IRF8306MTRPBF [INFINEON]

HEXFET Power MOSFET plus Schottky Diode;
IRF8306MTRPBF
型号: IRF8306MTRPBF
厂家: Infineon    Infineon
描述:

HEXFET Power MOSFET plus Schottky Diode

文件: 总9页 (文件大小:280K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 97670  
IRF8306MPbF  
IRF8306MTRPbF  
HEXFET® Power MOSFET plus Schottky Diode ‚  
Typical values (unless otherwise specified)  
l RoHS Compliant Containing No Lead and Halogen Free   
l Integrated Monolithic Schottky Diode  
l Low Profile (<0.7 mm)  
VDSS  
VGS  
RDS(on)  
RDS(on)  
30V max ±20V max  
1.8mΩ@ 10V 2.8mΩ@ 4.5V  
Qg tot Qgd  
Qgs2  
Qrr  
Qoss Vgs(th)  
l Dual Sided Cooling Compatible   
l Ultra Low Package Inductance  
25nC  
6.7nC 3.0nC  
29nC  
22nC  
1.8V  
l Optimized for High Frequency Switching   
l Ideal for CPU Core DC-DC Converters  
l Optimized for Sync. FET socket of Sync. Buck Converter  
l Low Conduction and Switching Losses  
l Compatible with existing Surface Mount Techniques   
l 100% Rg tested  
S
S
G
D
D
DirectFET™ ISOMETRIC  
MX  
Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details)  
SQ  
SX  
ST  
MQ  
MT  
MP  
MX  
Description  
The IRF8306MPbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve  
the lowest on-state resistance in a package that has the footprint of a SO-8 and only 0.7 mm profile. The DirectFET package is compatible  
with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering  
techniques. Application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual  
sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%.  
The IRF8306MPbF balances industry leading on-state resistance while minimizing gate charge along with ultra low package inductance to  
reduce both conduction and switching losses. This part contains an integrated Schottky diode to reduce the Qrr of the body drain diode further  
reducing the losses in a Synchronous Buck circuit. The reduced losses make this product ideal for high frequency/high efficiency DC-DC  
converters that power high current loads such as the latest generation of microprocessors. The IRF8306MPbF has been optimized for  
parameters that are critical in synchronous buck converter’s Sync FET sockets.  
Absolute Maximum Ratings  
Max.  
30  
Parameter  
Units  
V
VDS  
Drain-to-Source Voltage  
±20  
23  
Gate-to-Source Voltage  
V
GS  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
I
I
I
I
@ TA = 25°C  
D
D
D
18  
A
@ TA = 70°C  
@ TC = 25°C  
140  
180  
230  
18  
DM  
EAS  
IAR  
Single Pulse Avalanche Energy  
Avalanche Current  
mJ  
A
14.0  
12.0  
10.0  
8.0  
10  
8
I = 18A  
V
V
= 24V  
I
= 23A  
D
DS  
DS  
D
= 15V  
VDS= 6V  
6
T
= 125°C  
6.0  
J
4
4.0  
2
2.0  
T
= 25°C  
6
J
0.0  
0
2
4
8
10 12 14 16 18 20  
0
20  
Q
40  
60  
80  
Total Gate Charge (nC)  
G
V
Gate -to -Source Voltage (V)  
GS,  
Fig 1. Typical On-Resistance vs. Gate Voltage  
Fig 2. Typical Total Gate Charge vs. Gate-to-Source Voltage  
Notes:  
„ TC measured with thermocouple mounted to top (Drain) of part.  
Repetitive rating; pulse width limited by max. junction temperature.  
† Starting TJ = 25°C, L = 1.37mH, RG = 50Ω, IAS = 18A.  
 Click on this section to link to the appropriate technical paper.  
‚ Click on this section to link to the DirectFET Website.  
ƒ Surface mounted on 1 in. square Cu board, steady state.  
www.irf.com  
1
5/4/11  
IRF8306MTRPbF  
Static @ TJ = 25°C (unless otherwise specified)  
Conditions  
VGS = 0V, ID = 1.0mA  
Reference to 25°C, ID = 6mA  
Parameter  
Min. Typ. Max. Units  
BVDSS  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
30  
–––  
–––  
–––  
1.35  
–––  
–––  
–––  
–––  
–––  
61  
–––  
2.7  
1.8  
2.8  
1.8  
-4.8  
–––  
–––  
–––  
–––  
–––  
25  
–––  
V
ΔΒVDSS/ΔTJ  
RDS(on)  
––– mV/°C  
V
GS = 10V, ID = 23A  
2.5  
3.6  
m
Ω
VGS = 4.5V, ID = 18A  
VDS = VGS, ID = 100μA  
VGS(th)  
Gate Threshold Voltage  
2.35  
V
V
––– mV/°C  
DS = VGS, ID = 10mA  
ΔVGS(th)/ΔTJ  
IDSS  
Gate Threshold Voltage Coefficient  
Drain-to-Source Leakage Current  
VDS = 24V, VGS = 0V  
VDS = 24V, VGS = 0V, TJ = 125°C  
VGS = 20V  
500  
5.0  
μA  
mA  
nA  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Forward Transconductance  
Total Gate Charge  
100  
-100  
–––  
38  
V
GS = -20V  
VDS = 15V, ID = 18A  
gfs  
S
Qg  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
V
DS = 15V  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Qsw  
Qoss  
RG  
Pre-Vth Gate-to-Source Charge  
Post-Vth Gate-to-Source Charge  
Gate-to-Drain Charge  
Gate Charge Overdrive  
Switch Charge (Qgs2 + Qgd)  
Output Charge  
7.3  
3.0  
6.7  
8.0  
9.7  
22  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
VGS = 4.5V  
ID = 18A  
nC  
See Fig. 15  
V
DS = 16V, VGS = 0V  
nC  
Gate Resistance  
1.3  
16  
Ω
VDD = 15V, VGS = 4.5V  
ID = 18A  
td(on)  
tr  
td(off)  
tf  
Turn-On Delay Time  
Rise Time  
34  
ns  
R = 1.8  
Ω
Turn-Off Delay Time  
19  
G
See Fig. 17  
VGS = 0V  
Fall Time  
19  
Ciss  
Coss  
Crss  
Input Capacitance  
––– 4110 –––  
V
DS = 15V  
Output Capacitance  
–––  
–––  
970  
340  
–––  
–––  
pF  
ƒ = 1.0MHz  
Reverse Transfer Capacitance  
Diode Characteristics  
Conditions  
Parameter  
Min. Typ. Max. Units  
IS  
MOSFET symbol  
showing the  
Continuous Source Current  
(Body Diode)  
–––  
–––  
23  
D
S
A
G
ISM  
integral reverse  
p-n junction diode.  
Pulsed Source Current  
(Body Diode)  
–––  
–––  
180  
TJ = 25°C, IS = 18A, VGS = 0V  
TJ = 25°C, IF = 18A  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
Reverse Recovery Charge  
–––  
–––  
–––  
0.7  
21  
29  
0.75  
32  
V
ns  
nC  
Qrr  
di/dt = 300A/μs  
44  
Notes:  
‡ Pulse width 400μs; duty cycle 2%.  
2
www.irf.com  
IRF8306MTRPbF  
Absolute Maximum Ratings  
Max.  
Parameter  
Units  
2.1  
Power Dissipation  
Power Dissipation  
Power Dissipation  
W
P
P
P
@TA = 25°C  
@TA = 70°C  
@TC = 25°C  
D
D
D
P
J
1.3  
75  
270  
Peak Soldering Temperature  
Operating Junction and  
°C  
T
T
T
-40 to + 150  
Storage Temperature Range  
STG  
Thermal Resistance  
Parameter  
Typ.  
–––  
12.5  
20  
Max.  
60  
Units  
°C/W  
W/°C  
RθJA  
Junction-to-Ambient  
Junction-to-Ambient  
Junction-to-Ambient  
Junction-to-Case  
RθJA  
–––  
–––  
1.66  
–––  
RθJA  
RθJC  
–––  
1.0  
RθJ-PCB  
Junction-to-PCB Mounted  
Linear Derating Factor  
0.017  
100  
10  
D = 0.50  
0.20  
0.10  
0.05  
0.02  
0.01  
1
R1  
R1  
R2  
R2  
R3  
R3  
R4  
τι  
(sec)  
Ri (°C/W)  
R4  
τJ  
24.84696 2.379018  
10.92897 0.219018  
3.658783 0.00733  
20.42272 15.9657  
τC  
τJ  
τ1  
τ
τ
τ
3 τ3  
0.1  
τ4  
2 τ2  
τ1  
τ4  
Ci= τi/Ri  
0.01  
0.001  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthja + Tc  
SINGLE PULSE  
( THERMAL RESPONSE )  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
t
, Rectangular Pulse Duration (sec)  
1
Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient ƒ  
Notes:  
Š R is measured at TJ of approximately 90°C.  
ˆ Used double sided cooling , mounting pad with large heatsink.  
‰ Mounted on minimum footprint full size board with metalized  
back and with small clip heatsink.  
θ
‰ Mounted on minimum  
footprint full size board with  
metalized back and with small  
clip heatsink (still air)  
3
‰ Mounted to a PCB with  
small clip heatsink (still air)  
ƒ Surface mounted on 1 in. square Cu  
(still air).  
www.irf.com  
IRF8306MTRPbF  
1000  
1000  
100  
10  
VGS  
10V  
VGS  
10V  
TOP  
TOP  
4.5V  
3.5V  
3.3V  
3.0V  
2.8V  
2.5V  
2.3V  
4.5V  
3.5V  
3.3V  
3.0V  
2.8V  
2.5V  
2.3V  
100  
10  
1
BOTTOM  
BOTTOM  
2.3V  
2.3V  
1
60μs PULSE WIDTH  
60μs PULSE WIDTH  
Tj = 25°C  
Tj = 150°C  
0.1  
1
0.1  
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
DS  
, Drain-to-Source Voltage (V)  
DS  
Fig 4. Typical Output Characteristics  
Fig 5. Typical Output Characteristics  
1000  
100  
10  
2.0  
1.5  
1.0  
0.5  
I
= 23A  
V
= 15V  
D
DS  
60μs PULSE WIDTH  
V
V
= 10V  
GS  
GS  
= 4.5V  
T
T
T
= 150°C  
= 25°C  
= -40°C  
J
J
J
1
0.1  
1
2
3
4
-60 -40 -20  
0
20 40 60 80 100120 140 160  
T
J
, Junction Temperature (°C)  
V
, Gate-to-Source Voltage (V)  
GS  
Fig 7. Normalized On-Resistance vs. Temperature  
Fig 6. Typical Transfer Characteristics  
5
100000  
V
C
= 0V,  
f = 1 MHZ  
GS  
T
= 25°C  
Vgs = 3.5V  
Vgs = 4.0V  
Vgs = 4.5V  
Vgs = 5.0V  
Vgs = 10V  
J
= C + C , C SHORTED  
iss  
gs  
gd ds  
C
= C  
rss  
gd  
C
= C + C  
4
3
2
1
oss  
ds  
gd  
10000  
1000  
100  
C
iss  
C
oss  
C
rss  
0
50  
100  
150  
200  
1
10  
, Drain-to-Source Voltage (V)  
100  
V
I , Drain Current (A)  
DS  
D
Fig 9. Typical On-Resistance vs.  
Drain Current and Gate Voltage  
Fig 8. Typical Capacitance vs.Drain-to-Source Voltage  
4
www.irf.com  
IRF8306MTRPbF  
1000  
100  
10  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
100μsec  
1msec  
1
DC  
T
T
T
= 150°C  
= 25°C  
= -40°C  
J
J
J
1
0.1  
0.01  
T = 25°C  
A
10msec  
Tj = 150°C  
Single Pulse  
V
= 0V  
GS  
0.1  
0.0  
0.1  
1.0  
10.0  
100.0  
0.0  
0.2  
V
0.4  
0.6  
0.8  
1.0  
1.2  
V
, Drain-toSource Voltage (V)  
DS  
, Source-to-Drain Voltage (V)  
SD  
Fig 10. Typical Source-Drain Diode Forward Voltage  
Fig11. Maximum Safe Operating Area  
2.5  
2.0  
1.5  
1.0  
140  
120  
100  
80  
I
= 10mA  
D
60  
40  
20  
0
-75 -50 -25  
0
25 50 75 100 125 150  
25  
50  
T
75  
100  
125  
150  
T
, Temperature ( °C )  
J
, Case Temperature (°C)  
C
Fig 13. Typical Threshold Voltage vs. Junction  
Fig 12. Maximum Drain Current vs. Case Temperature  
Temperature  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
I
D
TOP  
1.1A  
1.8A  
BOTTOM 18A  
25  
50  
75  
100  
125  
150  
Starting T , Junction Temperature (°C)  
J
Fig 14. Maximum Avalanche Energy vs. Drain Current  
www.irf.com  
5
IRF8306MTRPbF  
Id  
Vds  
Vgs  
L
VCC  
DUT  
0
Vgs(th)  
20K  
Qgs1  
Qgs2  
Qgodr  
Qgd  
Fig 15a. Gate Charge Test Circuit  
Fig 15b. Gate Charge Waveform  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
V
R
D.U.T  
AS  
GS  
G
V
DD  
-
I
A
20V  
t
0.01Ω  
p
I
AS  
Fig 16b. Unclamped Inductive Waveforms  
Fig 16a. Unclamped Inductive Test Circuit  
RD  
V
DS  
VDS  
90%  
VGS  
D.U.T.  
RG  
+VDD  
-
VGS  
10%  
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 17a. Switching Time Test Circuit  
Fig 17b. Switching Time Waveforms  
6
www.irf.com  
IRF8306MTRPbF  
Driver Gate Drive  
P.W.  
P.W.  
D =  
D.U.T  
Period  
Period  
+
V***  
=10V  
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
Current  
„
-
+
di/dt  
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
*
VDD  
**  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Curent  
I
SD  
Ripple  
5%  
* Use P-Channel Driver for P-Channel Measurements  
** Reverse Polarity for P-Channel  
*** VGS = 5V for Logic Level Devices  
Fig 18. Diode Reverse Recovery Test Circuit for HEXFET® Power MOSFETs  
DirectFET™ Board Footprint, MX Outline  
(Medium Size Can, X-Designation).  
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.  
This includes all recommendations for stencil and substrate designs.  
G=GATE  
D=DRAIN  
S=SOURCE  
D
D
D
D
S
S
G
www.irf.com  
7
IRF8306MTRPbF  
DirectFET™ Outline Dimension, MX Outline  
(Medium Size Can, X-Designation)  
Please see AN-1035 for DirectFET assembly details, stencil and substrate design recommendations  
DIMENSIONS  
METRIC  
IMPERIAL  
CODE MIN MAX  
MIN  
MAX  
0.250  
0.199  
0.156  
0.018  
0.028  
0.028  
0.056  
0.033  
0.017  
0.040  
0.095  
0.028  
0.003  
0.007  
A
B
C
D
E
F
6.25  
4.80  
3.85  
0.35  
0.68  
0.68  
1.38  
0.80  
0.38  
0.88  
2.28  
0.59  
0.03  
0.08  
6.35  
5.05  
3.95  
0.45  
0.72  
0.72  
1.42  
0.84  
0.42  
1.02  
2.42  
0.70  
0.08  
0.17  
0.246  
0.189  
0.152  
0.014  
0.027  
0.027  
0.054  
0.031  
0.015  
0.035  
0.090  
0.023  
0.001  
0.003  
G
H
J
K
L
M
R
P
Dimensions are shown in  
millimeters (inches)  
DirectFET™ Part Marking  
GATE MARKING  
LOGO  
PART NUMBER  
BATCH NUMBER  
DATE CODE  
Line above the last character of  
the date code indicates "Lead-Free"  
8
www.irf.com  
IRF8306MTRPbF  
DirectFET™ Tape & Reel Dimension (Showing component orientation).  
NOTE: Controlling dimensions in mm  
Std reel quantity is 4800 parts. (ordered as IRF8306MTRPBF). For 1000 parts on 7"  
reel, order IRF8306MTR1PBF  
REEL DIMENSIONS  
STANDARD OPTION (QTY 4800)  
METRIC IMPERIAL  
TR1 OPTION (QTY 1000)  
METRIC IMPERIAL  
MIN  
12.992  
0.795  
0.504  
0.059  
3.937  
N.C  
MIN  
6.9  
MAX  
N.C  
N.C  
0.50  
N.C  
N.C  
0.53  
N.C  
N.C  
CODE  
MIN  
MAX  
N.C  
MIN  
MAX  
N.C  
N.C  
13.2  
N.C  
N.C  
18.4  
14.4  
15.4  
MAX  
N.C  
A
B
C
D
E
F
330.0  
20.2  
12.8  
1.5  
177.77  
19.06  
13.5  
1.5  
0.75  
0.53  
0.059  
2.31  
N.C  
N.C  
N.C  
0.520  
N.C  
12.8  
N.C  
100.0  
N.C  
58.72  
N.C  
N.C  
N.C  
0.724  
0.567  
0.606  
13.50  
12.01  
12.01  
G
H
0.488  
0.469  
0.47  
0.47  
12.4  
11.9  
11.9  
11.9  
LOADED TAPE FEED DIRECTION  
DIMENSIONS  
METRIC  
IMPERIAL  
NOTE: CONTROLLING  
DIMENSIONS IN MM  
CODE  
MIN  
MAX  
0.319  
0.161  
0.484  
0.219  
0.209  
0.264  
N.C  
MIN  
7.90  
3.90  
11.90  
5.45  
5.10  
6.50  
1.50  
1.50  
MAX  
8.10  
4.10  
12.30  
5.55  
5.30  
6.70  
N.C  
A
B
C
D
E
F
0.311  
0.154  
0.469  
0.215  
0.201  
0.256  
0.059  
0.059  
G
H
1.60  
0.063  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Consumer market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.05/2011  
www.irf.com  
9

相关型号:

IRF8308MPBF

RoHs Compliant Containing No Lead and Bromide
INFINEON

IRF8308MPBF_15

Dual Sided Cooling Compatible
INFINEON

IRF8308MTR1PBF

RoHs Compliant Containing No Lead and Bromide
INFINEON

IRF8308MTRPBF

RoHs Compliant Containing No Lead and Bromide
INFINEON

IRF830A

HEXFET Power MOSFET
INFINEON

IRF830A

Power MOSFET
VISHAY

IRF830A

Low Gate Charge Qg Results in Simple Drive Requirement
KERSEMI

IRF830A16A

4.5A, 500V, 1.5ohm, N-CHANNEL, Si, POWER, MOSFET, TO-220AB
MOTOROLA

IRF830AF

4.5A, 500V, 1.5ohm, N-CHANNEL, Si, POWER, MOSFET, TO-220AB
MOTOROLA

IRF830AJ

4.5A, 500V, 1.5ohm, N-CHANNEL, Si, POWER, MOSFET, TO-220AB
MOTOROLA

IRF830AL

Power MOSFET(Vdss=500V, Rds(on)max=1.40ohm, Id=5.0A)
INFINEON

IRF830AL

Power MOSFET
VISHAY