IRF6623 [INFINEON]

HEXFET Power MOSFET; HEXFET功率MOSFET
IRF6623
型号: IRF6623
厂家: Infineon    Infineon
描述:

HEXFET Power MOSFET
HEXFET功率MOSFET

晶体 晶体管 开关 脉冲
文件: 总8页 (文件大小:170K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 95824B  
IRF6623  
HEXFET® Power MOSFET  
l Application Specific MOSFETs  
l Ideal for CPU Core DC-DC Converters  
l Low Conduction Losses  
VDSS  
20V  
RDS(on) max  
5.7m@VGS = 10V  
Qg(typ.)  
11nC  
l Low Switching Losses  
9.7m@VGS = 4.5V  
l Low Profile (<0.7 mm)  
l Dual Sided Cooling Compatible  
l Compatible with Existing Surface Mount Techniques  
DirectFET™ ISOMETRIC  
ST  
Applicable DirectFET Outline and Substrate Outline (see p.8,9 for details)  
SQ  
SX  
ST  
MQ  
MX  
MT  
Description  
The IRF6623 combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to  
achieve the lowest on-state resistance in a package that has the footprint of a MICRO-8 and only 0.7 mm profile. The  
DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and  
vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufac-  
turing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power  
systems, IMPROVING previous best thermal resistance by 80%.  
The IRF6623 balances both low resistance and low charge along with ultra low package inductance to reduce both conduction  
and switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the  
latest generation of processors operating at higher frequencies. The IRF6623 has been optimized for parameters that are  
critical in synchronous buck operating from 12 volt buss converters including Rds(on) and gate charge to minimize losses in  
the control FET socket.  
Absolute Maximum Ratings  
Max.  
Parameter  
Units  
VDS  
20  
Drain-to-Source Voltage  
Gate-to-Source Voltage  
V
±20  
V
GS  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
55  
I
I
I
I
@ TC = 25°C  
D
D
D
16  
@ TA = 25°C  
@ TA = 70°C  
A
13  
120  
DM  
2.1  
P
P
P
@TA = 25°C  
@TA = 70°C  
@TC = 25°C  
Power Dissipation  
D
D
D
1.4  
Power Dissipation  
W
42  
43  
Power Dissipation  
EAS  
IAR  
Single Pulse Avalanche Energy  
Avalanche Current  
mJ  
A
12  
0.017  
Linear Derating Factor  
W/°C  
°C  
-40 to + 150  
T
T
Operating Junction and  
J
Storage Temperature Range  
STG  
Thermal Resistance  
Parameter  
Typ.  
–––  
12.5  
20  
Max.  
58  
Units  
Rθ  
Rθ  
Rθ  
Rθ  
Rθ  
Junction-to-Ambient  
JA  
Junction-to-Ambient  
Junction-to-Ambient  
Junction-to-Case  
–––  
–––  
3.0  
JA  
°C/W  
JA  
–––  
1.0  
JC  
Junction-to-PCB Mounted  
–––  
J-PCB  
Notes  through ˆare on page 2  
www.irf.com  
1
4/1/04  
IRF6623  
Static @ TJ = 25°C (unless otherwise specified)  
Parameter  
Min. Typ. Max. Units  
Conditions  
VGS = 0V, ID = 250µA  
BVDSS  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
20  
–––  
–––  
–––  
1.55  
–––  
–––  
–––  
–––  
–––  
34  
–––  
15  
–––  
V
∆ΒVDSS/TJ  
RDS(on)  
––– mV/°C Reference to 25°C, ID = 1mA  
mΩ  
4.4  
7.5  
–––  
-5.4  
–––  
–––  
–––  
–––  
–––  
11  
5.7  
9.7  
VGS = 10V, ID = 15A e  
VGS = 4.5V, ID = 12A e  
VDS = VGS, ID = 250µA  
VGS(th)  
Gate Threshold Voltage  
2.45  
V
VGS(th)/TJ  
IDSS  
Gate Threshold Voltage Coefficient  
Drain-to-Source Leakage Current  
––– mV/°C  
1.0  
150  
100  
-100  
–––  
17  
µA VDS = 16V, VGS = 0V  
V
V
V
DS = 16V, VGS = 0V, TJ = 125°C  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Forward Transconductance  
Total Gate Charge  
nA  
S
GS = 20V  
GS = -20V  
gfs  
VDS = 10V, ID = 12A  
Qg  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Qsw  
Qoss  
td(on)  
tr  
Pre-Vth Gate-to-Source Charge  
Post-Vth Gate-to-Source Charge  
Gate-to-Drain Charge  
Gate Charge Overdrive  
Switch Charge (Qgs2 + Qgd)  
Output Charge  
3.3  
1.2  
4.0  
2.5  
5.2  
8.9  
9.7  
40  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
VDS = 10V  
nC  
nC  
VGS = 4.5V  
ID = 12A  
See Fig. 17  
VDS = 10V, VGS = 0V  
Turn-On Delay Time  
VDD = 16V, VGS = 4.5Vꢁe  
Rise Time  
ID = 12A  
td(off)  
tf  
Turn-Off Delay Time  
12  
ns Clamped Inductive Load  
Fall Time  
4.5  
Ciss  
Coss  
Crss  
Input Capacitance  
––– 1360 –––  
VGS = 0V  
Output Capacitance  
–––  
–––  
630  
240  
–––  
–––  
pF  
VDS = 10V  
Reverse Transfer Capacitance  
ƒ = 1.0MHz  
Diode Characteristics  
Parameter  
Min. Typ. Max. Units  
Conditions  
IS  
D
Continuous Source Current  
–––  
–––  
2.6  
MOSFET symbol  
(Body Diode)  
A
showing the  
G
ISM  
Pulsed Source Current  
(Body Diode)ꢁc  
–––  
–––  
120  
integral reverse  
S
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
Reverse Recovery Charge  
–––  
–––  
–––  
0.81  
20  
1.0  
30  
18  
V
TJ = 25°C, IS = 12A, VGS = 0V e  
ns TJ = 25°C, IF = 12A  
di/dt = 100A/µs e  
nC  
Qrr  
12  
Notes:  
Used double sided cooling, mounting pad.  
† Mounted on minimum footprint full size board with metalized  
back and with small clip heatsink.  
‡ TC measured with thermal couple mounted to top (Drain) of  
part.  
 Repetitive rating; pulse width limited by  
max. junction temperature.  
‚ Starting TJ = 25°C, L = 0.61mH,  
RG = 25, IAS = 12A.  
ƒ Pulse width 400µs; duty cycle 2%.  
„ Surface mounted on 1 in. square Cu board.  
ˆ R is measured at TJ of approximately 90°C.  
θ
2
www.irf.com  
IRF6623  
1000  
100  
10  
1000  
100  
10  
VGS  
10V  
VGS  
10V  
TOP  
TOP  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.8V  
2.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.8V  
2.5V  
BOTTOM  
BOTTOM  
1
2.5V  
2.5V  
1
60µs PULSE WIDTH  
60µs PULSE WIDTH  
Tj = 25°C  
Tj = 150°C  
0.1  
1
0.1  
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000.0  
100.0  
10.0  
1.0  
1.5  
1.0  
0.5  
I
= 15A  
D
V
= 10V  
GS  
T
= 150°C  
J
T
= 25°C  
J
V
= 10V  
DS  
60µs PULSE WIDTH  
0.1  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
-60 -40 -20  
T
0
20 40 60 80 100 120 140 160  
V
, Gate-to-Source Voltage (V)  
GS  
, Junction Temperature (°C)  
J
Fig 3. Typical Transfer Characteristics  
Fig 4. Normalized On-Resistance vs. Temperature  
10000  
12  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
I = 11A  
C
C
C
+ C , C  
SHORTED  
D
V
= 20V  
iss  
gs  
gd  
ds  
DS  
VDS= 10V  
= C  
rss  
oss  
gd  
10  
8
= C + C  
ds  
gd  
Ciss  
1000  
6
Coss  
4
Crss  
2
0
100  
0
10  
Total Gate Charge (nC)  
G
20  
30  
1
10  
, Drain-to-Source Voltage (V)  
100  
Q
V
DS  
Fig 5. Typical Capacitance vs.Drain-to-Source Voltage  
Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage  
www.irf.com  
3
IRF6623  
1000.0  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
100.0  
T
J
= 150°C  
10.0  
1.0  
T
= 25°C  
V
1
J
100µsec  
Tc = 25°C  
Tj = 150°C  
Single Pulse  
1msec  
= 0V  
GS  
10msec  
0.1  
0.1  
0
1
10  
100  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
V
, Drain-toSource Voltage (V)  
V
, Source-to-Drain Voltage (V)  
DS  
SD  
Fig 7. Typical Source-Drain Diode Forward Voltage  
Fig 8. Maximum Safe Operating Area  
60  
2.5  
2.0  
1.5  
1.0  
50  
40  
30  
20  
10  
0
I
= 250µA  
D
25  
50  
75  
100  
125  
150  
-75 -50 -25  
0
25  
50  
75 100 125 150  
T
J
, Junction Temperature (°C)  
T , Temperature ( °C )  
J
Fig 10. Threshold Voltage vs. Temperature  
Fig 9. Maximum Drain Current vs. Case Temperature  
100  
D = 0.50  
0.20  
10  
0.10  
0.05  
1
0.1  
0.02  
0.01  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
Ri (°C/W) τi (sec)  
2.023  
19.48  
21.78  
14.71  
0.000678  
0.240237  
2.0167  
58  
τ
τ
J τJ  
τ
Cτ  
τ
1τ1  
τ
τ
2τ2  
3τ3  
4τ4  
Ci= τi/Ri  
0.01  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthja + Tc  
SINGLE PULSE  
( THERMAL RESPONSE )  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
t
, Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient  
4
www.irf.com  
IRF6623  
200  
160  
120  
80  
20  
16  
12  
8
I
I
= 15A  
D
5.2A  
7.9A  
D
TOP  
BOTTOM 12A  
T
T
= 125°C  
= 25°C  
J
40  
J
4
0
2.0  
4.0  
6.0  
8.0  
10.0  
25  
50  
75  
100  
125  
150  
V
, Gate-to-Source Voltage (V)  
GS  
Starting T , Junction Temperature (°C)  
J
Fig 12. On-Resistance Vs. Gate Voltage  
Fig 13c. Maximum Avalanche Energy Vs. Drain Current  
15V  
LD  
VDS  
DRIVER  
+
L
V
DS  
+
-
VDD  
D.U.T  
AS  
R
G
V
DD  
-
D.U.T  
I
A
V
GS  
VGS  
0.01Ω  
t
p
Pulse Width < 1µs  
Duty Factor < 0.1%  
Fig 13a. Unclamped Inductive Test Circuit  
Fig 14a. Switching Time Test Circuit  
VDS  
V
(BR)DSS  
t
p
90%  
10%  
VGS  
td(on)  
td(off)  
tr  
tf  
I
AS  
Fig 14b. Switching Time Waveforms  
Fig 13b. Unclamped Inductive Waveforms  
Current Regulator  
Same Type as D.U.T.  
Id  
Vds  
50KΩ  
Vgs  
.2µF  
12V  
.3µF  
+
V
DS  
D.U.T.  
-
V
GS  
Vgs(th)  
3mA  
I
I
D
G
Current Sampling Resistors  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Fig 15. Gate Charge Test Circuit  
Fig 16. Gate Charge Waveform  
www.irf.com  
5
IRF6623  
Driver Gate Drive  
P.W.  
P.W.  
Period  
Period  
D =  
D.U.T  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
-
+
di/dt  
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
di/dt controlled by RG  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
RG  
+
-
Body Diode  
Inductor Current  
Forward Drop  
I
SD  
Ripple  
5%  
* VGS = 5V for Logic Level Devices  
Fig 17. Diode Reverse Recovery Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
DirectFET™ Substrate and PCB Layout, ST Outline  
(Small Size Can, T-Designation).  
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.  
This includes all recommendations for stencil and substrate designs.  
1- Drain  
2- Drain  
3- Source  
4- Source  
5- Gate  
6- Drain  
7- Drain  
6
7
1
2
3
4
5
6
www.irf.com  
IRF6623  
DirectFET™ Outline Dimension, ST Outline  
(Small Size Can, T-Designation).  
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.  
This includes all recommendations for stencil and substrate designs.  
DIMENSIONS  
IMPERIAL  
METRIC  
MAX  
CODE  
MIN  
MIN  
4.75  
3.70  
2.75  
0.35  
0.58  
0.58  
0.75  
0.53  
0.26  
O.88  
2.18  
0.59  
0.03  
0.08  
MAX  
0.191  
0.156  
0.112  
0.018  
0.024  
0.024  
0.031  
0.022  
0.012  
0.039  
0.090  
0.028  
0.003  
0.007  
4.85  
3.95  
2.85  
0.45  
0.62  
0.62  
0.79  
0.57  
0.30  
0.98  
2.28  
0.70  
0.08  
0.17  
0.187  
0.146  
0.108  
0.014  
0.023  
0.023  
0.030  
0.021  
0.010  
0.035  
0.086  
0.023  
0.001  
0.003  
A
B
C
D
E
F
Note: Controlling  
dimensions are in mm  
G
H
J
K
L
M
N
P
DirectFET™ Part Marking  
www.irf.com  
7
IRF6623  
DirectFET™ Tape & Reel Dimension (Showing component orientation).  
NOTE: Controlling dimensions in mm  
Std reel quantity is 4800 parts. (ordered as IRF6618). For 1000 parts on 7" reel,  
order IRF6618TR1  
REEL DIMENSIONS  
STANDARD OPTION (QTY 4800)  
TR1 OPTION (QTY 1000)  
METRIC  
MAX  
IMPERIAL  
METRIC  
MIN MAX  
IMPERIAL  
CODE  
MIN  
12.992  
0.795  
0.504  
0.059  
3.937  
N.C  
MAX  
N.C  
MIN  
6.9  
MAX  
N.C  
N.C  
0.50  
N.C  
N.C  
0.53  
N.C  
N.C  
MIN  
A
B
C
D
E
F
330.0  
20.2  
12.8  
1.5  
N.C  
N.C  
13.2  
N.C  
N.C  
18.4  
14.4  
15.4  
177.77 N.C  
0.75  
0.53  
0.059  
2.31  
N.C  
N.C  
19.06  
13.5  
1.5  
N.C  
0.520  
N.C  
12.8  
N.C  
100.0  
N.C  
58.72  
N.C  
N.C  
N.C  
0.724  
0.567  
0.606  
13.50  
12.01  
12.01  
G
H
0.488  
0.469  
0.47  
0.47  
12.4  
11.9  
11.9  
11.9  
Loaded Tape Feed Direction  
DIMENSIONS  
METRIC  
IMPERIAL  
NOTE: CONTROLLING  
DIMENSIONS IN MM  
CODE  
MIN  
7.90  
3.90  
A
B
C
D
E
F
11.90  
5.45  
5.10  
6.50  
1.50  
1.50  
G
H
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Consumer market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.4/04  
8
www.irf.com  

相关型号:

IRF6623PBF

DirectFETPower MOSFET
INFINEON

IRF6623PBF_15

Ideal for CPU Core DC-DC Converters
INFINEON

IRF6623TR1PBF

Power Field-Effect Transistor, 16A I(D), 20V, 0.0057ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, ROHS COMPLIANT, ISOMETRIC-3
INFINEON

IRF6623TRPBF

Power Field-Effect Transistor, 16A I(D), 20V, 0.0057ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, ROHS COMPLIANT, ISOMETRIC-3
INFINEON

IRF6626

DirectFET TM Power MOSFET
INFINEON

IRF6626PBF

RoHs Compliant
INFINEON

IRF6626TR1

RoHS compliant containing no lead or bromide
INFINEON

IRF6626TR1PBF

RoHs Compliant
INFINEON

IRF6628PBF

DirectFET Power MOSFET
INFINEON

IRF6628TRPBF

DirectFET Power MOSFET
INFINEON

IRF6629PBF

DirectFET Power MOSFET
INFINEON

IRF6629TRPBF

DirectFET Power MOSFET
INFINEON