IRF3305 [INFINEON]

AUTOMOTIVE MOSFET; 汽车MOSFET
IRF3305
型号: IRF3305
厂家: Infineon    Infineon
描述:

AUTOMOTIVE MOSFET
汽车MOSFET

文件: 总9页 (文件大小:239K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 95879  
AUTOMOTIVE MOSFET  
IRF3305  
Features  
HEXFET® Power MOSFET  
O
Designed to support Linear Gate Drive  
Applications  
D
O
O
O
O
175°C Operating Temperature  
VDSS = 55V  
Low Thermal Resistance Junction - Case  
Rugged Process Technology and Design  
Fully Avalanche Rated  
RDS(on) = 8.0mΩ  
G
Description  
ID = 75A  
Specificallydesignedforuseinlinear automotive  
applicationsthisHEXFETPowerMOSFETutilizes  
a rugged planar process technology and device  
design,whichgreatlyimprovestheSafeOperating  
Area(SOA)ofthedevice.Thesefeatures,coupled  
with 175°C junction operating temperature and  
low thermal resistance of 0.45C/W make the  
IRF3305 an ideal device for linear automotive  
applications.  
S
TO-220AB  
Absolute Maximum Ratings  
Parameter  
Max.  
Units  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V (Package Limited)  
Pulsed Drain Current  
I
I
I
I
@ T = 25°C  
140  
D
D
D
C
@ T = 100°C  
99  
75  
A
C
@ T = 25°C  
C
560  
330  
DM  
P
@T = 25°C Power Dissipation  
W
D
C
Linear Derating Factor  
Gate-to-Source Voltage  
Single Pulse Avalanche Energy  
2.2  
± 20  
W/°C  
V
V
GS  
EAS (Thermally limited)  
470  
860  
mJ  
Single Pulse Avalanche Energy Tested Value  
Avalanche Current  
EAS (Tested )  
IAR  
See Fig.12a, 12b, 15, 16  
A
Repetitive Avalanche Energy  
Operating Junction and  
EAR  
mJ  
T
T
-55 to + 175  
J
Storage Temperature Range  
°C  
STG  
Soldering Temperature, for 10 seconds  
Mounting Torque, 6-32 or M3 screw  
300 (1.6mm from case )  
10 lbf in (1.1N m)  
Thermal Resistance  
Parameter  
Typ.  
–––  
Max.  
0.45  
–––  
62  
Units  
Junction-to-Case  
RθJC  
RθCS  
RθJA  
Case-to-Sink, Flat, Greased Surface  
Junction-to-Ambient  
0.50  
–––  
°C/W  
www.irf.com  
1
7/2/04  
IRF3305  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Drain-to-Source Breakdown Voltage  
Min. Typ. Max. Units  
55 ––– –––  
Conditions  
VGS = 0V, ID = 250µA  
V(BR)DSS  
V
V(BR)DSS/TJ Breakdown Voltage Temp. Coefficient ––– 0.055 ––– V/°C Reference to 25°C, ID = 1mA  
mΩ  
V
RDS(on)  
VGS(th)  
gfs  
Static Drain-to-Source On-Resistance  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
8.0  
4.0  
–––  
25  
VGS = 10V, ID = 75A  
Gate Threshold Voltage  
2.0  
VDS = VGS, ID = 250µA  
VDS = 25V, ID = 75A  
Forward Transconductance  
41  
S
IDSS  
Drain-to-Source Leakage Current  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
µA VDS = 55V, VGS = 0V  
250  
200  
V
DS = 55V, VGS = 0V, TJ = 125°C  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Total Gate Charge  
nA VGS = 20V  
––– -200  
V
GS = -20V  
ID = 75A  
VDS = 44V  
Qg  
Qgs  
Qgd  
td(on)  
tr  
100  
21  
45  
16  
88  
43  
34  
4.5  
150  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Turn-On Delay Time  
nC  
ns  
VGS = 10V  
VDD = 28V  
ID = 75A  
Rise Time  
td(off)  
tf  
Turn-Off Delay Time  
RG = 2.6 Ω  
VGS = 10V  
Fall Time  
LD  
Internal Drain Inductance  
Between lead,  
nH 6mm (0.25in.)  
from package  
LS  
Internal Source Inductance  
–––  
7.5  
–––  
and center of die contact  
VGS = 0V  
DS = 25V  
pF ƒ = 1.0MHz  
Ciss  
Coss  
Crss  
Coss  
Coss  
Input Capacitance  
––– 3650 –––  
––– 1230 –––  
Output Capacitance  
V
Reverse Transfer Capacitance  
Output Capacitance  
–––  
––– 4720 –––  
––– 930 –––  
450  
–––  
V
V
V
GS = 0V, VDS = 1.0V, ƒ = 1.0MHz  
Output Capacitance  
GS = 0V, VDS = 44V, ƒ = 1.0MHz  
GS = 0V, VDS = 0V to 44V  
Coss eff.  
Effective Output Capacitance  
––– 1490 –––  
Source-Drain Ratings and Characteristics  
Parameter  
Min. Typ. Max. Units  
Conditions  
MOSFET symbol  
I
Continuous Source Current  
–––  
–––  
75  
S
(Body Diode)  
A
showing the  
I
Pulsed Source Current  
–––  
–––  
560  
integral reverse  
SM  
(Body Diode)  
p-n junction diode.  
V
Diode Forward Voltage  
Reverse Recovery Time  
Reverse Recovery Charge  
Forward Turn-On Time  
–––  
–––  
–––  
–––  
57  
1.3  
86  
V
T = 25°C, I = 75A, V = 0V  
SD  
J S GS  
t
ns T = 25°C, I = 75A, VDD = 28V  
J F  
rr  
di/dt = 100A/µs  
Q
130  
190  
nC  
rr  
t
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
on  
Notes:  
„ Coss eff. is a fixed capacitance that gives the same charging time  
 Repetitive rating; pulse width limited by  
max. junction temperature. (See fig. 11).  
as Coss while VDS is rising from 0 to 80% VDSS  
.
‚ Limited by TJmax, starting TJ = 25°C, L = 0.17mH  
†
Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive  
avalanche performance.  
RG = 25, IAS = 75A, VGS =10V. Part not  
recommended for use above this value.  
ƒ Pulse width 1.0ms; duty cycle 2%.  
„ Coss eff. is a fixed capacitance that gives the  
same charging time as Coss while VDS is rising  
This value determined from sample failure population. 100%  
tested to this value in production.  
‡ Rθ is measured at TJ of approximately 90°C.  
from 0 to 80% VDSS  
.
2
www.irf.com  
IRF3305  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
4.5V  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
4.5V  
TOP  
TOP  
BOTTOM  
BOTTOM  
4.5V  
4.5V  
60µs PULSE WIDTH  
60µs PULSE WIDTH  
Tj = 175°C  
Tj = 25°C  
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000.0  
80  
T
= 25°C  
J
100.0  
10.0  
1.0  
60  
40  
20  
0
T
= 175°C  
J
T
= 175°C  
J
T
= 25°C  
J
V
= 25V  
DS  
60µs PULSE WIDTH  
V
= 10V  
DS  
380µs PULSE WIDTH  
0.1  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
0
20  
40  
60  
80  
100 120 140  
V
, Gate-to-Source Voltage (V)  
GS  
I
Drain-to-Source Current (A)  
D,  
Fig 3. Typical Transfer Characteristics  
Fig 4. Typical Forward Transconductance  
Vs. Drain Current  
www.irf.com  
3
IRF3305  
7000  
V
20  
16  
12  
8
= 0V,  
f = 1 MHZ  
GS  
I = 75A  
D
V
= 44V  
C
= C + C , C SHORTED  
DS  
VDS= 28V  
iss  
gs  
gd ds  
6000  
5000  
4000  
3000  
2000  
1000  
0
C
= C  
rss  
gd  
C
= C + C  
ds  
oss  
gd  
Ciss  
Coss  
Crss  
4
0
0
40  
80  
120  
160  
1
10  
100  
Q
Total Gate Charge (nC)  
G
V
, Drain-to-Source Voltage (V)  
DS  
Fig 6. Typical Gate Charge Vs.  
Fig 5. Typical Capacitance Vs.  
Gate-to-Source Voltage  
Drain-to-Source Voltage  
1000.0  
100.0  
10.0  
1.0  
10000  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
T
= 175°C  
J
100µsec  
1msec  
T
J
= 25°C  
1
Tc = 25°C  
Tj = 175°C  
Single Pulse  
10msec  
DC  
V
= 0V  
GS  
0.1  
0.1  
0.0  
0.4  
V
0.8  
1.2  
1.6  
2.0  
2.4  
1
10  
100  
1000  
V
, Drain-toSource Voltage (V)  
, Source-to-Drain Voltage (V)  
DS  
SD  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
4
www.irf.com  
IRF3305  
2.5  
2.0  
1.5  
1.0  
0.5  
140  
120  
100  
80  
I
= 75A  
LIMITED BY PACKAGE  
D
V
= 10V  
GS  
60  
40  
20  
0
25  
50  
75  
100  
125  
150  
175  
-60 -40 -20  
0
20 40 60 80 100 120 140 160 180  
T
, Case Temperature (°C)  
C
T
, Junction Temperature (°C)  
J
Fig 10. Normalized On-Resistance  
Fig 9. Maximum Drain Current Vs.  
Vs. Temperature  
Case Temperature  
1
D = 0.50  
0.1  
0.20  
0.10  
0.05  
R1  
R1  
R2  
R2  
R3  
R3  
Ri (°C/W) τi (sec)  
0.1758 0.00045  
0.01  
0.001  
0.02  
0.01  
τ
JτJ  
τ
τ
Cτ  
τ
1τ1  
τ
2 τ2  
3τ3  
0.228  
0.004565  
0.0457 0.01858  
Ci= τi/Ri  
τ /  
Notes:  
SINGLE PULSE  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
( THERMAL RESPONSE )  
0.0001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
www.irf.com  
5
IRF3305  
2000  
1600  
1200  
800  
400  
0
15V  
I
D
TOP  
18A  
26A  
75A  
DRIVER  
+
L
V
BOTTOM  
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
20V  
GS  
0.01  
t
p
Fig 12a. Unclamped Inductive Test Circuit  
V
(BR)DSS  
t
p
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
I
AS  
Fig 12c. Maximum Avalanche Energy  
Fig 12b. Unclamped Inductive Waveforms  
Vs. Drain Current  
Q
G
10 V  
Q
Q
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
GS  
GD  
I
I
I
= 5.0A  
= 1.0A  
= 250µA  
D
D
D
V
G
Charge  
Fig 13a. Basic Gate Charge Waveform  
L
VCC  
DUT  
0
-75 -50 -25  
0
25 50 75 100 125 150 175  
, Temperature ( °C )  
1K  
T
J
Fig 14. Threshold Voltage Vs. Temperature  
Fig 13b. Gate Charge Test Circuit  
6
www.irf.com  
IRF3305  
10000  
1000  
100  
10  
Duty Cycle = Single Pulse  
Allowed avalanche Current vs  
avalanche pulsewidth, tav  
assuming Tj = 25°C due to  
avalanche losses. Note: In no  
case should Tj be allowed to  
exceed Tjmax  
0.01  
0.05  
0.10  
1
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 15. Typical Avalanche Current Vs.Pulsewidth  
500  
Notes on Repetitive Avalanche Curves , Figures 15, 16:  
TOP  
BOTTOM 1% Duty Cycle  
= 75A  
Single Pulse  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a  
temperature far in excess of Tjmax. This is validated for  
every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is  
not exceeded.  
3. Equation below based on circuit and waveforms shown in  
Figures 12a, 12b.  
4. PD (ave) = Average power dissipation per single  
avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for  
voltage increase during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed  
Tjmax (assumed as 25°C in Figure 15, 16).  
tav = Average time in avalanche.  
I
400  
300  
200  
100  
0
D
25  
50  
75  
100  
125  
150  
175  
D = Duty cycle in avalanche = tav ·f  
ZthJC(D, tav) = Transient thermal resistance, see figure 11)  
Starting T , Junction Temperature (°C)  
J
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
Iav = 2DT/ [1.3·BV·Zth]  
Fig 16. Maximum Avalanche Energy  
EAS (AR) = PD (ave)·tav  
Vs. Temperature  
www.irf.com  
7
IRF3305  
Driver Gate Drive  
P.W.  
P.W.  
Period  
D.U.T  
Period  
D =  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Curent  
I
SD  
Ripple  
5%  
* VGS = 5V for Logic Level Devices  
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
RD  
VDS  
VGS  
D.U.T.  
RG  
+VDD  
-
10V  
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
Fig 18a. Switching Time Test Circuit  
V
DS  
90%  
10%  
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 18b. Switching Time Waveforms  
8
www.irf.com  
IRF3305  
TO-220AB Package Outline  
Dimensions are shown in millimeters (inches)  
10.54 (.415)  
10.29 (.405)  
- B -  
3.78 (.149)  
3.54 (.139)  
2.87 (.113)  
2.62 (.103)  
4.69 (.185)  
4.20 (.165)  
1.32 (.052)  
1.22 (.048)  
- A -  
6.47 (.255)  
6.10 (.240)  
4
15.24 (.600)  
14.84 (.584)  
1.15 (.045)  
MIN  
LEAD ASSIGNMENTS  
1 - GATE  
1
2
3
2 - DRAIN  
3 - SOURCE  
4 - DRAIN  
14.09 (.555)  
13.47 (.530)  
4.06 (.160)  
3.55 (.140)  
0.93 (.037)  
0.69 (.027)  
0.55 (.022)  
0.46 (.018)  
3X  
3X  
1.40 (.055)  
3X  
1.15 (.045)  
0.36 (.014)  
M
B A M  
2.92 (.115)  
2.64 (.104)  
2.54 (.100)  
2X  
NOTES:  
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.  
2 CONTROLLING DIMENSION : INCH  
3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB.  
4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.  
TO-220AB Part Marking Information  
EXAMPLE: T HIS IS AN IRF1010  
LOT CODE 1789  
PART NUMBER  
ASS EMBLED ON WW 19, 1997  
IN T HE AS S EMBLY LINE "C"  
INTERNAT IONAL  
RECT IFIER  
LOGO  
Note: "P" in assembly line  
position indicates "Lead-Free"  
DAT E CODE  
YEAR 7 = 1997  
WEEK 19  
AS S EMBLY  
LOT CODE  
LINE C  
TO-220AB package is not recommended for Surface Mount Application.  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Automotive [Q101]market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 07/04  
www.irf.com  
9

相关型号:

IRF3305PBF

HEXFET㈢ Power MOSFET
INFINEON

IRF330EA

Power Field-Effect Transistor, 5.5A I(D), 400V, 1.22ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-204AA
INFINEON

IRF330EBPBF

Power Field-Effect Transistor, 5.5A I(D), 400V, 1.22ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-204AA
INFINEON

IRF330EC

Power Field-Effect Transistor, 5.5A I(D), 400V, 1.22ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-204AA,
INFINEON

IRF330ECPBF

5.5A, 400V, 1.22ohm, N-CHANNEL, Si, POWER, MOSFET, TO-204AA
INFINEON

IRF330ED

Power Field-Effect Transistor, 5.5A I(D), 400V, 1.22ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-204AA
INFINEON

IRF331

N-Channel Power MOSFETs, 5.5A, 350 V/400V
FAIRCHILD

IRF331

N-CHANNEL POWER MOSFETS
SAMSUNG

IRF331

Power Field-Effect Transistor, 5.5A I(D), 350V, 1ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-204
VISHAY

IRF3315

Power MOSFET(Vdss=150V, Rds(on)=0.07ohm, Id=27A)
INFINEON

IRF3315L

Power MOSFET(Vdss=150V, Rds(on)=0.082ohm, Id=21A)
INFINEON

IRF3315LPBF

HEXFET Power MOSFET
INFINEON