75  
0.25  
0.51  
0.25  
5.00  
4.00  
FOOTPRINT  
8X 0.72 [.028]  
5
A
A1 .0040 .0098  
b
c
D
E
e
.013  
.0075 .0098  
.189 .1968  
.020  
8
1
7
2
6
3
5
6
H
E
.1497 .1574  
.050 BASIC  
0.25 [.010]  
A
1.27 BASIC  
0.635 BASIC  
6.46 [.255]  
4
e 1 .025 BASIC  
H
K
L
.2284 .2440  
.0099 .0196  
5.80  
0.25  
0.40  
0°  
6.20  
0.50  
1.27  
8°  
.016  
0°  
.050  
8°  
3X 1.27 [.050]  
e
6X  
8X 1.78 [.070]  
y
e1  
A
K x 45°  
A
C
y
0.10 [.004]  
8X c  
8X L  
A1  
B
8X b  
7
0.25 [.010]  
C
NOTES:  
5
6
7
DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.  
MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].  
DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.  
MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].  
DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO  
A SUBSTRATE.  
1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.  
2. C O NTRO LL ING DIM EN SIO N: M ILL IM ETER  
3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].  
4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.  
01-6027  
01-0021 11 (MS-012AA)  
8 Lead SOIC  
www.irf.com  
21  
( )  
S
IR2106(4)  
01-6010  
01-3002 03 (MS-001AC)  
14 Lead PDIP  
01-6019  
01-3063 00 (MS-012AB)  
14 Lead SOIC (narrow body)  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105  
Data and specifications subject to change without notice. 1/27/2004  
22  
www.irf.com  

相关型号:

IR2301PBF

HIGH AND LOW SIDE DRIVER
INFINEON

IR2301S

HIGH AND LOW SIDE DRIVER
INFINEON

IR2301SPBF

HIGH AND LOW SIDE DRIVER
INFINEON

IR2301STR

MOSFET Driver, CMOS, PDSO8
INFINEON

IR2301STRPBF

Half Bridge Based MOSFET Driver, 0.35A, CMOS, PDSO8, SOIC-8
INFINEON

IR2302

HIGH AND LOW SIDE DRIVER
INFINEON

IR2302PBF

HALF-BRIDGE DRIVER
INFINEON

IR2302S

HALF-BRIDGE DRIVER
INFINEON

IR2302SPBF

HIGH AND LOW SIDE DRIVER
INFINEON

IR2302STRPBF

Gate drive supply range from 5 to 20V
INFINEON

IR2302_15

HALF-BRIDGE DRIVER
INFINEON

IR2304

HIGH AND LOW SIDE DRIVER
INFINEON