IRF7335D1TRPBF [INFINEON]

Small Signal Field-Effect Transistor, 10A I(D), 30V, 2-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, LEAD FREE, COPACK, SOP-14;
IRF7335D1TRPBF
型号: IRF7335D1TRPBF
厂家: Infineon    Infineon
描述:

Small Signal Field-Effect Transistor, 10A I(D), 30V, 2-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, LEAD FREE, COPACK, SOP-14

晶体 肖特基二极管 小信号场效应晶体管 开关 光电二极管
文件: 总12页 (文件大小:215K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD- 94546  
IRF7335D1  
Co-Pack Dual N-channel HEXFET Power MOSFET  
and Schottky Diode  
Ideal for Synchronous Buck DC-DC  
Converters Up to 11A Peak Output  
Low Conduction Losses  
Dual FETKY™  
Co-Packaged Dual MOSFET Plus Schottky Diode  
Device Ratings (Typ.Values)  
Low Switching Losses  
Low Vf Schottky Rectifier  
Q1  
Q2  
and Schottky  
9.6 mΩ  
18 nC  
1
2
3
4
5
6
7
14  
D1  
D1  
S1, D2  
RDS  
QG  
13.4 mΩ  
13 nC  
5.5 nC  
1.0V  
(on)  
13 S1, D2  
12 S1, D2  
Q1  
G1  
G2  
S2  
S2  
S2  
11  
10 S1, D2  
S1, D2  
Qsw  
VSD  
6.4 nC  
0.43V  
9
8
S1, D2  
S1, D2  
Q2  
Description  
The FETKYfamily of Co-Pack HEXFET MOSFETs and Schottky diodes offers the designer an innovative,  
board space saving solution for switching regulator and power management applications. Advanced  
HEXFET MOSFETs combined with low forward drop Schottky results in an extremely efficient device suitable  
for a wide variety of portable electronics applications.  
The SO-14 has been modified through a customized leadframe for enhanced thermal characteristics and  
multiple die capability making it ideal in a variety of power applications. With these improvements multiple  
devices can be used in an application with dramatically reduced board space. Internal connections enable  
easier board layout design with reduced stray inductance.  
Absolute Maximum Ratings  
Parameter  
Max.  
Units  
VDS  
Drain-Source Voltage  
30  
V
ID @ TA = 25°C  
ID @ TA = 70°C  
IDM  
Continuous Drain Current, VGS @ 10V„  
Continuous Drain Current, VGS @ 10V„  
Pulsed Drain Current   
10  
8.1  
A
81  
2.0  
PD @TA = 25°C  
PD @TA = 70°C  
Power Dissipation ƒ  
W
Power Dissipationƒ  
1.3  
Linear Derating Factor  
0.02  
W/°C  
V
VGS  
Gate-to-Source Voltage  
± 12  
EAS (6 sigma)  
Single Pulse Avalanche Energy ꢀ  
Operating Junction and  
50  
mJ  
TJ  
-55 to + 150  
TSTG  
Storage Temperature Range  
Soldering Temperature, for 10 seconds  
°C  
300 (1.6mm from case )  
Thermal Resistance  
Symbol  
Parameter  
Typ.  
Max.  
Units  
RθJL  
Junction-to-Drain Lead  
20  
RθJA  
Junction-to-Ambient ƒ  
62.5  
°C/W  
Notes  through are on page 12  
9/11/02  
IRF7335D1  
Q2-Synch FET  
& Schottky  
Min Typ Max Units  
Q1-Control FET  
Electrical Characteristics  
Parameter  
Min Typ Max  
Conditions  
Drain-to-Source  
BVDSS 30  
30  
V
VGS = 0V, ID = 250µA  
Breakdown Voltage  
Breakdown Voltage  
Tem. Coefficient  
BVDSS/TJ 0.025  
0.033  
V
Reference to 25°C, ID = 1.0mA  
Static Drain-Source  
on Resistance  
RDS  
13.4 17.5  
9.6 12.8 mVGS = 4.5V, ID = 10A‚  
(on)  
Gate Threshold Voltage  
VGS(th) 1.0  
IDSS  
1.1  
28  
V
VDS = VGS,ID = 250µA  
Drain-Source Leakage  
Current  
30  
30  
10  
µA VDS = 24V, VGS = 0  
0.3  
mA VDS = 24V, VGS = 0, Tj = 125°C  
Gate-Source Leakage  
Current  
IGSS  
±100  
±100 nA VGS = ±12V  
Forward Transconductance  
gFS  
21  
S
VGS=5V, ID=8.0A, VDS=15V  
VGS=4.5V, ID=8.0A, VDS=15V  
Total Gate Charge  
Pre-Vth  
QG  
13  
20  
18  
27  
QGS1  
3.2  
5.8  
Gate-Source Charge  
Post-Vth  
QGS2  
1.4  
1.5  
nC  
Gate-Source Charge  
Gate to Drain Charge  
Switch Chg(Qgs2 + Qgd)  
Output Charge  
QGD  
Qsw  
Qoss  
RG  
4.1  
5.5  
7.7  
4.3  
6.8  
5.9  
19  
4.9  
6.4  
11  
nC VDS = 16V, VGS = 0  
Gate Resistance  
Turn-on Delay Time  
Rise Time  
10  
2.6  
8.8  
3.3  
17  
5.0  
td (on)  
tr  
VDD = 16V, ID = 8.0A  
ns VGS = 4.5V  
Clamped Inductive Load  
Turn-off Delay Time  
Fall Time  
td  
(off)  
tf  
9.1  
1500  
310  
140  
7.0  
2300  
450  
180  
Input Capacitance  
Output Capacitance  
Reverse Transfer Capacitance  
Ciss  
Coss  
Crss  
pF VDS = 15V, VGS = 0  
Source-Drain Rating & Characteristics  
Parameter  
Min Typ Max  
Min Typ Max Units  
Conditions  
MOSFET symbol  
D
Continuous Source Current  
(Body Diode)  
IS  
10  
10  
A
showing the  
G
Pulse Source Current  
(Body Diode)  
ISM  
81  
81  
intergral reverse  
p-n junction diode  
S
Diode Forward Voltage  
Reverse Recovery Time  
VSD  
trr  
1
1.25  
0.43 0.50  
31  
V
TJ = 25°C, IS = 1.0A,VGS= 0V  
28  
ns TJ = 125°C, IF = 8.0A, VR= 15V  
Reverse Recovery Charge  
Reverse Recovery Time  
Qrr  
trr  
24  
29  
26  
31  
nC di/dt = 100A/µs  
ns TJ = 125°C, IF =8.0A, VR= 15V  
Reverse Recovery Charge  
Qrr  
26  
26  
nC di/dt =100A/µs  
2
www.irf.com  
IRF7335D1  
Typical Characteristics  
Q1 - Control FET  
Q2 - Synchronous FET & Schottky  
1000  
100  
10  
1000  
100  
10  
VGS  
12V  
10V  
8.0V  
4.5V  
3.5V  
3.0V  
2.5V  
VGS  
10V  
TOP  
TOP  
5.0V  
4.5V  
3.0V  
2.7V  
2.5V  
2.2V  
BOTTOM 2.25V  
BOTTOM 2.0V  
1
1
2.0V  
20µs PULSE WIDTH  
Tj = 25°C  
20µs PULSE WIDTH  
Tj = 25°C  
2.25V  
0.1  
0.1  
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000  
100  
VGS  
10V  
VGS  
12V  
TOP  
TOP  
5.0V  
4.5V  
3.0V  
2.7V  
2.5V  
2.2V  
10V  
8.0V  
4.5V  
3.5V  
3.0V  
2.5V  
100  
10  
1
BOTTOM 2.0V  
BOTTOM 2.25V  
10  
2.25V  
2.0V  
20µs PULSE WIDTH  
Tj = 150°C  
20µs PULSE WIDTH  
Tj = 150°C  
1
0.1  
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 3. Typical Output Characteristics  
Fig 4. Typical Output Characteristics  
100.0  
10.0  
1.0  
100.0  
10.0  
1.0  
T
= 150°C  
J
T
= 150°C  
J
T
= 25°C  
J
T
J
= 25°C  
0.1  
V
= 15V  
V
= 15V  
DS  
20µs PULSE WIDTH  
DS  
20µs PULSE WIDTH  
0.1  
0.0  
2.0  
3.0  
, Gate-to-Source Voltage (V)  
4.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
V
V
, Gate-to-Source Voltage (V)  
GS  
GS  
Fig 5. Typical Transfer Characteristics  
Fig 6. Typical Transfer Characteristics  
www.irf.com  
3
IRF7335D1  
Typical Characteristics  
Q2 - Synchronous FET & Schottky  
Q1 - Control FET  
80  
60  
40  
20  
0
80  
60  
40  
20  
0
VGS  
7.5V  
4.5V  
3.5V  
2.5V  
2.0V  
1.5V  
1.0V  
0.0V  
TOP  
VGS  
7.5V  
4.5V  
3.5V  
2.5V  
2.0V  
1.5V  
1.0V  
0.0V  
TOP  
BOTTOM  
BOTTOM  
20µs PULSE WIDTH  
Tj = 25°C  
20µs PULSE WIDTH  
Tj = 25°C  
0.0  
0.4  
0.8  
1.2  
1.6  
2.0  
0.0  
0.4  
0.8  
1.2  
1.6  
2.0  
V
Source-to-Drain Voltage (V)  
V
Source-to-Drain Voltage (V)  
SD  
SD  
Fig. 7. Typical Reverse Output Characteristics  
Fig. 8. Typical Reverse Output Characteristics  
80  
VGS  
80  
VGS  
TOP  
7.5V  
4.5V  
3.5V  
2.5V  
2.0V  
1.5V  
1.0V  
0.0V  
TOP  
7.5V  
4.5V  
3.5V  
2.5V  
2.0V  
1.5V  
1.0V  
0.0V  
60  
40  
20  
0
60  
40  
20  
0
BOTTOM  
BOTTOM  
20µs PULSE WIDTH  
Tj = 150°C  
20µs PULSE WIDTH  
Tj = 150°C  
0.0  
0.4  
0.8  
1.2  
1.6  
2.0  
0.0  
0.4  
0.8  
1.2  
1.6  
2.0  
V
Source-to-Drain Voltage (V)  
SD  
V
Source-to-Drain Voltage (V)  
SD  
Fig. 9. Typical Reverse Output Characteristics  
Fig. 10. Typical Reverse Output Characteristics  
100.0  
100.0  
T
= 150°C  
J
10.0  
1.0  
T
= 150°C  
10.0  
1.0  
J
T
= 25°C  
J
T
= 25°C  
J
V
= 0V  
V
= 0V  
GS  
GS  
0.1  
0.1  
0.0  
0.4  
0.8  
1.2  
1.6  
0.0  
0.4  
0.8  
1.2  
1.6  
2.0  
V
, Source-toDrain Voltage (V)  
V
, Source-toDrain Voltage (V)  
SD  
SD  
Fig 11. Typical Source-Drain Diode Forward Voltage  
Fig 12. Typical Source-Drain Diode Forward Voltage  
4
www.irf.com  
IRF7335D1  
Typical Characteristics  
Q2 - Synchronous FET & Schottky  
Q1 - Control FET  
2500  
2000  
1500  
1000  
500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
V
C
= 0V,  
= C  
f = 1 MHZ  
+ C C  
ds  
V
C
= 0V,  
= C  
f = 1 MHZ  
GS  
GS  
+
C
,
C
ds  
,
iss  
SHORTED  
gs  
gd  
iss  
gs  
gd  
SHORTED  
C
= C  
gd  
C
= C  
rss  
rss  
gd  
C
= C + C  
C
= C + C  
oss  
ds gd  
oss  
Ciss  
ds gd  
Ciss  
Coss  
Crss  
Coss  
Crss  
0
0
1
10  
, Drain-to-Source Voltage (V)  
100  
1
10  
, Drain-to-Source Voltage (V)  
100  
V
DS  
V
DS  
Fig 13. Typical Capacitance Vs.Drain-to-Source Voltage  
Fig 14. Typical Capacitance Vs.Drain-to-Source Voltage  
12  
12  
I
= 8.0A  
D
I
= 8.0A  
V
= 24V  
V
= 24V  
D
DS  
VDS= 15V  
DS  
VDS= 15V  
10  
8
10  
8
6
6
4
4
2
2
0
0
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
Q
Total Gate Charge (nC)  
Q
Total Gate Charge (nC)  
G
G
Fig. 16. Gate-to-Source Voltage vs Typical Gate Charge  
Fig. 15. Gate-to-Source Voltage vs Typical Gate Charge  
1000  
1000  
OPERATION IN THIS AREA  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
LIMITED BY R (on)  
DS  
DS  
100  
10  
1
100  
100µsec  
100µsec  
10  
1msec  
1msec  
1
10msec  
10msec  
Tc = 25°C  
Tj = 150°C  
Single Pulse  
0.1  
Tc = 25°C  
Tj = 150°C  
Single Pulse  
0.1  
0.1  
1.0  
10.0  
100.0  
1000.0  
0.1  
1.0  
10.0  
100.0  
1000.0  
V
, Drain-toSource Voltage (V)  
V
, Drain-toSource Voltage (V)  
DS  
DS  
Fig 17. Maximum Safe Operating Area  
Fig 18. Maximum Safe Operating Area  
www.irf.com  
5
IRF7335D1  
Typical Characteristics  
Q2 - Synchronous FET & Schottky  
Q1 - Control FET  
2.0  
1.5  
1.0  
0.5  
2.0  
1.5  
1.0  
0.5  
0.0  
10A  
=
I
D
I
= 10A  
D
V
= 4.5V  
GS  
V
= 4.5V  
GS  
-60 -40 -20  
0
20  
40  
60  
80 100 120 140 160  
°
-60 -40 -20  
T
0
20 40 60 80 100 120 140 160  
T
J
, Junction Temperature  
( C)  
, Junction Temperature (°C)  
J
Fig 19. Normalized On-Resistance Vs. Temperature  
Fig 20. Normalized On-Resistance Vs. Temperature  
0.030  
0.011  
0.025  
0.020  
V
= 4.5V  
GS  
0.010  
V
4.5V  
GS=  
0.015  
0.010  
0.009  
0
20  
40  
, Drain Current (A)  
60  
80  
0
20  
40  
60  
80  
100  
I
I
, Drain Current (A)  
D
D
Fig 21. Typical On-Resistance Vs. Drain Current  
Fig 22. Typical On-Resistance Vs. Drain Current  
0.03  
0.015  
I
= 10A  
D
0.02  
0.010  
I
= 10A  
D
0.01  
0.00  
0.005  
2.0  
4.0  
6.0  
8.0  
10.0  
3.0  
3.5  
4.0  
4.5  
V
Gate -to -Source Voltage (V)  
V
Gate -to -Source Voltage (V)  
GS,  
GS,  
Fig 23. Typical On-Resistance Vs. Gate Voltage  
Fig 24. Typical On-Resistance Vs. Gate Voltage  
6
www.irf.com  
IRF7335D1  
12  
10  
8
RD  
VDS  
VGS  
D.U.T.  
RG  
+VDD  
-
6
VGS  
4
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
2
Fig 26a. Switching Time Test Circuit  
V
DS  
0
90%  
25  
50  
75  
100  
125  
150  
T
, Junction Temperature (°C)  
J
Fig 25. Maximum Drain Current Vs.CaseTemperature  
10%  
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 26b. Switching Time Waveforms  
Current Regulator  
Same Type as D.U.T.  
Q
G
50KΩ  
.3µF  
VGS  
.2µF  
12V  
Q
Q
GD  
GS  
+
V
DS  
D.U.T.  
-
V
G
V
GS  
3mA  
Charge  
I
I
D
G
Current Sampling Resistors  
Fig 27a&b. Basic Gate Charge Test Circuit  
and Waveform  
100  
10  
D = 0.50  
0.20  
0.10  
0.05  
0.02  
0.01  
1
0.1  
0.01  
SINGLE PULSE  
( THERMAL RESPONSE )  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
t
, Rectangular Pulse Duration (sec)  
1
Fig. 28. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient  
www.irf.com  
7
IRF7335D1  
Schottky Diode Characteristics  
100000  
10000  
100  
Tj = 150°C  
1000  
100  
10  
125°C  
100°C  
75°C  
50°C  
25°C  
10  
1
0.1  
0
5
10  
15  
20  
25  
30  
Reverse Voltage - V  
(V)  
R
T
T
T
= 150°C  
= 125°C  
= 25°C  
J
J
J
Fig. 30 - Typical Values of  
Reverse Current Vs. Reverse Voltage  
1
0.1  
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Forward Voltage Drop - V ( V )  
F
Fig. 29 - Maximum Forward Voltage Drop  
Characteristics  
8
www.irf.com  
IRF7335D1  
Driver Gate Drive  
P.W.  
P.W.  
D =  
D.U.T  
Period  
Period  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
-
+
di/dt  
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
RG  
+
-
Body Diode  
Forward Drop  
Inductor Curent  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig. 31 Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
Id  
Vds  
Vgs  
Vgs(th)  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Fig. 32 Gate Charge Waveform  
www.irf.com  
9
IRF7335D1  
Power MOSFET Selection for Non-Isolated DC/DC Converters  
Synchronous FET  
Control FET  
The power loss equation for Q2 is approximated  
by;  
Special attention has been given to the power losses  
in the switching elements of the circuit - Q1 and Q2.  
Power losses in the high side switch Q1, also called  
the Control FET, are impacted by the Rds(on) of the  
MOSFET, but these conduction losses are only about  
one half of the total losses.  
P = P  
+ P + P*  
drive output  
loss  
conduction  
P = Irms 2 × Rds(on)  
loss ( )  
Power losses in the control switch Q1 are given  
by;  
+ Q × V × f  
(
)
g
g
Qoss  
2
Ploss = Pconduction+ Pswitching+ Pdrive+ Poutput  
+
×V × f + Q × V × f  
in rr in  
(
)
This can be expanded and approximated by;  
*dissipated primarily in Q1.  
P
= I 2 × Rds(on )  
(
)
loss  
rms  
For the synchronous MOSFET Q2, Rds(on) is an im-  
portant characteristic; however, once again the im-  
portance of gate charge must not be overlooked since  
it impacts three critical areas. Under light load the  
MOSFET must still be turned on and off by the con-  
trol IC so the gate drive losses become much more  
significant. Secondly, the output charge Qoss and re-  
verse recovery charge Qrr both generate losses that  
are transfered to Q1 and increase the dissipation in  
that device. Thirdly, gate charge will impact the  
MOSFETs’ susceptibility to Cdv/dt turn on.  
Qgd  
Qgs2  
ig  
+ I ×  
× V × f + I ×  
× V × f  
in  
in  
ig  
+ Q × V × f  
(
)
g
g
Qoss  
2
+
×V × f  
in  
This simplified loss equation includes the terms Qgs2  
The drain of Q2 is connected to the switching node  
of the converter and therefore sees transitions be-  
tween ground and Vin. As Q1 turns on and off there is  
a rate of change of drain voltage dV/dt which is ca-  
pacitively coupled to the gate of Q2 and can induce  
a voltage spike on the gate that is sufficient to turn  
the MOSFET on, resulting in shoot-through current .  
The ratio of Qgd/Qgs1 must be minimized to reduce the  
potential for Cdv/dt turn on.  
and Qoss which are new to Power MOSFETdata sheets.  
Qgs2 is a sub element of traditional gate-source  
charge that is included in all MOSFET data sheets.  
The importance of splitting this gate-source charge  
into two sub elements, Qgs1 and Qgs2, can be seen from  
Fig 16.  
Qgs2 indicates the charge that must be supplied by  
the gate driver between the time that the threshold  
voltage has been reached and the time the drain cur-  
rent rises to Idmax at which time the drain voltage be-  
gins to change. Minimizing Qgs2 is a critical factor in  
reducing switching losses in Q1.  
Qoss is the charge that must be supplied to the out-  
put capacitance of the MOSFET during every switch-  
ing cycle. Figure A shows how Qoss is formed by the  
parallel combination of the voltage dependant (non-  
linear) capacitance’s Cds and Cdg when multiplied by  
the power supply input buss voltage.  
Figure A: Qoss Characteristic  
10  
www.irf.com  
IRF7335D1  
SO-14 Package Details  
SO-14 Part Marking  
www.irf.com  
11  
IRF7335D1  
SO-14 Tape and Reel  
Notes:  

‚
ƒ
„
Repetitive rating; pulse width limited by max. junction temperature.  
Pulse width 300 µs; duty cycle 2%.  
When mounted on 1 inch square copper board.  
Combined Q1,Q2 IRMS @ Pwr Vout pins. Calculated continuous current based on max allowable junction temperature; switching or other  
losses will decrease RMS current capability  
Q1 and Q2 is tested 100% in production to 50mJ to stress and eliminate potentially defective parts. This is not a design for use value.  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the consumer market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.9/02  
12  
www.irf.com  

相关型号:

IRF7338

HEXFET Power MOSFET
INFINEON

IRF7338PBF

HEXFET Power MOSFET
INFINEON

IRF733FI

TRANSISTOR | MOSFET | N-CHANNEL | 350V V(BR)DSS | 3A I(D) | TO-220AB
ETC

IRF733R

TRANSISTOR | MOSFET | N-CHANNEL | 350V V(BR)DSS | 4.5A I(D) | TO-220AB
ETC

IRF734

Power MOSFET
VISHAY

IRF734-007PBF

Power Field-Effect Transistor, 4.9A I(D), 450V, 1.2ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB
VISHAY

IRF734-013PBF

Power Field-Effect Transistor, 4.9A I(D), 450V, 1.2ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB
VISHAY

IRF734-018

Power Field-Effect Transistor, 4.9A I(D), 450V, 1.2ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB
VISHAY

IRF734-018PBF

Power Field-Effect Transistor, 4.9A I(D), 450V, 1.2ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB
VISHAY

IRF734-019PBF

Power Field-Effect Transistor, 4.9A I(D), 450V, 1.2ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB
VISHAY

IRF7341

HEXFET Power MOSFET
INFINEON

IRF7341GPBF

HEXFET® Power MOSFET
INFINEON