IRF6635TR1PBF [INFINEON]

Compatible with existing Surface Mount Techniques;
IRF6635TR1PBF
型号: IRF6635TR1PBF
厂家: Infineon    Infineon
描述:

Compatible with existing Surface Mount Techniques

文件: 总10页 (文件大小:253K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 97086  
IRF6635PbF  
IRF6635TRPbF  
DirectFET™ Power MOSFET ‚  
l RoHs Compliant   
Typical values (unless otherwise specified)  
l Lead-Free (Qualified up to 260°C Reflow)  
l Application Specific MOSFETs  
l Ideal for CPU Core DC-DC Converters  
l Low Conduction Losses  
VDSS  
VGS  
RDS(on)  
RDS(on)  
30V max ±20V max  
1.3m@ 10V 1.8m@ 4.5V  
Qg tot Qgd  
Qgs2  
Qrr  
Qoss Vgs(th)  
l High Cdv/dt Immunity  
47nC  
17nC  
4.7nC  
48nC  
29nC  
1.8V  
l Low Profile (<0.7mm)  
l Dual Sided Cooling Compatible   
l Compatible with existing Surface Mount Techniques   
DirectFET™ ISOMETRIC  
MX  
Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details)  
SQ  
SX  
ST  
MQ  
MX  
MT  
Description  
The IRF6635PbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packag-  
ing to achieve the lowest on-state resistance in a package that has the footprint of a SO-8 and only 0.7 mm profile. The  
DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and  
vapor phase, infra-red or convection soldering techniques. Application note AN-1035 is followed regarding the manufacturing  
methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems,  
improving previous best thermal resistance by 80%.  
The IRF6635PbF balances industry leading on-state resistance while minimizing gate charge along with ultra low package  
inductance to reduce both conduction and switching losses. The reduced losses make this product ideal for high frequency/  
high efficiency DC-DC converters that power high current loads such as the latest generation of microprocessors. The  
IRF6635PbF has been optimized for parameters that are critical in synchronous buck converter’s SyncFET sockets.  
Absolute Maximum Ratings  
Max.  
30  
Parameter  
Units  
V
VDS  
Drain-to-Source Voltage  
±20  
32  
Gate-to-Source Voltage  
V
GS  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
I
I
I
I
@ TA = 25°C  
D
D
D
25  
A
@ TA = 70°C  
@ TC = 25°C  
180  
250  
200  
25  
DM  
EAS  
IAR  
Single Pulse Avalanche Energy  
Avalanche Current  
mJ  
A
10  
8
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
I = 25A  
D
I
= 32A  
V
= 24V  
= 15V  
D
DS  
V
DS  
6
4
T
= 125°C  
J
2
T
3
= 25°C  
4
J
0
0
1
2
5
6
7
8
9
10  
0
10  
20  
30  
40  
50  
60  
Q
Total Gate Charge (nC)  
G
V
Gate -to -Source Voltage (V)  
GS,  
Fig 1. Typical On-Resistance vs. Gate-to-Source Voltage  
Fig 2. Total Gate Charge vs. Gate-to-Source Voltage  
Notes:  
„ TC measured with thermocouple mounted to top (Drain) of part.  
Repetitive rating; pulse width limited by max. junction temperature.  
† Starting TJ = 25°C, L = 0.63mH, RG = 25, IAS = 25A.  
 Click on this section to link to the appropriate technical paper.  
‚ Click on this section to link to the DirectFET Website.  
ƒ Surface mounted on 1 in. square Cu board, steady state.  
www.irf.com  
1
5/3/06  
IRF6635PbF  
Static @ TJ = 25°C (unless otherwise specified)  
Conditions  
VGS = 0V, ID = 250µA  
Parameter  
Min. Typ. Max. Units  
BVDSS  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
30  
–––  
–––  
–––  
1.35  
–––  
–––  
–––  
–––  
–––  
45  
–––  
24  
–––  
V
Reference to 25°C, I = 1mA  
∆ΒVDSS/TJ  
RDS(on)  
––– mV/°C  
D
VGS = 10V, ID = 32A i  
VGS = 4.5V, ID = 25A i  
VDS = VGS, ID = 250µA  
mΩ  
1.3  
1.8  
1.8  
-6.1  
–––  
–––  
–––  
–––  
–––  
47  
1.8  
2.4  
VGS(th)  
Gate Threshold Voltage  
2.35  
V
VGS(th)/TJ  
IDSS  
Gate Threshold Voltage Coefficient  
Drain-to-Source Leakage Current  
––– mV/°C  
VDS = 24V, VGS = 0V  
1.0  
150  
100  
-100  
–––  
71  
µA  
nA  
S
VDS = 24V, VGS = 0V, TJ = 125°C  
VGS = 20V  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Forward Transconductance  
Total Gate Charge  
VGS = -20V  
VDS = 15V, ID = 25A  
gfs  
Qg  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
VDS = 15V  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Qsw  
Qoss  
RG  
Pre-Vth Gate-to-Source Charge  
Post-Vth Gate-to-Source Charge  
Gate-to-Drain Charge  
Gate Charge Overdrive  
Switch Charge (Qgs2 + Qgd)  
Output Charge  
12  
–––  
–––  
VGS = 4.5V  
ID = 25A  
4.7  
17  
nC  
13  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
See Fig. 15  
22  
VDS = 16V, VGS = 0V  
29  
nC  
Gate Resistance  
1.0  
21  
VDD = 16V, VGS = 4.5Vꢁi  
td(on)  
tr  
td(off)  
tf  
Turn-On Delay Time  
–––  
–––  
–––  
–––  
ID = 25A  
Rise Time  
13  
Clamped Inductive Load  
See Fig. 16 & 17  
Turn-Off Delay Time  
33  
ns  
Fall Time  
8.3  
V
GS = 0V  
Ciss  
Coss  
Crss  
Input Capacitance  
––– 5970 –––  
––– 1280 –––  
VDS = 15V  
Output Capacitance  
pF  
ƒ = 1.0MHz  
Reverse Transfer Capacitance  
–––  
600  
–––  
Diode Characteristics  
Conditions  
Parameter  
Min. Typ. Max. Units  
IS  
MOSFET symbol  
Continuous Source Current  
(Body Diode)  
–––  
–––  
–––  
–––  
110  
250  
showing the  
A
ISM  
integral reverse  
Pulsed Source Current  
(Body Diode)ꢁg  
p-n junction diode.  
TJ = 25°C, IS = 25A, VGS = 0V i  
TJ = 25°C, IF = 25A  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
Reverse Recovery Charge  
–––  
–––  
–––  
–––  
20  
1.0  
30  
72  
V
ns  
nC  
Qrr  
di/dt = 500A/µs iꢁꢁSee Fig. 18  
48  
Notes:  
Repetitive rating; pulse width limited by max. junction temperature.  
‡ Pulse width 400µs; duty cycle 2%.  
2
www.irf.com  
IRF6635PbF  
Absolute Maximum Ratings  
Max.  
2.8  
Parameter  
Units  
W
P
P
P
@TA = 25°C  
@TA = 70°C  
@TC = 25°C  
Power Dissipation  
Power Dissipation  
Power Dissipation  
D
D
D
P
J
1.8  
89  
270  
T
T
T
Peak Soldering Temperature  
Operating Junction and  
°C  
-40 to + 150  
Storage Temperature Range  
STG  
Thermal Resistance  
Parameter  
Typ.  
–––  
12.5  
20  
Max.  
45  
Units  
°C/W  
W/°C  
RθJA  
Junction-to-Ambient  
Junction-to-Ambient  
Junction-to-Ambient  
Junction-to-Case  
RθJA  
–––  
–––  
1.4  
RθJA  
RθJC  
–––  
1.0  
RθJ-PCB  
Junction-to-PCB Mounted  
Linear Derating Factor  
–––  
0.022  
100  
10  
D = 0.50  
0.20  
0.10  
0.05  
1
0.02  
0.01  
R1  
R1  
R2  
R2  
R3  
R4  
Ri (°C/W) τi (sec)  
R3  
R4  
τ
0.6784  
17.299  
17.566  
9.4701  
0.001268  
0.033387  
0.508924  
11.19309  
τ
J τJ  
AτA  
τ
1 τ1  
0.1  
0.01  
τ
τ
τ
2 τ2  
3 τ3  
4 τ4  
Ci= τi/Ri  
Ci= τi/Ri  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthja + Tc  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
t
, Rectangular Pulse Duration (sec)  
1
Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient  
Notes:  
Š R is measured at TJ of approximately 90°C.  
ˆ Used double sided cooling, mounting pad with large heatsink.  
‰ Mounted on minimum footprint full size board with metalized  
back and with small clip heatsink.  
θ
‰ Mounted on minimum  
footprint full size board with  
metalized back and with small  
clip heatsink (still air)  
‰ Mounted to a PCB with  
small clip heatsink (still air)  
ƒ Surface mounted on 1 in. square Cu  
(still air).  
www.irf.com  
3
IRF6635PbF  
1000  
1000  
VGS  
10V  
VGS  
10V  
TOP  
TOP  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.8V  
2.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.8V  
2.5V  
100  
10  
BOTTOM  
BOTTOM  
100  
2.5V  
2.5V  
60µs PULSE WIDTH  
Tj = 25°C  
60µs PULSE WIDTH  
Tj = 150°C  
10  
1
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
V
, Drain-to-Source Voltage (V)  
DS  
V
, Drain-to-Source Voltage (V)  
DS  
Fig 4. Typical Output Characteristics  
Fig 5. Typical Output Characteristics  
1000  
100  
10  
1.5  
V
= 15V  
I
= 32A  
D
DS  
60µs PULSE WIDTH  
T
T
T
= 150°C  
= 25°C  
= -40°C  
J
J
J
1.0  
0.5  
V
V
= 4.5V  
= 10V  
GS  
GS  
1
0.1  
1
2
3
4
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
T
J
, Junction Temperature (°C)  
V
, Gate-to-Source Voltage (V)  
GS  
Fig 7. Normalized On-Resistance vs. Temperature  
Fig 6. Typical Transfer Characteristics  
30  
100000  
10000  
1000  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
T
= 25°C  
J
C
C
C
+ C , C  
SHORTED  
iss  
gs  
gd  
ds  
= C  
25  
20  
15  
10  
5
rss  
oss  
gd  
Vgs = 3.0V  
Vgs = 3.5V  
Vgs = 4.0V  
Vgs = 4.5V  
Vgs = 5.0V  
Vgs = 10V  
= C + C  
ds  
gd  
C
iss  
C
oss  
C
rss  
0
100  
20  
60  
100  
140  
180  
220  
260  
1
10  
, Drain-to-Source Voltage (V)  
100  
V
DS  
I , Drain Current (A)  
D
Fig 9. Normalized Typical On-Resistance vs.  
Fig 8. Typical Capacitance vs.Drain-to-Source Voltage  
Drain Current and Gate Voltage  
4
www.irf.com  
IRF6635PbF  
1000  
100  
10  
1000  
100  
10  
1
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
100µsec  
10msec  
1msec  
T
T
T
= 150°C  
= 25°C  
= -40°C  
J
J
J
100msec  
1
T
= 25°C  
A
T = 150°C  
J
V
= 0V  
GS  
Single Pulse  
0.1  
0
0.01  
0.10  
1.00  
10.00  
100.00  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
, Source-to-Drain Voltage (V)  
V
, Drain-to-Source Voltage (V)  
V
DS  
SD  
Fig11. Maximum Safe Operating Area  
Fig 10. Typical Source-Drain Diode Forward Voltage  
2.2  
200  
175  
150  
125  
100  
75  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
I
= 250µA  
D
50  
25  
0
-75 -50 -25  
0
25 50 75 100 125 150  
25  
50  
T
75  
100  
125  
150  
T
, Temperature ( °C )  
J
, Case Temperature (°C)  
C
Fig 13. Threshold Voltage vs. Temperature  
Fig 12. Maximum Drain Current vs. Case Temperature  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
I
D
TOP  
9.1A  
11A  
BOTTOM 25A  
25  
50  
75  
100  
125  
150  
Starting T , Junction Temperature (°C)  
J
Fig 14. Maximum Avalanche Energy vs. Drain Current  
www.irf.com  
5
IRF6635PbF  
Id  
Vds  
Vgs  
L
VCC  
DUT  
0
Vgs(th)  
1K  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Fig 15a. Gate Charge Test Circuit  
Fig 15b. Gate Charge Waveform  
V
(BR)DSS  
15V  
t
p
DRIVER  
L
V
DS  
D.U.T  
AS  
VGS  
R
G
+
-
V
DD  
I
A
20V  
0.01  
t
p
I
AS  
Fig 16b. Unclamped Inductive Waveforms  
Fig 16a. Unclamped Inductive Test Circuit  
LD  
VDS  
VDS  
90%  
+
-
VDD  
10%  
VGS  
D.U.T  
VGS  
td(on)  
td(off)  
tr  
Pulse Width < 1µs  
Duty Factor < 0.1%  
tf  
Fig 17a. Switching Time Test Circuit  
Fig 17b. Switching Time Waveforms  
6
www.irf.com  
IRF6635PbF  
Driver Gate Drive  
P.W.  
P.W.  
Period  
D.U.T  
Period  
D =  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
di/dt controlled by RG  
Driver same type as D.U.T.  
Re-Applied  
Voltage  
RG  
+
-
Body Diode  
Inductor Current  
Forward Drop  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
I
SD  
Ripple  
5%  
* VGS = 5V for Logic Level Devices  
Fig 18. Diode Reverse Recovery Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
DirectFET™ Substrate and PCB Layout, MX Outline ƒ  
(Medium Size Can, X-Designation).  
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.  
This includes all recommendations for stencil and substrate designs.  
G = GATE  
D = DRAIN  
S = SOURCE  
D
D
D
D
S
S
G
www.irf.com  
7
IRF6635PbF  
DirectFET™ Outline Dimension, MX Outline  
(Medium Size Can, X-Designation).  
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.  
This includes all recommendations for stencil and substrate designs.  
DIMENSIONS  
IMPERIAL  
METRIC  
MIN  
CODE MIN  
MAX  
6.35  
5.05  
3.95  
0.45  
0.72  
0.72  
1.42  
0.84  
0.42  
1.01  
2.41  
MAX  
0.250  
0.201  
0.156  
0.018  
0.028  
0.028  
0.056  
0.033  
0.017  
0.039  
0.095  
0.0274  
0.0031  
0.007  
A
B
C
D
E
F
0.246  
0.189  
0.152  
0.014  
0.027  
0.027  
0.054  
0.032  
0.015  
0.035  
0.090  
0.0235  
0.0008  
0.003  
6.25  
4.80  
3.85  
0.35  
0.68  
0.68  
1.38  
0.80  
0.38  
0.88  
2.28  
G
H
J
K
L
M
R
P
0.616 0.676  
0.020 0.080  
0.08  
0.17  
DirectFET™ Part Marking  
8
www.irf.com  
IRF6635PbF  
DirectFET™ Tape & Reel Dimension (Showing component orientation).  
NOTE: Controlling dimensions in mm  
Std reel quantity is 4800 parts. (ordered as IRF6635TRPBF). For 1000 parts on 7"  
reel, order IRF6635TR1PBF  
REEL DIMENSIONS  
STANDARD OPTION (QTY 4800)  
TR1 OPTION (QTY 1000)  
METRIC  
MAX  
IMPERIAL  
METRIC  
MIN MAX  
IMPERIAL  
CODE  
MIN  
12.992  
0.795  
0.504  
0.059  
3.937  
N.C  
MAX  
N.C  
MIN  
6.9  
MAX  
N.C  
N.C  
0.50  
N.C  
N.C  
0.53  
N.C  
N.C  
MIN  
A
B
C
D
E
F
330.0  
20.2  
12.8  
1.5  
N.C  
N.C  
13.2  
N.C  
N.C  
18.4  
14.4  
15.4  
177.77 N.C  
0.75  
0.53  
0.059  
2.31  
N.C  
N.C  
19.06  
13.5  
1.5  
N.C  
0.520  
N.C  
12.8  
N.C  
100.0  
N.C  
N.C  
58.72  
N.C  
N.C  
0.724  
0.567  
0.606  
13.50  
12.01  
12.01  
G
H
0.488  
0.469  
0.47  
0.47  
12.4  
11.9  
11.9  
11.9  
LOADED TAPE FEED DIRECTION  
DIMENSIONS  
METRIC  
IMPERIAL  
CODE  
MIN  
7.90  
3.90  
11.90  
5.45  
5.10  
6.50  
1.50  
1.50  
MIN  
MAX  
0.319  
0.161  
0.484  
0.219  
0.209  
0.264  
N.C  
MAX  
8.10  
4.10  
12.30  
5.55  
5.30  
6.70  
N.C  
A
B
C
D
E
F
0.311  
0.154  
0.469  
0.215  
0.201  
0.256  
0.059  
0.059  
G
H
1.60  
0.063  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Consumer market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.05/06  
www.irf.com  
9
Note: For the most current drawings please refer to the IR website at:  
http://www.irf.com/package/  

相关型号:

IRF6635TRPBF

DirectFET Power MOSFET
INFINEON

IRF6636

Low Resistance and Low Charge Along With Ultra Low Package Inductance to Reduce
INFINEON

IRF6636PBF

Ideal for CPU Core DC-DC Converters
INFINEON

IRF6636PBF_15

Ideal for CPU Core DC-DC Converters
INFINEON

IRF6636TRPBF

Power Field-Effect Transistor, 18A I(D), 20V, 0.0045ohm, 1-Element, N-Channel, Silicon, Metal-Oxide Semiconductor FET, ROHS COMPLIANT, ISOMETRIC-3
INFINEON

IRF6637

DirectFETPower MOSFET
INFINEON

IRF6637PBF

Power Field-Effect Transistor, 14A I(D), 30V, 0.0077ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, ROHS COMPLIANT, ISOMETRIC-2
INFINEON

IRF6637TR1

DirectFETPower MOSFET
INFINEON

IRF6637TR1PBF

Power Field-Effect Transistor, 14A I(D), 30V, 0.0077ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, ROHS COMPLIANT, ISOMETRIC-2
INFINEON

IRF6637TRPBF

Power Field-Effect Transistor, 14A I(D), 30V, 0.0077ohm, 1-Element, N-Channel, Silicon, Metal-Oxide Semiconductor FET, ROHS COMPLIANT, ISOMETRIC-3
INFINEON

IRF6638PBF

DirectFET Power MOSFET
INFINEON

IRF6638TRPBF

DirectFET Power MOSFET
INFINEON