IRF7351 [INFINEON]

60V 双 N 通道 HEXFET Power MOSFET, 采用 SO-8 封装;
IRF7351
型号: IRF7351
厂家: Infineon    Infineon
描述:

60V 双 N 通道 HEXFET Power MOSFET, 采用 SO-8 封装

文件: 总11页 (文件大小:285K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 97436  
IRF7351PbF  
HEXFET® Power MOSFET  
Applications  
VDSS  
60V  
RDS(on) max  
Qg (typ.)  
24nC  
l Synchronous Rectifier MOSFET for  
Isolated DC-DC Converters  
l Low Power Motor Drive Systems  
17.8m @V = 10V  
GS  
1
8
S1  
D1  
Benefits  
2
7
G1  
D1  
l Ultra-Low Gate Impedance  
l Fully Characterized Avalanche Voltage  
and Current  
3
6
S2  
D2  
4
5
G2  
D2  
l 20V VGS Max. Gate Rating  
SO-8  
Top View  
Absolute Maximum Ratings  
Parameter  
Max.  
60  
Units  
V
VDS  
Drain-to-Source Voltage  
Gate-to-Source Voltage  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
V
± 20  
8.0  
GS  
I
I
I
@ TA = 25°C  
D
D
@ TA = 70°C  
6.4  
A
64  
DM  
Power Dissipation  
P
P
@TA = 25°C  
@TA = 70°C  
2.0  
W
D
D
Power Dissipation  
1.28  
Linear Derating Factor  
Operating Junction and  
0.016  
-55 to + 150  
W/°C  
°C  
T
J
T
Storage Temperature Range  
STG  
Thermal Resistance  
Parameter  
Junction-to-Drain Lead  
Junction-to-Ambient  
Typ.  
–––  
Max.  
20  
Units  
°C/W  
Rθ  
Rθ  
JL  
–––  
62.5  
JA  
Notes  through are on page 10  
www.irf.com  
1
11/18/09  
IRF7351PbF  
Static @ TJ = 25°C (unless otherwise specified)  
Parameter  
Drain-to-Source Breakdown Voltage  
Min. Typ. Max. Units  
60 ––– –––  
Conditions  
VGS = 0V, ID = 250µA  
BVDSS  
V
∆ΒVDSS/TJ  
RDS(on)  
VGS(th)  
Breakdown Voltage Temp. Coefficient ––– 0.068 ––– V/°C Reference to 25°C, ID = 1mA  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
–––  
2.0  
13.7 17.8  
VGS = 10V, ID = 8.0A  
VDS = VGS, ID = 50µA  
mΩ  
V
–––  
-8.2  
–––  
–––  
–––  
4.0  
VGS(th)  
IDSS  
Gate Threshold Voltage Coefficient  
Drain-to-Source Leakage Current  
–––  
–––  
–––  
–––  
–––  
18  
––– mV/°C  
20  
µA VDS = 60V, VGS = 0V  
VDS = 60V, VGS = 0V, TJ = 125°C  
nA VGS = 20V  
250  
100  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Forward Transconductance  
Total Gate Charge  
––– -100  
V
V
GS = -20V  
gfs  
Qg  
–––  
24  
–––  
36  
S
DS = 25V, ID = 6.4A  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Qsw  
Qoss  
td(on)  
tr  
Pre-Vth Gate-to-Source Charge  
Post-Vth Gate-to-Source Charge  
Gate-to-Drain Charge  
3.8  
1.2  
7.2  
11.8  
8.4  
7.5  
5.1  
5.9  
17  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
VDS = 30V  
VGS = 10V  
nC  
ID = 6.4A  
Gate Charge Overdrive  
Switch Charge (Qgs2 + Qgd)  
See Fig. 17  
Output Charge  
nC VDS = 16V, VGS = 0V  
DD = 30V, VGS = 10V  
ns ID = 6.4A  
G = 1.8Ω  
Turn-On Delay Time  
Rise Time  
V
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
R
6.7  
Ciss  
Coss  
Crss  
Input Capacitance  
Output Capacitance  
Reverse Transfer Capacitance  
––– 1330 –––  
V
V
GS = 0V  
–––  
–––  
190  
92  
–––  
–––  
pF  
DS = 30V  
ƒ = 1.0MHz  
Avalanche Characteristics  
Parameter  
Typ.  
–––  
–––  
Max.  
325  
6.4  
Units  
mJ  
Single Pulse Avalanche Energy  
EAS  
IAR  
Avalanche Current  
A
Diode Characteristics  
Parameter  
Min. Typ. Max. Units  
Conditions  
IS  
Continuous Source Current  
–––  
–––  
1.8  
MOSFET symbol  
(Body Diode)  
Pulsed Source Current  
A
showing the  
integral reverse  
ISM  
–––  
–––  
64  
(Body Diode)  
Diode Forward Voltage  
p-n junction diode.  
VSD  
trr  
–––  
–––  
–––  
–––  
20  
1.3  
30  
92  
V
T = 25°C, I = 6.4A, V = 0V  
J S GS  
Reverse Recovery Time  
Reverse Recovery Charge  
ns T = 25°C, I = 6.4A, VDD = 30V  
J F  
Qrr  
di/dt = 300A/µs  
61  
nC  
2
www.irf.com  
IRF7351PbF  
100  
10  
1
100  
10  
1
VGS  
10V  
VGS  
10V  
TOP  
TOP  
8.0V  
6.0V  
5.0V  
4.5V  
4.3V  
4.0V  
3.8V  
8.0V  
6.0V  
5.0V  
4.5V  
4.3V  
4.0V  
3.8V  
BOTTOM  
BOTTOM  
60µs PULSE WIDTH  
3.8V  
Tj = 25°C  
60µs PULSE WIDTH  
Tj = 150°C  
3.8V  
0.1  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
V
, Drain-to-Source Voltage (V)  
DS  
V
, Drain-to-Source Voltage (V)  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
100  
10  
2.0  
I
= 8.0A  
D
V
= 10V  
GS  
1.8  
1.5  
1.3  
1.0  
0.8  
0.5  
T
= 25°C  
J
T
= 150°C  
J
1
V
= 25V  
DS  
60µs PULSE WIDTH  
0.1  
2
3
4
5
6
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
T
J
, Junction Temperature (°C)  
V
, Gate-to-Source Voltage (V)  
GS  
Fig 3. Typical Transfer Characteristics  
Fig 4. Normalized On-Resistance  
vs.Temperature  
www.irf.com  
3
IRF7351PbF  
100000  
14.0  
12.0  
10.0  
8.0  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
I = 6.4A  
D
C
C
C
+ C , C  
SHORTED  
iss  
gs  
gd  
ds  
= C  
rss  
oss  
gd  
= C + C  
V
V
V
= 48V  
= 30V  
= 12V  
DS  
DS  
DS  
ds  
gd  
10000  
1000  
100  
C
iss  
C
C
oss  
6.0  
rss  
4.0  
2.0  
10  
0.0  
1
10  
, Drain-to-Source Voltage (V)  
100  
0
5
10  
15  
20  
25  
30  
35  
V
DS  
Q , Total Gate Charge (nC)  
G
Fig 5. Typical Capacitance vs.  
Fig 6. Typical Gate Charge vs.  
Drain-to-SourceVoltage  
Gate-to-SourceVoltage  
100  
10  
1
1000  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
100  
10  
1
T
= 150°C  
J
100µsec  
1msec  
10msec  
T
= 25°C  
J
DC  
T
= 25°C  
A
Tj = 150°C  
Single Pulse  
V
= 0V  
GS  
0.1  
0.1  
0.0  
0.2  
V
0.4  
0.6  
0.8  
1.0  
1.2  
0.01  
0.1  
1
10  
100  
1000  
, Source-to-Drain Voltage (V)  
V
, Drain-to-Source Voltage (V)  
SD  
DS  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
4
www.irf.com  
IRF7351PbF  
3.5  
3.0  
2.5  
2.0  
1.5  
8
7
6
5
4
3
2
1
0
I
= 50µA  
D
-75 -50 -25  
0
25 50 75 100 125 150  
25  
50  
T
75  
100  
125  
150  
T
, Temperature ( °C )  
, Case Temperature (°C)  
J
C
Fig 9. Maximum Drain Current vs.  
Fig 10. Threshold Voltage vs. Temperature  
CaseTemperature  
100  
10  
D = 0.50  
0.20  
0.10  
0.05  
0.02  
0.01  
1
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
0.1  
Ri (°C/W) τi (sec)  
τ
τ
J τJ  
τ
3.6777  
21.765  
25.683  
11.374  
0.009926  
25.24029  
3.723179  
0.348001  
AτA  
τ
1 τ1  
τ
τ
2 τ2  
3 τ3  
4 τ4  
0.01  
0.001  
0.0001  
Ci= τi/Ri  
Ci= τi/Ri  
SINGLE PULSE  
( THERMAL RESPONSE )  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
1000  
t
, Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient  
www.irf.com  
5
IRF7351PbF  
50  
40  
30  
20  
10  
0
1400  
1200  
1000  
800  
600  
400  
200  
0
I
= 8.0A  
I
D
D
TOP  
0.53A  
0.79A  
BOTTOM 6.4A  
T
= 125°C  
J
T
= 25°C  
J
0
5
10  
15  
20  
25  
50  
75  
100  
125  
150  
Starting T , Junction Temperature (°C)  
V
Gate -to -Source Voltage (V)  
J
GS,  
Fig 13. Maximum Avalanche Energy  
Fig 12. On-Resistance vs. Gate Voltage  
vs. Drain Current  
LD  
VDS  
15V  
+
-
VDD  
DRIVER  
+
L
V
DS  
D.U.T  
D.U.T  
AS  
R
G
VGS  
V
DD  
-
I
A
Pulse Width < 1µs  
Duty Factor < 0.1%  
VGS  
20V  
0.01  
t
p
Fig 14a. Unclamped Inductive Test Circuit  
Fig 15a. Switching Time Test Circuit  
V
(BR)DSS  
VDS  
t
p
90%  
10%  
VGS  
td(on)  
td(off)  
tr  
I
tf  
AS  
Fig 15b. Switching Time Waveforms  
Fig 14b. Unclamped Inductive Waveforms  
6
www.irf.com  
IRF7351PbF  
Driver Gate Drive  
P.W.  
P.W.  
D =  
Period  
D.U.T  
Period  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Curent  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 16. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
Id  
Current Regulator  
Same Type as D.U.T.  
Vds  
Vgs  
50KΩ  
.3µF  
.2µF  
12V  
+
V
DS  
D.U.T.  
-
Vgs(th)  
V
GS  
3mA  
I
I
D
G
Qgs1  
Qgs2  
Qgd  
Qgodr  
Current Sampling Resistors  
Fig 17a. Gate Charge Test Circuit  
Fig 17b. Gate Charge Waveform  
www.irf.com  
7
IRF7351PbF  
Power MOSFET Selection for Non-Isolated DC/DC Converters  
Synchronous FET  
Control FET  
The power loss equation for Q2 is approximated  
by;  
Special attention has been given to the power losses  
in the switching elements of the circuit - Q1 and Q2.  
Power losses in the high side switch Q1, also called  
the Control FET, are impacted by the Rds(on) of the  
MOSFET, but these conduction losses are only about  
one half of the total losses.  
P = P  
+ P + P*  
loss  
conduction  
drive  
output  
P = Irms 2 × Rds(on)  
loss ( )  
Power losses in the control switch Q1 are given  
by;  
+ Q × V × f  
(
)
g
g
Qoss  
Ploss = Pconduction+ Pswitching+ Pdrive+ Poutput  
+
×V × f + Q × V × f  
(
)
in  
rr  
in  
2  
This can be expanded and approximated by;  
*dissipated primarily in Q1.  
P
= I 2 × Rds(on)  
(
)
loss  
rms  
For the synchronous MOSFET Q2, Rds(on) is an im-  
portant characteristic; however, once again the im-  
portance of gate charge must not be overlooked since  
it impacts three critical areas. Under light load the  
MOSFET must still be turned on and off by the con-  
trol IC so the gate drive losses become much more  
significant. Secondly, the output charge Qoss and re-  
verse recovery charge Qrr both generate losses that  
are transfered to Q1 and increase the dissipation in  
that device. Thirdly, gate charge will impact the  
MOSFETs’ susceptibility to Cdv/dt turn on.  
Qgd  
ig  
Qgs2  
ig  
+ I ×  
× V × f + I ×  
× V × f  
in  
in  
+ Q × V × f  
(
)
g
g
Qoss  
+
×V × f  
in  
2
This simplified loss equation includes the terms Qgs2  
The drain of Q2 is connected to the switching node  
of the converter and therefore sees transitions be-  
tween ground and Vin. As Q1 turns on and off there is  
a rate of change of drain voltage dV/dt which is ca-  
pacitively coupled to the gate of Q2 and can induce  
a voltage spike on the gate that is sufficient to turn  
the MOSFET on, resulting in shoot-through current .  
The ratio of Qgd/Qgs1 must be minimized to reduce the  
potential for Cdv/dt turn on.  
and Qoss which are new to Power MOSFET data sheets.  
Qgs2 is a sub element of traditional gate-source  
charge that is included in all MOSFET data sheets.  
The importance of splitting this gate-source charge  
into two sub elements, Qgs1 and Qgs2, can be seen from  
Fig 16.  
Qgs2 indicates the charge that must be supplied by  
the gate driver between the time that the threshold  
voltage has been reached and the time the drain cur-  
rent rises to Idmax at which time the drain voltage be-  
gins to change. Minimizing Qgs2 is a critical factor in  
reducing switching losses in Q1.  
Qoss is the charge that must be supplied to the out-  
put capacitance of the MOSFET during every switch-  
ing cycle. Figure A shows how Qoss is formed by the  
parallel combination of the voltage dependant (non-  
linear) capacitance’s Cds and Cdg when multiplied by  
the power supply input buss voltage.  
Figure A: Qoss Characteristic  
8
www.irf.com  
IRF7351PbF  
SO-8 Package Outline (Mosfet & Fetky)  
Dimensions are shown in milimeters (inches)  
SO-8 Part Marking Information  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
www.irf.com  
9
IRF7351PbF  
SO-8 Tape and Reel  
TERMINAL NUMBER 1  
12.3 ( .484 )  
11.7 ( .461 )  
8.1 ( .318 )  
7.9 ( .312 )  
FEED DIRECTION  
NOTES:  
1. CONTROLLING DIMENSION : MILLIMETER.  
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).  
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.  
330.00  
(12.992)  
MAX.  
14.40 ( .566 )  
12.40 ( .488 )  
NOTES :  
1. CONTROLLING DIMENSION : MILLIMETER.  
2. OUTLINE CONFORMS TO EIA-481 & EIA-541.  
Notes:  
 Repetitive rating; pulse width limited by  
max. junction temperature.  
‚ Starting TJ = 25°C, L = 16mH  
RG = 25, IAS = 6.4A.  
„ When mounted on 1 inch square copper board.  
Rθ is measured at TJ approximately 90°C.  
ƒ Pulse width 400µs; duty cycle 2%.  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 11/09  
10  
www.irf.com  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on the product, technology,  
event be regarded as a guarantee of conditions or delivery terms and conditions and prices please  
characteristics (“Beschaffenheitsgarantie”) .  
contact your nearest Infineon Technologies office  
(www.infineon.com).  
With respect to any examples, hints or any typical  
values stated herein and/or any information  
regarding the application of the product, Infineon  
Technologies hereby disclaims any and all  
warranties and liabilities of any kind, including  
without limitation warranties of non-infringement  
of intellectual property rights of any third party.  
WARNINGS  
Due to technical requirements products may  
contain dangerous substances. For information on  
the types in question please contact your nearest  
Infineon Technologies office.  
In addition, any information given in this document  
is subject to customers compliance with its  
obligations stated in this document and any  
applicable legal requirements, norms and  
standards concerning customers products and any  
use of the product of Infineon Technologies in  
customers applications.  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
authorized  
representatives  
of  
Infineon  
Technologies, Infineon Technologies’ products may  
not be used in any applications where a failure of  
the product or any consequences of the use thereof  
can reasonably be expected to result in personal  
injury.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customers technical departments  
to evaluate the suitability of the product for the  
intended application and the completeness of the  
product information given in this document with  
respect to such application.  

相关型号:

IRF7351PBF

Synchronous Rectifier MOSFET for Isolated DC-DC Converters
INFINEON

IRF7351TRPBF

Synchronous Rectifier MOSFET for Isolated DC-DC Converters
INFINEON

IRF7353D1

FETKY MOSFET / Schottky Diode
INFINEON

IRF7353D1PBF

FETKY⑩ MOSFET / Schottky Diode
INFINEON

IRF7353D1TR

Power Field-Effect Transistor, 6.5A I(D), 30V, 0.032ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, MS-012AA, SO-8
INFINEON

IRF7353D1TRPBF

Power Field-Effect Transistor, 6.5A I(D), 30V, 0.032ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, MS-012AA, SO-8
INFINEON

IRF7353D2

FETKY MOSFET / Schottky Diode
INFINEON

IRF7353D2PBF

MOSFET / Schottky Diode (VDSS = 30V , RDS(on) = 0.029ヘ , Schottky VF = 0.52V)
INFINEON

IRF7353D2TR

Power Field-Effect Transistor, 6.5A I(D), 30V, 0.029ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, MS-012AA, SO-8
INFINEON

IRF7353D2TRPBF

暂无描述
INFINEON

IRF7353D2UPBF

Power Field-Effect Transistor, 6.5A I(D), 30V, 0.029ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, LEAD FREE, SO-8, 8 PIN
INFINEON

IRF7353D2UTRPBF

暂无描述
INFINEON