IRF6619 [INFINEON]

DirectFET Power MOSFET; DirectFET功率MOSFET
IRF6619
型号: IRF6619
厂家: Infineon    Infineon
描述:

DirectFET Power MOSFET
DirectFET功率MOSFET

文件: 总9页 (文件大小:290K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 96917  
IRF6619  
DirectFET™ Power MOSFET ‚  
Typical values (unless otherwise specified)  
l Low Profile (<0.7 mm)  
VDSS  
VGS  
RDS(on)  
RDS(on)  
l Dual Sided Cooling Compatible   
1.65m@ 10V 2.2m@ 4.5V  
20V max ±20V max  
l Ultra Low Package Inductance  
Qg tot Qgd  
Qgs2  
Qrr  
Qoss Vgs(th)  
l Optimized for High Frequency Switching above 1MHz   
l Ideal for CPU Core DC-DC Converters  
l Optimized for Sync. FET socket of Sync. Buck Converter  
l Low Conduction Losses  
38nC  
13nC  
3.5nC  
18nC  
22nC  
2.0V  
l Compatible with existing Surface Mount Techniques   
MX  
DirectFET™ ISOMETRIC  
Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details)  
SQ  
SX  
ST  
MQ  
MX  
MT  
Description  
The IRF6619 combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve the  
lowest on-state resistance in a package that has the footprint of an SO-8 and only 0.7 mm profile. The DirectFET package is compatible with  
existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering tech-  
niques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual  
sided cooling to maximize thermal transfer in power systems, IMPROVING previous best thermal resistance by 80%.  
The IRF6619 balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and switching  
losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of processors  
operating at higher frequencies. The IRF6619 has been optimized for parameters that are critical in synchronous buck operating from 12 volt  
buss converters including Rds(on), gate charge and Cdv/dt-induced turn on immunity. The IRF6619 offers particularly low Rds(on) and high  
Cdv/dt immunity for synchronous FET applications.  
Absolute Maximum Ratings  
Max.  
Parameter  
Units  
VDS  
20  
Drain-to-Source Voltage  
Gate-to-Source Voltage  
V
±20  
V
GS  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
30  
I
I
I
I
@ TA = 25°C  
D
D
D
24  
@ TA = 70°C  
@ TC = 25°C  
A
(Package Limited)  
150  
240  
240  
Pulsed Drain Current  
DM  
Single Pulse Avalanche Energy  
Avalanche Current  
EAS (Thermally limited)  
mJ  
A
IAR  
See Fig. 14, 15, 17a, 17b,  
Repetitive Avalanche Energy  
EAR  
mJ  
12  
6.0  
I = 16A  
D
V
= 16V  
I
= 30A  
DS  
VDS= 10V  
D
10  
8
5.0  
4.0  
3.0  
2.0  
6
T
= 125°C  
J
4
2
T
= 25°C  
J
1.0  
2.0  
0
4.0  
6.0  
8.0  
10.0  
0
20  
40  
60  
80  
100  
V
, Gate-to-Source Voltage (V)  
GS  
Fig 1. Typical On-Resistance Vs. Gate Voltage  
Q
Total Gate Charge (nC)  
G
Fig 2. Typical Total Gate Charge vs Gate-to-Source Voltage  
Notes:  
„ Limited by TJmax, starting TJ = 25°C, L = 0.86mH, RG = 25, IAS  
24A, VGS =10V. Part not recommended for use above this value.  
† Surface mounted on 1 in. square Cu board, steady state.  
=
 Click on this section to link to the appropriate technical paper.  
‚ Click on this section to link to the DirectFET Website.  
ƒ Repetitive rating; pulse width limited by max. junction temperature.  
‰ TC measured with thermocouple mounted to top (Drain) of part.  
www.irf.com  
1
2/10/05  
IRF6619  
Static @ TJ = 25°C (unless otherwise specified)  
Conditions  
VGS = 0V, ID = 250µA  
Reference to 25°C, I = 1mA  
Parameter  
Min. Typ. Max. Units  
BVDSS  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
20  
–––  
–––  
–––  
1.55  
–––  
–––  
–––  
–––  
–––  
89  
–––  
14  
–––  
V
∆ΒVDSS/TJ  
RDS(on)  
––– mV/°C  
D
V
GS = 10V, ID = 30A g  
VGS = 4.5V, ID = 24A g  
DS = VGS, ID = 250µA  
mΩ  
1.65  
2.2  
2.2  
3.0  
V
VGS(th)  
Gate Threshold Voltage  
–––  
-5.8  
–––  
–––  
–––  
–––  
–––  
38  
2.45  
V
VGS(th)/TJ  
IDSS  
Gate Threshold Voltage Coefficient  
Drain-to-Source Leakage Current  
––– mV/°C  
VDS = 16V, VGS = 0V  
1.0  
150  
100  
-100  
–––  
57  
µA  
nA  
S
VDS = 16V, VGS = 0V, TJ = 125°C  
V
GS = 20V  
GS = -20V  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Forward Transconductance  
Total Gate Charge  
V
VDS = 10V, ID = 24A  
gfs  
Qg  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
VDS = 10V  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Qsw  
Qoss  
RG  
Pre-Vth Gate-to-Source Charge  
Post-Vth Gate-to-Source Charge  
Gate-to-Drain Charge  
Gate Charge Overdrive  
Switch Charge (Qgs2 + Qgd)  
Output Charge  
10.2  
3.5  
–––  
–––  
–––  
–––  
–––  
–––  
2.3  
VGS = 4.5V  
nC  
ID = 16A  
13.2  
11.1  
16.7  
22  
See Fig. 17  
VDS = 10V, VGS = 0V  
nC  
Gate Resistance  
–––  
21  
VDD = 16V, VGS = 4.5Vꢁg  
ID = 24A  
td(on)  
tr  
td(off)  
tf  
Turn-On Delay Time  
–––  
–––  
–––  
–––  
Rise Time  
71  
Clamped Inductive Load  
Turn-Off Delay Time  
25  
ns  
Fall Time  
9.3  
V
GS = 0V  
Ciss  
Coss  
Crss  
Input Capacitance  
––– 5040 –––  
––– 1580 –––  
VDS = 10V  
Output Capacitance  
pF  
ƒ = 1.0MHz  
Reverse Transfer Capacitance  
–––  
780  
–––  
Diode Characteristics  
Conditions  
Parameter  
Min. Typ. Max. Units  
IS  
MOSFET symbol  
Continuous Source Current  
(Body Diode)  
–––  
–––  
–––  
–––  
30  
showing the  
A
ISM  
integral reverse  
Pulsed Source Current  
(Body Diode)ꢁe  
240  
p-n junction diode.  
TJ = 25°C, IS = 24A, VGS = 0V g  
TJ = 25°C, IF = 24A  
di/dt = 100A/µs g  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
Reverse Recovery Charge  
–––  
–––  
–––  
0.8  
29  
18  
1.0  
44  
27  
V
ns  
nC  
Qrr  
Notes:  
ƒ Repetitive rating; pulse width limited by max. junction temperature.  
Pulse width 400µs; duty cycle 2%.  
2
www.irf.com  
IRF6619  
Absolute Maximum Ratings  
Max.  
Parameter  
Units  
2.8  
P
P
P
@TA = 25°C  
@TA = 70°C  
@TC = 25°C  
Power Dissipation  
Power Dissipation  
Power Dissipation  
W
D
D
D
P
J
1.8  
89  
270  
T
T
T
Peak Soldering Temperature  
Operating Junction and  
°C  
-40 to + 150  
Storage Temperature Range  
STG  
Thermal Resistance  
Parameter  
Typ.  
–––  
12.5  
20  
Max.  
45  
Units  
°C/W  
W/°C  
RθJA  
Junction-to-Ambient  
Junction-to-Ambient  
Junction-to-Ambient  
Junction-to-Case  
RθJA  
–––  
–––  
1.4  
RθJA  
RθJC  
–––  
1.0  
RθJ-PCB  
Junction-to-PCB Mounted  
Linear Derating Factor  
–––  
0.017  
100  
10  
D = 0.50  
0.20  
0.10  
0.05  
0.02  
0.01  
1
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
Ri (°C/W) τi (sec)  
0.1  
0.6784  
17.299  
17.566  
9.4701  
0.00086  
0.57756  
8.94  
τ
τ
J τJ  
τ
Cτ  
τ
1τ1  
τ
τ
2τ2  
3τ3  
4τ4  
0.01  
0.001  
0.0001  
Ci= τi/Ri  
106  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthja + Tc  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
t
, Rectangular Pulse Duration (sec)  
1
Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient †  
Notes:  
‰ TC measured with thermocouple incontact with top (Drain) of part.  
† Surface mounted on 1 in. square Cu board, steady state.  
Š R is measured at TJ of approximately 90°C.  
‡ Used double sided cooling , mounting pad.  
ˆ Mounted on minimum footprint full size board with metalized  
back and with small clip heatsink.  
θ
ˆ Mounted on minimum  
† Surface mounted on 1 in. square Cu  
‡ Mounted to a PCB with a  
footprint full size board with  
metalized back and with small  
clip heatsink (still air)  
3
board (still air).  
thin gap filler and heat sink.  
(still air)  
www.irf.com  
IRF6619  
1000  
1000  
100  
10  
VGS  
10V  
VGS  
10V  
TOP  
TOP  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.8V  
2.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.8V  
2.5V  
100  
10  
1
BOTTOM  
BOTTOM  
2.5V  
2.5V  
60µs PULSE WIDTH  
Tj = 150°C  
60µs PULSE WIDTH  
Tj = 25°C  
0.1  
0.1  
1
1
10  
0.1  
1
10  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 4. Typical Output Characteristics  
Fig 5. Typical Output Characteristics  
100.0  
1.5  
I
= 30A  
D
V
= 10V  
T
T
T
= 150°C  
= 25°C  
= -40°C  
GS  
J
J
J
10.0  
1.0  
1.0  
V
= 10V  
DS  
60µs PULSE WIDTH  
0.1  
0.5  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
-60 -40 -20  
T
0
20 40 60 80 100 120 140 160  
V
, Gate-to-Source Voltage (V)  
GS  
, Junction Temperature (°C)  
J
Fig 6. Typical Transfer Characteristics  
Fig 7. Normalized On-Resistance vs. Temperature  
8000  
10  
V
C
= 0V,  
f = 1 MHZ  
GS  
T = 25°C  
A
= C + C , C SHORTED  
iss  
gs  
gd ds  
9
8
7
6
5
4
3
2
1
V
V
V
V
V
V
= 3.0V  
= 3.5V  
= 4.0V  
= 4.5V  
= 5.0V  
= 10V  
GS  
GS  
GS  
GS  
GS  
GS  
C
= C  
rss  
gd  
C
= C + C  
6000  
4000  
2000  
0
oss ds  
gd  
Ciss  
Coss  
Crss  
1
10  
100  
0
40  
80  
120  
160  
200  
I
, Drain Current (A)  
V
, Drain-to-Source Voltage (V)  
D
DS  
Fig 9. Typical On-Resistance Vs.  
Drain Current and Gate Voltage  
Fig 8. Typical Capacitance vs.Drain-to-Source Voltage  
4
www.irf.com  
IRF6619  
1000  
100  
10  
1000.0  
100.0  
10.0  
1.0  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
100µsec  
T
T
T
= 150°C  
= 25°C  
= -40°C  
J
J
J
1msec  
10msec  
1
T
= 25°C  
A
Tj = 150°C  
Single Pulse  
V
= 0V  
GS  
0.1  
0.1  
0.01  
0.10  
1.00  
10.00  
100.00  
0.2  
0.6  
1.0  
1.4  
1.8  
V
, Drain-toSource Voltage (V)  
DS  
V
, Source-to-Drain Voltage (V)  
SD  
Fig 10. Typical Source-Drain Diode Forward Voltage  
Fig11. Maximum Safe Operating Area  
2.5  
2.0  
1.5  
1.0  
0.5  
180  
LIMITED BY PACKAGE  
160  
140  
120  
100  
80  
I
= 250µA  
D
60  
40  
20  
0
25  
50  
T
75  
100  
125  
150  
-75 -50 -25  
0
25  
50  
75 100 125 150  
, Case Temperature (°C)  
C
T
, Junction Temperature ( °C )  
J
Fig 13. Typical Threshold Voltage vs. Junction  
Fig 12. Maximum Drain Current vs. Case Temperature  
Temperature  
1000  
Duty Cycle = Single Pulse  
Allowed avalanche Current vs  
avalanche pulsewidth, tav  
100  
assuming Tj = 25°C due to  
avalanche losses. Note: In no  
case should Tj be allowed to  
exceed Tjmax  
10  
0.01  
1
0.05  
0.10  
0.1  
0.01  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
1.0E+00  
1.0E+01  
tav (sec)  
Fig 14. Typical Avalanche Current vs.Pulsewidth  
www.irf.com  
5
IRF6619  
300  
Notes on Repetitive Avalanche Curves , Figures 14, 15:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Single Pulse  
= 24A  
I
D
Purely a thermal phenomenon and failure occurs at a temperature far in  
excess of Tjmax. This is validated for every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.  
3. Equation below based on circuit and waveforms shown in Figures 17a, 17b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as  
25°C in Figure 14, 15).  
200  
100  
0
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
ZthJC(D, tav) = Transient thermal resistance, see Figures 3)  
25  
50  
75  
100  
125  
150  
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
Iav = 2DT/ [1.3·BV·Zth]  
Starting T , Junction Temperature (°C)  
J
EAS (AR) = PD (ave)·tav  
Fig 15. Maximum Avalanche Energy vs. Temperature  
1000  
15V  
I
D
TOP  
12A  
15A  
24A  
DRIVER  
+
L
800  
600  
400  
200  
0
V
DS  
BOTTOM  
D.U.T  
AS  
R
G
V
DD  
-
I
A
2
VGS  
0.01  
t
p
Fig 17a. Unclamped Inductive Test Circuit  
V
(BR)DSS  
t
p
25  
50  
75  
100  
125  
150  
Starting T , Junction Temperature (°C)  
J
I
AS  
Fig 16. Maximum Avalanche Energy Vs. Drain Current  
Current Regulator  
Fig 17b. Unclamped Inductive Waveforms  
Same Type as D.U.T.  
LD  
VDS  
50KΩ  
.2µF  
12V  
+
.3µF  
-
VDD  
+
V
DS  
D.U.T.  
-
D.U.T  
V
GS  
VGS  
3mA  
Pulse Width < 1µs  
Duty Factor < 0.1%  
I
I
D
G
Current Sampling Resistors  
Fig 19a. Switching Time Test Circuit  
Fig 18a. Gate Charge Test Circuit  
Id  
Vds  
VDS  
Vgs  
90%  
Vgs(th)  
10%  
VGS  
td(on)  
td(off)  
tr  
tf  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Fig 18b. Gate Charge Waveform  
Fig 19b. Switching Time Waveforms  
6
www.irf.com  
IRF6619  
Driver Gate Drive  
P.W.  
P.W.  
Period  
D.U.T  
Period  
D =  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
di/dt controlled by RG  
Re-Applied  
Voltage  
RG  
+
-
Driver same type as D.U.T.  
Body Diode  
Inductor Current  
Forward Drop  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
I
SD  
Ripple  
5%  
* VGS = 5V for Logic Level Devices  
Fig 20. Diode Reverse Recovery Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
DirectFET™ Substrate and PCB Layout, MX Outline  
(Medium Size Can, X-Designation).  
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.  
VGS  
This includes all recommendations for stencil and substrate designs.  
1- Drain  
2- Drain  
3- Source  
4- Source  
5- Gate  
6- Drain  
7- Drain  
6
7
1
2
3
5
4
www.irf.com  
7
IRF6619  
DirectFET™ Outline Dimension, MX Outline  
(Medium Size Can, X-Designation).  
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.  
This includes all recommendations for stencil and substrate designs.  
DIMENSIONS  
IMPERIAL  
METRIC  
CODE  
MAX  
MAX  
MIN  
6.25  
4.80  
3.85  
0.35  
0.68  
0.68  
1.38  
0.80  
0.38  
MAX  
0.250  
0.201  
0.156  
0.018  
0.028  
0.028  
0.056  
0.033  
0.017  
0.039  
0.095  
0.028  
0.003  
0.007  
A
B
C
D
E
F
6.35  
5.05  
3.95  
0.45  
0.72  
0.72  
1.42  
0.84  
0.42  
0.246  
0.189  
0.152  
0.014  
0.027  
0.027  
0.054  
0.032  
0.015  
0.035  
0.090  
0.023  
0.001  
0.003  
G
H
J
K
L
0.88 1.01  
2.28  
0.59  
0.03  
0.08  
2.41  
0.70  
0.08  
0.17  
M
N
P
DirectFET™ Part Marking  
8
www.irf.com  
IRF6619  
DirectFET™ Tape & Reel Dimension (Showing component orientation).  
NOTE: Controlling dimensions in mm  
Std reel quantity is 4800 parts. (ordered as IRF6619). For 1000 parts on 7" reel,  
order IRF6619TR1  
REEL DIMENSIONS  
STANDARD OPTION (QTY 4800)  
METRIC  
IMPERIAL  
TR1 OPTION (QTY 1000)  
METRIC  
MIN  
MAX  
IMPERIAL  
MIN  
12.992  
0.795  
0.504  
0.059  
3.937  
N.C  
MIN  
6.9  
MAX  
N.C  
N.C  
0.50  
N.C  
N.C  
0.53  
N.C  
N.C  
MAX  
N.C  
177.77 N.C  
0.75  
0.53  
0.059  
2.31  
N.C  
N.C  
19.06  
13.5  
1.5  
N.C  
0.520  
N.C  
12.8  
N.C  
58.72  
N.C  
N.C  
N.C  
0.724  
0.567  
0.606  
13.50  
12.01  
12.01  
0.488  
0.469  
0.47  
0.47  
11.9  
11.9  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Consumer market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.2/05  
www.irf.com  
9

相关型号:

IRF6619PBF

DirectFET Power MOSFET
INFINEON

IRF6619TRPBF

DirectFET Power MOSFET
INFINEON

IRF661TRPBF

RoHs Compliant
INFINEON

IRF6620

HEXFETPower MOSFET
INFINEON

IRF6620PBF

Power Field-Effect Transistor, 27A I(D), 20V, 0.0027ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, ROHS COMPLIANT, ISOMETRIC-3
INFINEON

IRF6620TR1

Power Field-Effect Transistor, 27A I(D), 20V, 0.0027ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, ISOMETRIC-3
INFINEON

IRF6620TRPBF

Power Field-Effect Transistor, 27A I(D), 20V, 0.0027ohm, 1-Element, N-Channel, Silicon, Metal-Oxide Semiconductor FET, ROHS COMPLIANT, ISOMETRIC-3
INFINEON

IRF6621

The IRF6621 combines the latest HEXFET Power MOSFET Silicon technology with the advanced DirectFET packaging to achieve the lowest on-state resistance
INFINEON

IRF6621PbF

DirectFETPower MOSFET 
INFINEON

IRF6621TR1

Power Field-Effect Transistor, 12A I(D), 30V, 0.0091ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, ISOMETRIC-3
INFINEON

IRF6621TR1PBF

DirectFETPower MOSFET 
INFINEON

IRF6621TRPbF

DirectFETPower MOSFET 
INFINEON