IRFB3077PBF [INFINEON]

High Efficiency Synchronous Rectification in SMPS; 高效率同步整流开关电源
IRFB3077PBF
型号: IRFB3077PBF
厂家: Infineon    Infineon
描述:

High Efficiency Synchronous Rectification in SMPS
高效率同步整流开关电源

晶体 开关 晶体管 脉冲 局域网
文件: 总8页 (文件大小:315K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 97047  
IRFB3077PbF  
Applications  
HEXFET® Power MOSFET  
l High Efficiency Synchronous Rectification in SMPS  
l Uninterruptible Power Supply  
l High Speed Power Switching  
l Hard Switched and High Frequency Circuits  
D
S
VDSS  
RDS(on) typ.  
max.  
75V  
2.8m:  
G
3.3m:  
210A  
Benefits  
l Worldwide Best RDS(on) in TO-220  
l Improved Gate, Avalanche and Dynamic dV/dt  
Ruggedness  
ID  
D
l Fully Characterized Capacitance and Avalanche  
SOA  
l Enhanced body diode dV/dt and dI/dt Capability  
S
D
G
TO-220AB  
IRFB3077PbF  
G
D
S
G a te  
D ra in  
S o u rce  
Absolute Maximum Ratings  
Symbol  
ID @ TC = 25°C  
ID @ TC = 100°C  
IDM  
Parameter  
Continuous Drain Current, VGS @ 10V  
Max.  
210c  
150 c  
850  
Units  
A
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current d  
PD @TC = 25°C  
370  
Maximum Power Dissipation  
Linear Derating Factor  
W
2.5  
W/°C  
V
VGS  
± 20  
Gate-to-Source Voltage  
2.5  
Peak Diode Recovery f  
Operating Junction and  
dV/dt  
TJ  
V/ns  
°C  
-55 to + 175  
TSTG  
Storage Temperature Range  
Soldering Temperature, for 10 seconds  
(1.6mm from case)  
300  
10lbxin (1.1Nxm)  
Mounting torque, 6-32 or M3 screw  
Avalanche Characteristics  
Single Pulse Avalanche Energy e  
EAS (Thermally limited)  
240  
mJ  
A
Avalanche Currentꢀc  
IAR  
See Fig. 14, 15, 22a, 22b,  
Repetitive Avalanche Energy g  
EAR  
mJ  
Thermal Resistance  
Symbol  
Parameter  
Typ.  
–––  
Max.  
0.402  
–––  
Units  
RθJC  
RθCS  
RθJA  
Junction-to-Case k  
Case-to-Sink, Flat Greased Surface  
0.50  
–––  
°C/W  
Junction-to-Ambient jk  
62  
www.irf.com  
1
10/24/05  
IRFB3077PbF  
Static @ TJ = 25°C (unless otherwise specified)  
Symbol  
V(BR)DSS  
Parameter  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
Min. Typ. Max. Units  
75 ––– –––  
––– 0.091 ––– V/°C Reference to 25°C, ID = 5mAd  
Conditions  
VGS = 0V, ID = 250µA  
V
V(BR)DSS/TJ  
RDS(on)  
–––  
2.0  
2.8  
3.3  
4.0  
20  
VGS = 10V, ID = 75A g  
VDS = VGS, ID = 250µA  
VDS = 75V, VGS = 0V  
mΩ  
V
VGS(th)  
–––  
IDSS  
Drain-to-Source Leakage Current  
––– –––  
µA  
––– ––– 250  
––– ––– 100  
––– ––– -100  
VDS = 75V, VGS = 0V, TJ = 125°C  
nA VGS = 20V  
GS = -20V  
f = 1MHz, open drain  
IGSS  
RG  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Gate Input Resistance  
V
–––  
1.2  
–––  
Dynamic @ TJ = 25°C (unless otherwise specified)  
Symbol  
gfs  
Parameter  
Forward Transconductance  
Total Gate Charge  
Min. Typ. Max. Units  
Conditions  
VDS = 50V, ID = 75A  
nC ID = 75A  
DS = 38V  
VGS = 10V g  
DD = 38V  
160 ––– –––  
S
Qg  
––– 160 220  
Qgs  
Qgd  
td(on)  
tr  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Turn-On Delay Time  
–––  
–––  
–––  
–––  
–––  
–––  
37  
42  
25  
87  
69  
95  
–––  
–––  
–––  
–––  
–––  
–––  
V
ns  
V
Rise Time  
ID = 75A  
td(off)  
tf  
Turn-Off Delay Time  
RG = 2.1Ω  
VGS = 10V g  
Fall Time  
Ciss  
Coss  
Crss  
Input Capacitance  
––– 9400 –––  
––– 820 –––  
––– 350 –––  
––– 1090 –––  
––– 1260 –––  
pF  
V
GS = 0V  
Output Capacitance  
VDS = 50V  
Reverse Transfer Capacitance  
Effective Output Capacitance (Energy Related)i  
Effective Output Capacitance (Time Related)h  
ƒ = 1.0MHz  
Coss eff. (ER)  
oss eff. (TR)  
V
GS = 0V, VDS = 0V to 60V j, See Fig.11  
GS = 0V, VDS = 0V to 60V h, See Fig. 5  
C
V
Diode Characteristics  
Symbol  
Parameter  
Min. Typ. Max. Units  
Conditions  
IS  
Continuous Source Current  
––– –––  
A
MOSFET symbol  
210c  
D
S
(Body Diode)  
Pulsed Source Current  
showing the  
integral reverse  
G
ISM  
––– ––– 850  
(Body Diode)di  
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
––– –––  
1.3  
63  
V
TJ = 25°C, IS = 75A, VGS = 0V g  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
VR = 64V,  
Reverse Recovery Time  
Reverse Recovery Charge  
–––  
–––  
–––  
–––  
–––  
42  
50  
59  
86  
2.5  
ns  
IF = 75A  
75  
di/dt = 100A/µs g  
Qrr  
89  
nC  
130  
–––  
IRRM  
ton  
Reverse Recovery Current  
Forward Turn-On Time  
A
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
Notes:  
 Calculated continuous current based on maximum allowable junction  
temperature. Package limitation current is 75A  
‚ Repetitive rating; pulse width limited by max. junction  
temperature.  
† Coss eff. (TR) is a fixed capacitance that gives the same charging time  
as Coss while VDS is rising from 0 to 80% VDSS  
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as  
Coss while VDS is rising from 0 to 80% VDSS  
ˆ When mounted on 1" square PCB (FR-4 or G-10 Material). For recom  
.
.
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.08mH  
RG = 25, IAS = 75A, VGS =10V. Part not recommended for use  
above this value.  
mended footprint and soldering techniques refer to application note #AN-994.  
‰ Rθ is measured at TJ approximately 90°C  
„ ISD 75A, di/dt 400A/µs, VDD V(BR)DSS, TJ 175°C.  
Pulse width 400µs; duty cycle 2%.  
2
www.irf.com  
IRFB3077PbF  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
10V  
8.0V  
6.0V  
5.5V  
5.0V  
4.8V  
4.5V  
VGS  
15V  
10V  
8.0V  
6.0V  
5.5V  
5.0V  
4.8V  
4.5V  
TOP  
TOP  
BOTTOM  
BOTTOM  
4.5V  
4.5V  
60µs PULSE WIDTH  
Tj = 175°C  
60µs PULSE WIDTH  
Tj = 25°C  
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000  
100  
10  
2.5  
2.0  
1.5  
1.0  
0.5  
I
= 75A  
D
V
= 10V  
GS  
T
= 175°C  
J
T
= 25°C  
J
V
= 25V  
DS  
60µs PULSE WIDTH  
1
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
-60 -40 -20  
0
20 40 60 80 100 120 140 160 180  
V
, Gate-to-Source Voltage (V)  
GS  
T
, Junction Temperature (°C)  
J
Fig 4. Normalized On-Resistance vs. Temperature  
Fig 3. Typical Transfer Characteristics  
16000  
12000  
8000  
4000  
0
20  
V
C
= 0V,  
f = 1 MHZ  
I = 75A  
D
GS  
= C + C , C SHORTED  
iss  
gs  
gd ds  
V
= 60V  
DS  
C
= C  
rss  
gd  
16  
12  
8
VDS= 38V  
VDS= 17V  
C
= C + C  
oss  
ds  
gd  
Ciss  
4
Coss  
Crss  
0
0
40  
80  
120 160 200 240 280  
1
10  
100  
Q
Total Gate Charge (nC)  
G
V
, Drain-to-Source Voltage (V)  
DS  
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage  
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage  
www.irf.com  
3
IRFB3077PbF  
1000.0  
10000  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
T
= 175°C  
J
100.0  
10.0  
1.0  
100µsec  
10msec  
LIMITED BY PACKAGE  
1msec  
T
= 25°C  
J
1
DC  
Tc = 25°C  
Tj = 175°C  
Single Pulse  
V
= 0V  
GS  
1.6  
0.1  
0.1  
0.1  
1.0  
10.0  
100.0  
0.0  
0.4  
0.8  
1.2  
2.0  
V
, Drain-toSource Voltage (V)  
V
, Source-to-Drain Voltage (V)  
DS  
SD  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
100  
240  
200  
160  
120  
80  
LIMITED BY PACKAGE  
90  
80  
40  
0
70  
25  
50  
75  
100  
125  
150  
175  
-60 -40 -20  
0
20 40 60 80 100 120 140 160 180  
T
, Case Temperature (°C)  
C
T
, Junction Temperature (°C)  
J
Fig 9. Maximum Drain Current vs.  
Fig 10. Drain-to-Source Breakdown Voltage  
Case Temperature  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
1000  
I
D
TOP  
20A  
35A  
75A  
800  
600  
400  
200  
0
BOTTOM  
0
20  
40  
60  
80  
25  
50  
75  
100  
125  
150  
175  
V
Drain-to-Source Voltage (V)  
Starting T , Junction Temperature (°C)  
DS,  
J
Fig 11. Typical COSS Stored Energy  
Fig 12. Maximum Avalanche Energy Vs. DrainCurrent  
4
www.irf.com  
IRFB3077PbF  
1
0.1  
D = 0.50  
0.20  
0.10  
0.05  
R1  
R1  
R2  
R2  
R3  
R3  
Ri (°C/W) τi (sec)  
0.01  
0.02  
0.01  
τ
JτJ  
τ
τ
Cτ  
0.0766 0.000083  
0.1743 0.000995  
0.1513 0.007038  
τ
1τ1  
τ
2 τ2  
3τ3  
Ci= τi/Ri  
SINGLE PULSE  
( THERMAL RESPONSE )  
0.001  
0.0001  
τ /  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
1000  
100  
10  
Duty Cycle = Single Pulse  
Allowed avalanche Current vs  
avalanche pulsewidth, tav  
assuming Tj = 25°C due to  
0.01  
avalanche losses. Note: In no  
case should Tj be allowed to  
exceed Tjmax  
0.05  
0.10  
1
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 14. Typical Avalanche Current vs.Pulsewidth  
300  
200  
100  
0
Notes on Repetitive Avalanche Curves , Figures 14, 15:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a temperature far in  
excess of Tjmax. This is validated for every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.  
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as  
25°C in Figure 14, 15).  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
TOP  
BOTTOM 1% Duty Cycle  
= 75A  
Single Pulse  
I
D
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)  
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
25  
50  
75  
100  
125  
150  
175  
Iav = 2DT/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·tav  
Starting T , Junction Temperature (°C)  
J
Fig 15. Maximum Avalanche Energy vs. Temperature  
www.irf.com  
5
IRFB3077PbF  
4.0  
24  
20  
16  
12  
8
I
I
I
= 1.0A  
D
D
D
= 1.0mA  
= 250µA  
3.0  
2.0  
I
= 30A  
= 64V  
F
V
T
R
4
= 125°C  
= 25°C  
J
T
J
1.0  
0
-75 -50 -25  
0
25 50 75 100 125 150 175  
, Temperature ( °C )  
100 200 300 400 500 600 700 800 900 1000  
T
J
di / dt - (A / µs)  
f
Fig. 17 - Typical Recovery Current vs. dif/dt  
Fig 16. Threshold Voltage Vs. Temperature  
24  
400  
20  
16  
12  
8
300  
200  
I
= 30A  
= 64V  
I
= 45A  
= 64V  
F
F
100  
0
V
T
V
T
R
R
4
0
= 125°C  
= 125°C  
J
J
T
= 25°C  
T
= 25°C  
J
J
100 200 300 400 500 600 700 800 900 1000  
100 200 300 400 500 600 700 800 900 1000  
di / dt - (A / µs)  
f
di / dt - (A / µs)  
f
Fig. 18 - Typical Recovery Current vs. dif/dt  
Fig. 19 - Typical Stored Charge vs. dif/dt  
400  
300  
200  
100  
0
I
= 45A  
= 64V  
F
V
T
R
= 125°C  
J
T
= 25°C  
J
100 200 300 400 500 600 700 800 900 1000  
di / dt - (A / µs)  
f
Fig. 20 - Typical Stored Charge vs. dif/dt  
6
www.irf.com  
IRFB3077PbF  
Driver Gate Drive  
P.W.  
P.W.  
Period  
Period  
D =  
D.U.T  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Current  
I
SD  
Ripple  
5%  
* VGS = 5V for Logic Level Devices  
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
2
GS  
0.01Ω  
t
p
I
AS  
Fig 22b. Unclamped Inductive Waveforms  
Fig 22a. Unclamped Inductive Test Circuit  
LD  
VDS  
VDS  
90%  
+
-
VDD  
10%  
VGS  
D.U.T  
VGS  
Pulse Width < 1µs  
Duty Factor < 0.1%  
td(on)  
td(off)  
tr  
tf  
Fig 23a. Switching Time Test Circuit  
Fig 23b. Switching Time Waveforms  
Id  
Vds  
Vgs  
L
VCC  
DUT  
Vgs(th)  
0
1K  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Fig 24a. Gate Charge Test Circuit  
Fig 24b. Gate Charge Waveform  
www.irf.com  
7
IRFB3077PbF  
TO-220AB Package Outline (Dimensions are shown in millimeters (inches))  
TO-220AB Part Marking Information  
EXAMPLE: T HIS IS AN IRF1010  
LOT CODE 1789  
PART NUMBER  
AS S EMB LED ON WW 19, 1997  
IN T HE AS S EMBLY LINE "C"  
INT ERNAT IONAL  
RECT IFIER  
LOGO  
Note: "P" in assembly line  
position indicates "Lead-Free"  
DAT E CODE  
YEAR 7 = 1997  
WEEK 19  
AS S E MB LY  
LOT CODE  
LINE C  
TO-220AB packages are not recommended for Surface Mount Application.  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 10/05  
www.irf.com  
8

相关型号:

IRFB30N20D

TRANSISTOR | MOSFET | N-CHANNEL | 200V V(BR)DSS | 30A I(D) | TO-220AB
ETC

IRFB31N20

Power MOSFET(Vdss=200V, Rds(on)max=0.082ohm, Id=31A)
INFINEON

IRFB31N20D

Power MOSFET(Vdss=200V, Rds(on)max=0.082ohm, Id=31A)
INFINEON

IRFB31N20DPBF

HEXFET Power MOSFET ( VDSS = 200V , RDS(on)max = 0.082ヘ , ID = 31A )
INFINEON

IRFB3206

The IR MOSFET™ family of power MOSFETs utilizes proven silicon processes offering designers a wide portfolio of devices to support various applications such as DC motors, inverters, SMPS, lighting, load switches as well as battery powered applications. The devices are available in a variety of surface mount and through-hole packages with industry standard footprints for ease of design. The optimized gate drive options enables designers the flexibility of selecting super, logic or normal level drives.
INFINEON

IRFB3206GPBF

HEXFETPower MOSFET
INFINEON

IRFB3206PBF

HEXFET Power MOSFET
INFINEON

IRFB3207

HEXFET Power MOSFET
INFINEON

IRFB3207HR

Power Field-Effect Transistor, 75A I(D), 75V, 0.0045ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB, PLASTIC PACKAGE-3
INFINEON

IRFB3207PBF

HEXFET㈢Power MOSFET
INFINEON

IRFB3207Z

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. .
INFINEON

IRFB3207ZG

N-Channel MOSFET Transistor
ISC