IRF6620 [INFINEON]

HEXFETPower MOSFET; HEXFETPower MOSFET
IRF6620
型号: IRF6620
厂家: Infineon    Infineon
描述:

HEXFETPower MOSFET
HEXFETPower MOSFET

文件: 总8页 (文件大小:180K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 95823A  
IRF6620  
HEXFET® Power MOSFET  
l Application Specific MOSFETs  
l Ideal for CPU Core DC-DC Converters  
l Low Conduction Losses  
VDSS  
RDS(on) max  
Qg(typ.)  
2.7m@VGS = 10V  
3.6m@VGS = 4.5V  
20V  
28nC  
l Low Switching Losses  
l Low Profile (<0.7 mm)  
l Dual Sided Cooling Compatible  
l Compatible with Existing Surface Mount  
Techniques  
DirectFET™ ISOMETRIC  
MX  
Applicable DirectFET Outline and Substrate Outline (see p.8,9 for details)  
SQ  
SX  
ST  
MQ  
MX  
MT  
Description  
The IRF6620 combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve the  
lowest on-state resistance in a package that has the footprint of an SO-8 and only 0.7 mm profile. The DirectFET package is compatible with  
existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering tech-  
niques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual  
sided cooling to maximize thermal transfer in power systems, IMPROVING previous best thermal resistance by 80%.  
The IRF6620 balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and switching  
losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of processors  
operating at higher frequencies. The IRF6620 has been optimized for parameters that are critical in synchronous buck operating from 12 volt  
buss converters including Rds(on), gate charge and Cdv/dt-induced turn on immunity. The IRF6620 offers particularly low Rds(on) and high  
Cdv/dt immunity for synchronous FET applications.  
Absolute Maximum Ratings  
Max.  
Parameter  
Units  
VDS  
20  
Drain-to-Source Voltage  
Gate-to-Source Voltage  
V
±20  
V
GS  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
150  
I
I
I
I
@ TC = 25°C  
D
D
D
27  
@ TA = 25°C  
@ TA = 70°C  
A
22  
220  
DM  
2.8  
P
P
P
@TA = 25°C  
@TA = 70°C  
@TC = 25°C  
Power Dissipation  
D
D
D
1.8  
Power Dissipation  
W
89  
39  
Power Dissipation  
EAS  
IAR  
Single Pulse Avalanche Energy  
Avalanche Current  
mJ  
A
22  
0.017  
Linear Derating Factor  
W/°C  
°C  
-40 to + 150  
T
T
Operating Junction and  
J
Storage Temperature Range  
STG  
Thermal Resistance  
Parameter  
Typ.  
–––  
12.5  
20  
Max.  
45  
Units  
RθJA  
Junction-to-Ambient  
RθJA  
Junction-to-Ambient  
Junction-to-Ambient  
Junction-to-Case  
–––  
–––  
1.4  
RθJA  
°C/W  
RθJC  
–––  
1.0  
RθJ-PCB  
Junction-to-PCB Mounted  
–––  
Notes  through ˆare on page 2  
www.irf.com  
1
4/2/04  
IRF6620  
Static @ TJ = 25°C (unless otherwise specified)  
Parameter  
Min. Typ. Max. Units  
Conditions  
VGS = 0V, ID = 250µA  
BVDSS  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
20  
–––  
–––  
–––  
1.55  
–––  
–––  
–––  
–––  
–––  
110  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
V
∆ΒVDSS/TJ  
RDS(on)  
16  
––– mV/°C Reference to 25°C, ID = 1mA  
mΩ  
2.1  
2.8  
–––  
-5.8  
–––  
–––  
–––  
–––  
–––  
28  
2.7  
3.6  
VGS = 10V, ID = 27A e  
GS = 4.5V, ID = 22A e  
VDS = VGS, ID = 250µA  
V
VGS(th)  
Gate Threshold Voltage  
2.45  
V
VGS(th)/TJ  
IDSS  
Gate Threshold Voltage Coefficient  
Drain-to-Source Leakage Current  
––– mV/°C  
1.0  
150  
100  
-100  
–––  
42  
µA  
VDS = 16V, VGS = 0V  
VDS = 16V, VGS = 0V, TJ = 125°C  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Forward Transconductance  
Total Gate Charge  
nA VGS = 20V  
VGS = -20V  
gfs  
S
VDS = 10V, ID = 22A  
Qg  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Qsw  
Qoss  
td(on)  
tr  
Pre-Vth Gate-to-Source Charge  
Post-Vth Gate-to-Source Charge  
Gate-to-Drain Charge  
Gate Charge Overdrive  
Switch Charge (Qgs2 + Qgd)  
Output Charge  
9.5  
3.5  
8.8  
6.2  
12  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
VDS = 10V  
nC VGS = 4.5V  
ID = 22A  
See Fig. 17  
16  
nC  
VDS = 10V, VGS = 0V  
Turn-On Delay Time  
18  
VDD = 16V, VGS = 4.5Vꢀe  
Rise Time  
80  
ID = 22A  
td(off)  
tf  
Turn-Off Delay Time  
20  
ns Clamped Inductive Load  
Fall Time  
6.6  
Ciss  
Coss  
Crss  
Input Capacitance  
––– 4130 –––  
––– 1160 –––  
V
GS = 0V  
Output Capacitance  
pF VDS = 10V  
ƒ = 1.0MHz  
Reverse Transfer Capacitance  
–––  
560  
–––  
Diode Characteristics  
Parameter  
Continuous Source Current  
Min. Typ. Max. Units  
Conditions  
MOSFET symbol  
IS  
–––  
–––  
3.5  
D
(Body Diode)  
A
showing the  
G
ISM  
Pulsed Source Current  
(Body Diode)ꢀc  
–––  
–––  
220  
integral reverse  
S
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
Reverse Recovery Charge  
–––  
–––  
–––  
0.8  
23  
13  
1.0  
35  
20  
V
TJ = 25°C, IS = 22A, VGS = 0V e  
ns TJ = 25°C, IF = 22A  
Qrr  
di/dt = 100A/µs  
e
nC  
Notes:  
Used double sided cooling, mounting pad.  
† Mounted on minimum footprint full size board with metalized  
back and with small clip heatsink.  
‡ TC measured with thermal couple mounted to top (Drain) of  
part.  
 Repetitive rating; pulse width limited by  
max. junction temperature.  
‚ Starting TJ = 25°C, L = 0.16mH,  
RG = 25, IAS = 22A.  
ƒ Pulse width 400µs; duty cycle 2%.  
„ Surface mounted on 1 in. square Cu board.  
ˆ R is measured at TJ of approximately 90°C.  
θ
2
www.irf.com  
IRF6620  
1000  
100  
10  
1000  
100  
10  
VGS  
10V  
VGS  
10V  
TOP  
TOP  
7.0V  
4.5V  
4.0V  
3.5V  
3.2V  
2.9V  
2.7V  
7.0V  
4.5V  
4.0V  
3.5V  
3.2V  
2.9V  
2.7V  
BOTTOM  
BOTTOM  
2.7V  
2.7V  
1
60µs PULSE WIDTH  
60µs PULSE WIDTH  
Tj = 25°C  
Tj = 150°C  
0.1  
1
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1.5  
1.0  
0.5  
1000.0  
I
= 27A  
D
V
= 10V  
GS  
100.0  
10.0  
1.0  
T
= 150°C  
J
T
= 25°C  
J
V
= 10V  
DS  
60µs PULSE WIDTH  
0.1  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
-60 -40 -20  
T
0
20 40 60 80 100 120 140 160  
V
, Gate-to-Source Voltage (V)  
GS  
, Junction Temperature (°C)  
J
Fig 3. Typical Transfer Characteristics  
Fig 4. Normalized On-Resistance vs. Temperature  
12  
100000  
10000  
1000  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
I
= 20A  
D
V
= 20V  
C
C
C
+ C , C  
SHORTED  
DS  
VDS= 10V  
iss  
gs  
gd  
ds  
10  
8
= C  
rss  
oss  
gd  
= C + C  
ds  
gd  
Ciss  
6
Coss  
Crss  
4
2
0
100  
0
20  
40  
60  
80  
1
10  
, Drain-to-Source Voltage (V)  
100  
Q
Total Gate Charge (nC)  
G
V
DS  
Fig 5. Typical Capacitance vs.Drain-to-Source Voltage  
Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage  
www.irf.com  
3
IRF6620  
1000.0  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
100.0  
T
= 150°C  
J
10.0  
1.0  
100µsec  
1
T
= 25°C  
V
J
1msec  
Tc = 25°C  
Tj = 150°C  
Single Pulse  
10msec  
= 0V  
GS  
0.1  
0.1  
0
1
10  
100  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
V
, Drain-toSource Voltage (V)  
V
, Source-to-Drain Voltage (V)  
DS  
SD  
Fig 7. Typical Source-Drain Diode Forward Voltage  
Fig 8. Maximum Safe Operating Area  
150  
2.5  
2.0  
1.5  
1.0  
120  
90  
60  
30  
0
I
= 250µA  
D
25  
50  
75  
100  
125  
150  
-75 -50 -25  
0
25  
50  
75 100 125 150  
T
J
, Junction Temperature (°C)  
T
, Temperature ( °C )  
J
Fig 10. Threshold Voltage vs. Temperature  
Fig 9. Maximum Drain Current vs. Case Temperature  
100  
D = 0.50  
10  
1
0.20  
0.10  
0.05  
0.02  
0.01  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
Ri (°C/W) τi (sec)  
1.28011 0.000322  
τ
τ
J τJ  
Cτ  
8.72556 0.164798  
0.1  
τ
1τ1  
τ
τ
τ
2τ2  
3τ3  
4τ4  
21.75  
2.2576  
69  
Ci= τi/Ri  
13.251  
0.01  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthja + Tc  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
t
, Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient  
4
www.irf.com  
IRF6620  
12  
10  
8
160  
120  
80  
40  
0
I
= 27A  
I
D
D
TOP  
7.2A  
8.4A  
22A  
BOTTOM  
6
T
= 125°C  
J
4
2
T
= 25°C  
J
0
2.0  
4.0  
6.0  
8.0  
10.0  
25  
50  
75  
100  
125  
150  
V
, Gate-to-Source Voltage (V)  
GS  
Starting T , Junction Temperature (°C)  
J
Fig 12. On-Resistance Vs. Gate Voltage  
Fig 13c. Maximum Avalanche Energy Vs. Drain Current  
15V  
LD  
VDS  
DRIVER  
+
L
V
DS  
+
-
VDD  
D.U.T  
AS  
R
G
V
DD  
-
D.U.T  
I
A
V
GS  
VGS  
0.01Ω  
t
p
Pulse Width < 1µs  
Duty Factor < 0.1%  
Fig 13a. Unclamped Inductive Test Circuit  
Fig 14a. Switching Time Test Circuit  
VDS  
V
(BR)DSS  
t
p
90%  
10%  
VGS  
td(on)  
td(off)  
tr  
tf  
I
AS  
Fig 14b. Switching Time Waveforms  
Fig 13b. Unclamped Inductive Waveforms  
Current Regulator  
Same Type as D.U.T.  
Id  
Vds  
50KΩ  
Vgs  
.2µF  
12V  
.3µF  
+
V
DS  
D.U.T.  
-
V
GS  
Vgs(th)  
3mA  
I
I
D
G
Current Sampling Resistors  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Fig 15. Gate Charge Test Circuit  
Fig 16. Gate Charge Waveform  
www.irf.com  
5
IRF6620  
Driver Gate Drive  
P.W.  
P.W.  
Period  
D.U.T  
Period  
D =  
+
*
V
=10V  
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
-
Low Leakage Inductance  
Current Transformer  
D.U.T. I Waveform  
SD  
+
Reverse  
Recovery  
Current  
‚
Body Diode Forward  
„
Current  
-
+
di/dt  
-
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
di/dt controlled by RG  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Re-Applied  
Voltage  
RG  
+
-
Body Diode  
Inductor Current  
Forward Drop  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 17. Diode Reverse Recovery Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
DirectFET™ Substrate and PCB Layout, MX Outline  
(Medium Size Can, X-Designation).  
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.  
This includes all recommendations for stencil and substrate designs.  
1- Drain  
2- Drain  
3- Source  
4- Source  
5- Gate  
6- Drain  
7- Drain  
6
7
1
3
4
5
2
6
www.irf.com  
IRF6620  
DirectFET™ Outline Dimension, MX Outline  
(Medium Size Can, X-Designation).  
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.  
This includes all recommendations for stencil and substrate designs.  
DIMENSIONS  
IMPERIAL  
MIN  
6.35 0.246  
METRIC  
MAX  
CODE  
MIN  
6.25  
4.80  
3.85  
0.35  
0.68  
0.68  
1.38  
0.80  
0.38  
0.88  
2.28  
0.59  
0.03  
MAX  
0.250  
0.201  
0.156  
0.018  
0.028  
0.028  
0.056  
0.033  
0.017  
0.039  
0.095  
0.028  
0.003  
A
B
C
D
E
F
5.05  
3.95  
0.189  
0.152  
Note: Controlling dimensions  
are in mm  
0.45 0.014  
0.72  
0.72  
0.027  
0.027  
1.42 0.054  
0.84  
0.42 0.015  
G
H
J
0.032  
1.01  
2.41  
K
L
0.035  
0.090  
0.70 0.023  
0.08  
M
N
0.001  
DirectFET™ Part Marking  
www.irf.com  
7
IRF6620  
DirectFET™ Tape & Reel Dimension (Showing component orientation).  
NOTE: Controlling dimensions in mm  
Std reel quantity is 4800 parts. (ordered as IRF6618). For 1000 parts on 7" reel,  
order IRF6618TR1  
REEL DIMENSIONS  
STANDARD OPTION (QTY 4800)  
TR1 OPTION (QTY 1000)  
METRIC  
MAX  
IMPERIAL  
METRIC  
MIN MAX  
IMPERIAL  
CODE  
MIN  
MAX  
N.C  
MIN  
6.9  
MAX  
N.C  
N.C  
0.50  
N.C  
N.C  
0.53  
N.C  
N.C  
MIN  
A
B
C
D
E
F
12.992  
0.795  
0.504  
0.059  
3.937  
N.C  
330.0  
20.2  
12.8  
1.5  
177.77  
19.06  
13.5  
1.5  
N.C  
N.C  
13.2  
N.C  
N.C  
18.4  
14.4  
15.4  
N.C  
0.75  
0.53  
0.059  
2.31  
N.C  
N.C  
N.C  
0.520  
N.C  
12.8  
N.C  
100.0  
N.C  
58.72  
N.C  
N.C  
N.C  
0.724  
0.567  
0.606  
13.50  
12.01  
12.01  
G
H
0.488  
0.469  
0.47  
0.47  
12.4  
11.9  
11.9  
11.9  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Consumer market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.4/04  
8
www.irf.com  

相关型号:

IRF6620PBF

Power Field-Effect Transistor, 27A I(D), 20V, 0.0027ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, ROHS COMPLIANT, ISOMETRIC-3
INFINEON

IRF6620TR1

Power Field-Effect Transistor, 27A I(D), 20V, 0.0027ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, ISOMETRIC-3
INFINEON

IRF6620TRPBF

Power Field-Effect Transistor, 27A I(D), 20V, 0.0027ohm, 1-Element, N-Channel, Silicon, Metal-Oxide Semiconductor FET, ROHS COMPLIANT, ISOMETRIC-3
INFINEON

IRF6621

The IRF6621 combines the latest HEXFET Power MOSFET Silicon technology with the advanced DirectFET packaging to achieve the lowest on-state resistance
INFINEON

IRF6621PbF

DirectFETPower MOSFET 
INFINEON

IRF6621TR1

Power Field-Effect Transistor, 12A I(D), 30V, 0.0091ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, ISOMETRIC-3
INFINEON

IRF6621TR1PBF

DirectFETPower MOSFET 
INFINEON

IRF6621TRPbF

DirectFETPower MOSFET 
INFINEON

IRF6622

Power MOSFET
INFINEON

IRF6622PBF

DirectFET Power MOSFET
INFINEON

IRF6622TRPBF

DirectFET Power MOSFET
INFINEON

IRF6623

HEXFET Power MOSFET
INFINEON