IRF6609 [INFINEON]

Power MOSFET; 功率MOSFET
IRF6609
型号: IRF6609
厂家: Infineon    Infineon
描述:

Power MOSFET
功率MOSFET

文件: 总10页 (文件大小:231K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 95822A  
IRF6609  
HEXFET® Power MOSFET  
VDSS  
20V  
RDS(on) max  
2.0m@VGS = 10V  
2.6m@VGS = 4.5V  
Qg  
46nC  
l Low Conduction Losses  
l Low Switching Losses  
l Ideal Synchronous Rectifier MOSFET  
l Low Profile (<0.7 mm)  
l Dual Sided Cooling Compatible  
l Compatible with existing Surface Mount  
Techniques  
DirectFET™ISOMETRIC  
MT  
Applicable DirectFET Outline and Substrate Outline (see p.8,9 for details)  
SQ SX ST MQ MX MT  
Description  
The IRF6609 combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve the  
lowest on-state resistance in a package that has the footprint of an SO-8 and only 0.7 mm profile. The DirectFET package is compatible  
with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering  
techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package  
allows dual sided cooling to maximize thermal transfer in power systems, IMPROVING previous best thermal resistance by 80%.  
The IRF6609 balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and  
switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation  
of processors operating at higher frequencies. The IRF6609 has been optimized for parameters that are critical in synchronous buck  
operating from 12 volt buss converters including Rds(on), gate charge and Cdv/dt-induced turn on immunity. The IRF6609 offers  
particularly low Rds(on) and high Cdv/dt immunity for synchronous FET applications.  
Absolute Maximum Ratings  
Parameter  
Drain-to-Source Voltage  
Max.  
20  
Units  
V
VDS  
V
Gate-to-Source Voltage  
±20  
150  
31  
GS  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
I
I
I
I
@ TC = 25°C  
D
D
D
@ TA = 25°C  
@ TA = 70°C  
A
25  
250  
2.8  
1.8  
89  
DM  
Power Dissipation  
P
P
P
@TA = 25°C  
@TA = 70°C  
@TC = 25°C  
D
D
D
Power Dissipation  
W
Power Dissipation  
Linear Derating Factor  
Operating Junction and  
0.022  
-40 to + 150  
W/°C  
°C  
T
J
T
Storage Temperature Range  
STG  
Thermal Resistance  
Parameter  
Junction-to-Ambient  
Junction-to-Ambient  
Typ.  
–––  
12.5  
20  
Max.  
45  
Units  
RθJA  
RθJA  
–––  
–––  
1.4  
Junction-to-Ambient  
Junction-to-Case  
RθJA  
°C/W  
RθJC  
–––  
1.0  
RθJ-PCB  
Junction-to-PCB Mounted  
–––  
Notes  through ˆare on page 10  
www.irf.com  
1 11/10/04  
IRF6609  
Static @ TJ = 25°C (unless otherwise specified)  
Parameter  
Min. Typ. Max. Units  
Conditions  
BVDSS  
Drain-to-Source Breakdown Voltage  
20  
–––  
–––  
V
VGS = 0V, ID = 250µA  
∆ΒVDSS/TJ  
RDS(on)  
Breakdown Voltage Temp. Coefficient –––  
Static Drain-to-Source On-Resistance –––  
–––  
15  
––– mV/°C Reference to 25°C, ID = 1mA  
mΩ  
1.6  
2.0  
2.6  
VGS = 10V, ID = 31A  
VGS = 4.5V, ID = 25A  
VDS = VGS, ID = 250µA  
2.0  
VGS(th)  
Gate Threshold Voltage  
1.55  
–––  
–––  
–––  
–––  
–––  
91  
–––  
-6.1  
–––  
–––  
–––  
2.45  
V
VGS(th)/TJ  
IDSS  
Gate Threshold Voltage Coefficient  
Drain-to-Source Leakage Current  
––– mV/°C  
1.0  
150  
100  
µA VDS = 16V, VGS = 0V  
VDS = 16V, VGS = 0V, TJ = 150°C  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Forward Transconductance  
Total Gate Charge  
nA  
S
V
GS = 20V  
VGS = -20V  
VDS = 10V, ID = 25A  
––– -100  
gfs  
–––  
46  
15  
4.7  
15  
11  
20  
26  
24  
95  
26  
9.8  
–––  
69  
Qg  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Qsw  
Qoss  
td(on)  
tr  
Pre-Vth Gate-to-Source Charge  
Post-Vth Gate-to-Source Charge  
Gate-to-Drain Charge  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
VDS = 10V  
nC VGS = 4.5V  
ID = 17A  
Gate Charge Overdrive  
See Fig. 17  
Switch Charge (Qgs2 + Qgd)  
Output Charge  
nC VDS = 10V, VGS = 0V  
VDD = 16V, VGS = 4.5V  
ID = 25A  
Turn-On Delay Time  
Rise Time  
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
ns Clamped Inductive Load  
Ciss  
Coss  
Crss  
Input Capacitance  
Output Capacitance  
Reverse Transfer Capacitance  
––– 6290 –––  
––– 1850 –––  
VGS = 0V  
pF VDS = 10V  
ƒ = 1.0MHz  
–––  
860  
–––  
Avalanche Characteristics  
Parameter  
Typ.  
–––  
–––  
Max.  
Units  
mJ  
Single Pulse Avalanche Energy  
EAS  
IAR  
230  
25  
Avalanche Current  
A
Diode Characteristics  
Parameter  
Min. Typ. Max. Units  
Conditions  
IS  
Continuous Source Current  
–––  
–––  
31  
MOSFET symbol  
D
S
(Body Diode)  
Pulsed Source Current  
A
showing the  
integral reverse  
G
ISM  
–––  
–––  
250  
(Body Diode)  
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
–––  
–––  
–––  
0.80  
32  
1.2  
48  
39  
V
T = 25°C, I = 25A, V = 0V  
J S GS  
Reverse Recovery Time  
Reverse Recovery Charge  
ns T = 25°C, I = 25A  
J F  
Qrr  
di/dt = 100A/µs  
26  
nC  
2
www.irf.com  
IRF6609  
1000  
100  
10  
1000  
100  
10  
VGS  
10V  
VGS  
10V  
TOP  
TOP  
7.0V  
4.5V  
4.0V  
3.5V  
3.2V  
2.9V  
2.7V  
7.0V  
4.5V  
4.0V  
3.5V  
3.2V  
2.9V  
2.7V  
BOTTOM  
BOTTOM  
1
2.7V  
1
2.7V  
1
60µs PULSE WIDTH  
Tj = 25°C  
60µs PULSE WIDTH  
Tj = 150°C  
0.1  
1
0.1  
10  
100  
0.1  
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000.0  
1.5  
I
= 31A  
D
V
= 10V  
GS  
100.0  
10.0  
1.0  
T
= 150°C  
J
1.0  
T
= 25°C  
J
V
= 10V  
DS  
60µs PULSE WIDTH  
0.1  
0.5  
2.0  
3.0  
4.0  
5.0  
-60 -40 -20  
T
0
20 40 60 80 100 120 140 160  
V
, Gate-to-Source Voltage (V)  
GS  
, Junction Temperature (°C)  
J
Fig 3. Typical Transfer Characteristics  
Fig 4. Normalized On-Resistance  
vs.Temperature  
www.irf.com  
3
IRF6609  
100000  
V
12  
10  
8
= 0V,  
= C  
f = 1 MHZ  
GS  
I
= 17A  
C
C
C
+ C , C  
SHORTED  
D
V
= 20V  
iss  
gs  
gd  
ds  
DS  
VDS= 10V  
= C  
rss  
oss  
gd  
= C + C  
ds  
gd  
10000  
1000  
100  
Ciss  
6
Coss  
Crss  
4
2
0
0
20  
40  
60  
80  
100  
120  
1
10  
, Drain-to-Source Voltage (V)  
100  
Q
Total Gate Charge (nC)  
G
V
DS  
Fig 6. Typical Gate Charge vs.  
Fig 5. Typical Capacitance vs.  
Gate-to-SourceVoltage  
Drain-to-SourceVoltage  
1000.0  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
100.0  
10.0  
1.0  
T
= 150°C  
J
100µsec  
1
T
= 25°C  
J
Tc = 25°C  
Tj = 150°C  
Single Pulse  
1msec  
V
= 0V  
GS  
10msec  
0.1  
0.1  
0
1
10  
100  
0.0  
0.4  
0.8  
1.2  
1.6  
2.0  
V
, Drain-toSource Voltage (V)  
V
, Source-to-Drain Voltage (V)  
DS  
SD  
Fig 7. Typical Source-Drain Diode  
Fig 8. Maximum Safe Operating Area  
Forward Voltage  
4
www.irf.com  
IRF6609  
2.5  
2.0  
1.5  
1.0  
150  
120  
90  
60  
30  
0
I
= 250µA  
D
-75 -50 -25  
0
25  
50  
75 100 125 150  
25  
50  
75  
100  
125  
150  
T
, Temperature ( °C )  
T
J
, Junction Temperature (°C)  
J
Fig 10. Threshold Voltage vs. Temperature  
Fig 9. Maximum Drain Current vs.  
CaseTemperature  
100  
D = 0.50  
10  
1
0.20  
0.10  
0.05  
0.02  
0.01  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
Ri (°C/W) τi (sec)  
0.1  
0.6784  
17.299  
17.566  
9.4701  
0.00086  
0.57756  
8.94  
τ
τ
J τJ  
τ
Cτ  
τ
1τ1  
τ
τ
2τ2  
3τ3  
4τ4  
0.01  
0.001  
0.0001  
Ci= τi/Ri  
106  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthja + Tc  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
t
, Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient  
www.irf.com  
5
IRF6609  
10  
1000  
800  
600  
400  
200  
0
I
= 31A  
I
D
D
TOP  
11A  
14A  
25A  
8
BOTTOM  
6
4
T
T
= 125°C  
J
J
2
= 25°C  
8.0  
0
2.0  
4.0  
6.0  
10.0  
25  
50  
75  
100  
125  
150  
V
, Gate-to-Source Voltage (V)  
GS  
Starting T , Junction Temperature (°C)  
J
Fig 12. On-Resistance Vs. Gate Voltage  
Fig 13c. Maximum Avalanche Energy  
Vs. DrainCurrent  
15V  
LD  
VDS  
DRIVER  
+
L
V
DS  
+
-
VDD  
D.U.T  
AS  
R
G
V
DD  
-
D.U.T  
I
A
V
2
GS  
VGS  
0.01Ω  
t
p
Pulse Width < 1µs  
Duty Factor < 0.1%  
Fig 13a. Unclamped Inductive Test Circuit  
Fig 14a. Switching Time Test Circuit  
VDS  
V
(BR)DSS  
t
p
90%  
10%  
VGS  
td(on)  
td(off)  
tr  
tf  
I
AS  
Fig 14b. Switching Time Waveforms  
Fig 13b. Unclamped Inductive Waveforms  
6
www.irf.com  
IRF6609  
Driver Gate Drive  
P.W.  
P.W.  
D =  
Period  
D.U.T  
Period  
+
*
=10V  
V
GS  
ƒ
CircuitLayoutConsiderations  
LowStrayInductance  
Ground Plane  
LowLeakageInductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dtcontrolledbyRG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Curent  
I
SD  
Ripple  
5%  
* VGS = 5V for Logic Level Devices  
Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
Id  
Current Regulator  
Same Type as D.U.T.  
Vds  
Vgs  
50KΩ  
.2µF  
.3µF  
12V  
+
V
DS  
D.U.T.  
-
Vgs(th)  
V
GS  
3mA  
I
I
D
G
Qgs1  
Qgs2  
Qgd  
Qgodr  
Current Sampling Resistors  
Fig 17. Gate Charge Waveform  
Fig 16. Gate Charge Test Circuit  
www.irf.com  
7
IRF6609  
DirectFET™ Outline Dimension, MT Outline  
(Medium Size Can, T-Designation).  
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.  
This includes all recommendations for stencil and substrate designs.  
DIMENSIONS  
IMPERIAL  
METRIC  
MAX  
MIN  
CODE MIN  
MAX  
0.250  
0.199  
0.156  
0.018  
0.032  
0.036  
0.072  
0.040  
0.026  
0.039  
0.104  
0.028  
0.003  
0.006  
6.35  
5.05  
3.95  
0.45  
0.82  
0.92  
1.82  
A
B
C
D
E
F
0.246  
0.189  
0.152  
0.014  
0.031  
0.035  
0.070  
6.25  
4.80  
3.85  
0.35  
0.78  
0.88  
1.78  
0.98  
0.63  
O.88  
2.46  
0.59  
0.03  
0.11  
NOTE: CONTROLLING  
DIMENSIONS ARE IN MM  
G
H
J
1.02 0.039  
0.67  
1.01  
2.63  
0.025  
0.035  
0.097  
K
L
0.70 0.023  
M
N
P
0.08  
0.14  
0.001  
0.004  
8
www.irf.com  
IRF6609  
DirectFET™ Substrate and PCB Layout, MT Outline  
(Medium Size Can, T-Designation).  
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.  
This includes all recommendations for stencil and substrate designs.  
1- Drain  
2- Drain  
3- Source  
4- Source  
5- Gate  
6- Drain  
7- Drain  
1
2
6
7
3
4
5
DirectFET™ Tape & Reel Dimension  
(Showing component orientation).  
NOTE: Controlling dimensions in mm  
Std reel quantity is 4800 parts. (ordered as IRF6618). For 1000 parts on 7" reel,  
order IRF6618TR1  
REEL DIMENSIONS  
STANDARD OPTION (QTY 4800)  
TR1 OPTION (QTY 1000)  
METRIC  
MAX  
IMPERIAL  
METRIC  
MIN MAX  
IMPERIAL  
CODE  
MIN  
MAX  
N.C  
MIN  
6.9  
MAX  
N.C  
N.C  
0.50  
N.C  
N.C  
0.53  
N.C  
N.C  
MIN  
A
B
C
D
E
F
330.0  
20.2  
12.8  
1.5  
12.992  
0.795  
0.504  
0.059  
3.937  
N.C  
177.77  
19.06  
13.5  
1.5  
N.C  
N.C  
13.2  
N.C  
N.C  
18.4  
14.4  
15.4  
N.C  
0.75  
0.53  
0.059  
2.31  
N.C  
N.C  
N.C  
0.520  
N.C  
12.8  
N.C  
100.0  
N.C  
58.72  
N.C  
N.C  
N.C  
0.724  
0.567  
0.606  
13.50  
12.01  
12.01  
G
H
0.488  
0.469  
0.47  
0.47  
12.4  
11.9  
11.9  
11.9  
www.irf.com  
9
IRF6609  
DirectFET™ Part Marking  
Notes:  
Used double sided cooling , mounting pad.  
† Mounted on minimum footprint full size board with metalized  
back and with small clip heatsink.  
‡ TC measured with thermal couple mounted to top (Drain) of  
part.  
 Repetitive rating; pulse width limited by  
max. junction temperature.  
‚ Starting TJ = 25°C, L = 0.75mH,  
RG = 25, IAS = 25A.  
ƒ Pulse width 400µs; duty cycle 2%.  
„ Surface mounted on 1 in. square Cu board.  
ˆ R is measured at TJ of approximately 90°C.  
θ
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Consumer market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.11/04  
10  
www.irf.com  

相关型号:

IRF6609PBF

Power Field-Effect Transistor, 31A I(D), 20V, 0.002ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, ROHS COMPLIANT, ISOMETRIC-3
INFINEON

IRF6609TR1

Power Field-Effect Transistor, 31A I(D), 20V, 0.002ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, ISOMETRIC-3
INFINEON

IRF6609TR1PBF

Power Field-Effect Transistor, 31A I(D), 20V, 0.002ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, ROHS COMPLIANT, ISOMETRIC-3
INFINEON

IRF6609TRPBF

Power Field-Effect Transistor, 31A I(D), 20V, 0.002ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, ROHS COMPLIANT, ISOMETRIC-3
INFINEON

IRF6610

HEXFET Power MOSFET Silicon Technology with the advanced DirectFETTM
INFINEON

IRF6610TR1PBF

Power Field-Effect Transistor, 15A I(D), 20V, 0.0068ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, LEAD FREE, ISOMETRIC-3
INFINEON

IRF6610TRPBF

Power Field-Effect Transistor, 15A I(D), 20V, 0.0068ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, ROHS COMPLIANT, ISOMETRIC-2
INFINEON

IRF6611

DirectFET Power MOSFET
INFINEON

IRF6611PBF

DirectFET Power MOSFET
INFINEON

IRF6611TRPBF

Power Field-Effect Transistor, 32A I(D), 30V, 0.0026ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, ROHS COMPLIANT, ISOMETRIC-3
INFINEON

IRF6612

HEXFET Power MOSFET
INFINEON

IRF66121PBF

RoHs Compliant
INFINEON