IRFB5620 [INFINEON]

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters.;
IRFB5620
型号: IRFB5620
厂家: Infineon    Infineon
描述:

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters.

文件: 总8页 (文件大小:277K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 96174  
DIGITAL AUDIO MOSFET  
IRFB5620PbF  
Features  
Key Parameters  
Key Parameters Optimized for Class-D Audio  
Amplifier Applications  
VDS  
200  
V
m
RDS(ON) typ. @ 10V  
Qg typ.  
60  
Low RDSON for Improved Efficiency  
Low QG and QSW for Better THD and Improved  
Efficiency  
25  
nC  
nC  
Qsw typ.  
9.8  
2.6  
175  
RG(int) typ.  
TJ max  
°C  
Low QRR for Better THD and Lower EMI  
175°C Operating Junction Temperature for  
Ruggedness  
D
S
D
Can Deliver up to 300W per Channel into 8Load in  
Half-Bridge Configuration Amplifier  
G
S
D
G
TO-220AB  
G
D
S
Gate  
Drain  
Source  
Description  
This Digital Audio MOSFET is specifically designed for Class-D audio amplifier applications. This MOSFET utilizes  
thelatestprocessingtechniquestoachievelowon-resistancepersiliconarea.Furthermore,Gatecharge,body-diode  
reverse recovery and internal Gate resistance are optimized to improve key Class-D audio amplifier performance  
factors such as efficiency, THD and EMI. Additional features of this MOSFET are 175°C operating junction  
temperature and repetitive avalanche capability. These features combine to make this MOSFET a highly efficient,  
robust and reliable device for ClassD audio amplifier applications.  
Absolute Maximum Ratings  
Parameter  
Drain-to-Source Voltage  
Max.  
200  
±20  
25  
Units  
VDS  
V
VGS  
Gate-to-Source Voltage  
ID @ TC = 25°C  
ID @ TC = 100°C  
IDM  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
18  
A
100  
144  
72  
Power Dissipation  
PD @TC = 25°C  
PD @TC = 100°C  
W
Power Dissipation  
Linear Derating Factor  
0.96  
W/°C  
TJ  
Operating Junction and  
Storage Temperature Range  
-55 to + 175  
TSTG  
°C  
Soldering Temperature, for 10 seconds  
(1.6mm from case)  
300  
10lb in (1.1N m)  
Mounting torque, 6-32 or M3 screw  
Thermal Resistance  
Parameter  
Typ.  
Max.  
1.045  
–––  
Units  
Junction-to-Case  
RθJC  
–––  
0.50  
–––  
Rθ  
Case-to-Sink, Flat, Greased Surface  
Junction-to-Ambient  
°C/W  
CS  
RθJA  
62  
Notes  through are on page 2  
www.irf.com  
1
09/05/08  
IRFB5620PbF  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Min. Typ. Max. Units  
Conditions  
VGS = 0V, ID = 250µA  
BVDSS  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
200  
–––  
–––  
3.0  
–––  
0.22  
60  
–––  
–––  
72.5  
5.0  
V
∆ΒVDSS/TJ  
RDS(on)  
V/°C Reference to 25°C, ID = 1mA  
mΩ  
VGS = 10V, ID = 15A  
VGS(th)  
–––  
-14  
–––  
–––  
–––  
–––  
–––  
25  
V
VDS = VGS, ID = 100µA  
V
/ T  
J
Gate Threshold Voltage Coefficient  
Drain-to-Source Leakage Current  
–––  
–––  
–––  
–––  
–––  
37  
––– mV/°C  
GS(th)  
IDSS  
20  
µA  
VDS = 200V, VGS = 0V  
250  
VDS = 200V, VGS = 0V, TJ = 125°C  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Forward Transconductance  
Total Gate Charge  
100  
nA  
VGS = 20V  
-100  
VGS = -20V  
gfs  
Qg  
–––  
38  
S
VDS = 50V, ID = 15A  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
Qgs1  
Pre-Vth Gate-to-Source Charge  
Post-Vth Gate-to-Source Charge  
Gate-to-Drain Charge  
6.3  
–––  
–––  
–––  
–––  
–––  
5.0  
VDS = 100V  
VGS = 10V  
Qgs2  
Qgd  
1.9  
nC  
7.9  
ID = 15A  
Qgodr  
Gate Charge Overdrive  
Switch Charge (Qgs2 + Qgd)  
Internal Gate Resistance  
Turn-On Delay Time  
9.3  
See Fig. 6 and 19  
Qsw  
9.8  
RG(int)  
td(on)  
tr  
2.6  
8.6  
–––  
–––  
–––  
–––  
VDD = 100V, VGS = 10V  
Rise Time  
14.6  
17.1  
9.9  
ID = 15A  
ns  
td(off)  
tf  
Turn-Off Delay Time  
R = 2.4  
G
Fall Time  
Ciss  
Coss  
Crss  
Coss  
LD  
Input Capacitance  
––– 1710 –––  
VGS = 0V  
Output Capacitance  
–––  
–––  
–––  
125  
30  
–––  
–––  
–––  
VDS = 50V  
ƒ = 1.0MHz,  
pF  
nH  
Reverse Transfer Capacitance  
Effective Output Capacitance  
Internal Drain Inductance  
See Fig.5  
138  
VGS = 0V, VDS = 0V to 160V  
Between lead,  
D
S
–––  
–––  
4.5  
7.5  
–––  
–––  
6mm (0.25in.)  
from package  
G
LS  
Internal Source Inductance  
and center of die contact  
Avalanche Characteristics  
Parameter  
Typ.  
Max.  
Units  
Single Pulse Avalanche Energy  
EAS  
IAR  
–––  
113  
mJ  
A
Avalanche Current  
See Fig. 14, 15, 17a, 17b  
Repetitive Avalanche Energy  
EAR  
mJ  
Diode Characteristics  
Parameter  
Continuous Source Current  
Min. Typ. Max. Units  
Conditions  
MOSFET symbol  
IS @ TC = 25°C  
ISM  
–––  
–––  
25  
(Body Diode)  
showing the  
A
Pulsed Source Current  
(Body Diode)  
integral reverse  
–––  
–––  
100  
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
Reverse Recovery Charge  
–––  
–––  
–––  
–––  
98  
1.3  
147  
737  
V
TJ = 25°C, IS = 15A, VGS = 0V  
ns TJ = 25°C, IF = 15A , VR = 160V  
di/dt = 100A/µs  
nC  
Qrr  
491  
Notes:  
 Repetitive rating; pulse width limited by max. junction temperature.  
‚ Starting TJ = 25°C, L = 1.00mH, RG = 25, IAS = 15A.  
ƒ Pulse width 400µs; duty cycle 2%.  
„ R is measured at TJ of approximately 90°C.  
Limited by Tjmax. See Figs. 14, 15, 17a, 17b for repetitive  
avalanche information  
θ
2
www.irf.com  
IRFB5620PbF  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
12V  
VGS  
15V  
12V  
TOP  
TOP  
10V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
BOTTOM  
BOTTOM  
5.0V  
1
5.0V  
1
0.1  
0.01  
60µs PULSE WIDTH  
Tj = 25°C  
60µs PULSE WIDTH  
Tj = 175°C  
0.1  
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 2. Typical Output Characteristics  
Fig 1. Typical Output Characteristics  
1000  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
I
= 15A  
D
V
= 10V  
GS  
100  
10  
1
T = 175°C  
J
T
= 25°C  
J
V
= 50V  
DS  
60µs PULSE WIDTH  
0.1  
2
4
6
8
10 12 14 16  
-60 -40 -20 0 20 40 60 80 100120140160180  
, Junction Temperature (°C)  
T
J
V
, Gate-to-Source Voltage (V)  
GS  
Fig 3. Typical Transfer Characteristics  
Fig 4. Normalized On-Resistance vs. Temperature  
14.0  
100000  
10000  
1000  
100  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
I = 15A  
D
C
C
C
+ C , C  
SHORTED  
ds  
iss  
gs  
gd  
V
V
= 160V  
= 100V  
12.0  
10.0  
8.0  
DS  
DS  
= C  
rss  
oss  
gd  
= C + C  
ds  
gd  
VDS= 40V  
C
iss  
6.0  
C
oss  
4.0  
C
rss  
2.0  
0.0  
10  
0
5
10  
15  
20  
25  
30  
35  
1
10  
100  
1000  
Q , Total Gate Charge (nC)  
V
, Drain-to-Source Voltage (V)  
G
DS  
Fig 5. Typical Capacitance vs.Drain-to-Source Voltage  
Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage  
www.irf.com  
3
IRFB5620PbF  
100  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
100µsec  
1msec  
T = 175°C  
J
T
= 25°C  
J
10  
10msec  
DC  
1
Tc = 25°C  
Tj = 175°C  
Single Pulse  
V
= 0V  
1.4  
GS  
1.0  
0.1  
0.2  
0.4  
V
0.6  
0.8  
1.0  
1.2  
1.6  
1
10  
100  
1000  
, Source-to-Drain Voltage (V)  
V
DS  
, Drain-to-Source Voltage (V)  
SD  
Fig 7. Typical Source-Drain Diode Forward Voltage  
Fig 8. Maximum Safe Operating Area  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
30  
25  
20  
15  
10  
5
I
I
= 100µA  
= 250uA  
D
D
ID = 1.0mA  
ID = 1.0A  
0
-75 -50 -25  
0
25 50 75 100 125 150 175  
25  
50  
75  
100  
125  
150  
175  
T
, Temperature ( °C )  
T
, Case Temperature (°C)  
J
C
Fig 9. Maximum Drain Current vs. Case Temperature  
Fig 10. Threshold Voltage vs. Temperature  
10  
1
D = 0.50  
0.20  
0.10  
0.1  
R1  
R1  
R2  
Ri (°C/W) τi (sec)  
R2  
0.05  
τ
J τJ  
τ
τ
0.456  
0.000311  
Cτ  
0.02  
0.01  
1 τ1  
Ci= τi/Ri  
τ
2τ2  
0.589  
0.003759  
0.01  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
SINGLE PULSE  
( THERMAL RESPONSE )  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
4
www.irf.com  
IRFB5620PbF  
0.5  
0.4  
0.3  
0.2  
0.1  
0
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
I
I
= 15A  
D
D
TOP  
2.05A  
2.94A  
BOTTOM 15A  
T
= 125°C  
J
T
= 25°C  
12  
J
0
4
6
8
10  
14  
16  
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
V
Gate -to -Source Voltage (V)  
GS,  
Fig 12. On-Resistance Vs. Gate Voltage  
Fig 13. Maximum Avalanche Energy Vs. Drain Current  
100  
Duty Cycle = Single Pulse  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming Tj = 150°C and  
Tstart =25°C (Single Pulse)  
0.01  
10  
1
0.05  
0.10  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming Τj = 25°C and  
Tstart = 150°C.  
0.1  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 14. Typical Avalanche Current Vs.Pulsewidth  
Notes on Repetitive Avalanche Curves , Figures 14, 15:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a  
temperature far in excess of Tjmax. This is validated for  
every part type.  
120  
100  
80  
60  
40  
20  
0
TOP  
BOTTOM 1.0% Duty Cycle  
= 15A  
Single Pulse  
I
D
2. Safe operation in Avalanche is allowed as long as neither  
Tjmax nor Iav (max) is exceeded  
3. Equation below based on circuit and waveforms shown in  
Figures 17a, 17b.  
4. PD (ave) = Average power dissipation per single  
avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for  
voltage increase during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed  
Tjmax (assumed as 25°C in Figure 14, 15).  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
ZthJC(D, tav) = Transient thermal resistance, see figure 11)  
25  
50  
75  
100  
125  
150  
175  
P
D (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
Starting T , Junction Temperature (°C)  
J
Iav = 2DT/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·tav  
Fig 15. Maximum Avalanche Energy Vs. Temperature  
www.irf.com  
5
IRFB5620PbF  
Driver Gate Drive  
P.W.  
P.W.  
Period  
D.U.T  
Period  
D =  
+
*
=10V  
V
GS  
ƒ
CircuitLayoutConsiderations  
LowStrayInductance  
Ground Plane  
LowLeakageInductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dtcontrolledbyRG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
InductorCurrent  
I
SD  
Ripple  
5%  
* VGS = 5V for Logic Level Devices  
Fig 16. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
20V  
0.01  
t
p
I
AS  
Fig 17b. Unclamped Inductive Waveforms  
Fig 17a. Unclamped Inductive Test Circuit  
RD  
VDS  
V
DS  
90%  
VGS  
D.U.T.  
RG  
+
VDD  
-
VGS  
10%  
PulseWidth ≤ 1 µs  
Duty Factor≤ 0.1 %  
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 18a. Switching Time Test Circuit  
Fig 18b. Switching Time Waveforms  
Id  
Current Regulator  
Same Type as D.U.T.  
Vds  
Vgs  
50KΩ  
.2µF  
12V  
.3µF  
+
V
DS  
D.U.T.  
-
Vgs(th)  
V
GS  
3mA  
I
I
D
G
Qgs1  
Qgs2  
Qgd  
Qgodr  
Current Sampling Resistors  
Fig 19a. Gate Charge Test Circuit  
Fig 19b. Gate Charge Waveform  
6
www.irf.com  
IRFB5620PbF  
TO-220AB Package Outline  
Dimensions are shown in millimeters (inches)  
TO-220AB Part Marking Information  
TO-220AB packages are not recommended for Surface Mount Application.  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 09/2008  
www.irf.com  
7
IMPORTANT NOTICE  
The information given in this document shall in no For further information on the product, technology,  
event be regarded as a guarantee of conditions or delivery terms and conditions and prices please  
characteristics (“Beschaffenheitsgarantie”) .  
contact your nearest Infineon Technologies office  
(www.infineon.com).  
With respect to any examples, hints or any typical  
values stated herein and/or any information  
regarding the application of the product, Infineon  
Technologies hereby disclaims any and all  
warranties and liabilities of any kind, including  
without limitation warranties of non-infringement  
of intellectual property rights of any third party.  
WARNINGS  
Due to technical requirements products may  
contain dangerous substances. For information on  
the types in question please contact your nearest  
Infineon Technologies office.  
In addition, any information given in this document  
is subject to customers compliance with its  
obligations stated in this document and any  
applicable legal requirements, norms and  
standards concerning customers products and any  
use of the product of Infineon Technologies in  
customers applications.  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
authorized  
representatives  
of  
Infineon  
Technologies, Infineon Technologies’ products may  
not be used in any applications where a failure of  
the product or any consequences of the use thereof  
can reasonably be expected to result in personal  
injury.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customers technical departments  
to evaluate the suitability of the product for the  
intended application and the completeness of the  
product information given in this document with  
respect to such application.  

相关型号:

IRFB5620PBF

DIGITAL AUDIO MOSFET
INFINEON

IRFB59N10

Power MOSFET(Vdss=100V, Rds(on)max=0.025ohm, Id=59A)
INFINEON

IRFB59N10D

Power MOSFET(Vdss=100V, Rds(on)max=0.025ohm, Id=59A)
INFINEON

IRFB59N10DPBF

HEXFET Power MOSFET
INFINEON

IRFB61N15D

Power MOSFET(Vdss=150V, Rds(on)max=0.032ohm, Id=50A)
INFINEON

IRFB61N15DPBF

HEXFET Power MOSFET
INFINEON

IRFB7430

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. 
INFINEON

IRFB7430PBF

HEXFETPower MOSFET
INFINEON

IRFB7434

N-Channel MOSFET Transistor
ISC

IRFB7434

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. 
INFINEON

IRFB7434PBF

Brushed Motor drive applications
INFINEON

IRFB7437PBF

HEXFETPower MOSFET
INFINEON