IRFH7545 [INFINEON]

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. ;
IRFH7545
型号: IRFH7545
厂家: Infineon    Infineon
描述:

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. 

文件: 总11页 (文件大小:563K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
StrongIRFET™  
IRFH7545PbF  
HEXFET® Power MOSFET  
Application  
 Brushed Motor drive applications  
 BLDC Motor drive applications  
 Battery powered circuits  
 Half-bridge and full-bridge topologies  
 Synchronous rectifier applications  
 Resonant mode power supplies  
 OR-ing and redundant power switches  
 DC/DC and AC/DC converters  
 DC/AC Inverters  
VDSS  
60V  
RDS(on) typ.  
4.3m  
5.2m  
85A  
max  
ID  
Benefits  
 Improved Gate, Avalanche and Dynamic dV/dt Ruggedness  
 Fully Characterized Capacitance and Avalanche SOA  
 Enhanced body diode dV/dt and dI/dt Capability  
 Lead-Free, RoHS Compliant  
PQFN 5 x 6 mm  
Base part number  
Package Type  
Standard Pack  
Form  
Orderable Part Number  
Quantity  
IRFH7545PbF  
PQFN 5mm x 6mm  
Tape and Reel  
4000  
IRFH7545TRPbF  
20  
15  
10  
5
100  
80  
60  
40  
20  
0
I
= 51A  
D
T
T
= 125°C  
= 25°C  
J
J
0
2
4
6
8
10 12 14 16 18 20  
25  
50  
75  
100  
125  
150  
T
, Case Temperature (°C)  
V
Gate -to -Source Voltage (V)  
C
GS,  
Fig 2. Maximum Drain Current vs. Case Temperature  
Fig 1. Typical On-Resistance vs. Gate Voltage  
1
www.irf.com  
© 2014 International Rectifier  
Submit Datasheet Feedback  
November 7, 2014  
IRFH7545PbF  
Absolute Maximum Rating  
Symbol  
Parameter  
Max.  
85  
Units  
ID @ TC(Bottom) = 25°C  
Continuous Drain Current, VGS @ 10V  
ID @ TC(Bottom) = 100°C Continuous Drain Current, VGS @ 10V  
54  
A
IDM  
Pulsed Drain Current   
Maximum Power Dissipation  
Linear Derating Factor  
340  
83  
PD @TC = 25°C  
W
W/°C  
V
0.67  
± 20  
VGS  
Gate-to-Source Voltage  
TJ  
TSTG  
Operating Junction and  
Storage Temperature Range  
-55 to + 150  
°C  
Avalanche Characteristics  
EAS (Thermally limited)  
EAS (Thermally limited)  
IAR  
102  
160  
Single Pulse Avalanche Energy   
Single Pulse Avalanche Energy   
Avalanche Current   
mJ  
A
mJ  
See Fig 15, 16, 23a, 23b  
EAR  
Repetitive Avalanche Energy   
Thermal Resistance  
Symbol  
RJC (Bottom)  
RJC (Top)  
RJA  
Parameter  
Junction-to-Case   
Typ.  
–––  
–––  
–––  
–––  
Max.  
1.5  
22  
Units  
Junction-to-Case   
°C/W  
Junction-to-Ambient   
Junction-to-Ambient   
34  
RJA (<10s)  
23  
Static @ TJ = 25°C (unless otherwise specified)  
Symbol  
Parameter  
Min. Typ. Max. Units  
Conditions  
V(BR)DSS  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
60  
––– –––  
V
VGS = 0V, ID = 250µA  
–––  
49  
––– mV/°C Reference to 25°C, ID = 1mA   
V(BR)DSS/TJ  
RDS(on)  
Static Drain-to-Source On-Resistance  
–––  
–––  
2.1 –––  
––– –––  
4.3  
6.0  
5.2  
–––  
3.7  
1.0  
VGS = 10V, ID = 51A   
VGS = 6.0V, ID = 26A   
VDS = VGS, ID = 100µA  
m  
V
VGS(th)  
IDSS  
Gate Threshold Voltage  
Drain-to-Source Leakage Current  
µA VDS =60 V, VGS = 0V  
––– ––– 150  
––– ––– 100  
––– ––– -100  
V
DS =60V,VGS = 0V,TJ =125°C  
IGSS  
RG  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Gate Resistance  
nA VGS = 20V  
VGS = -20V  
–––  
2.5  
–––  
  
Notes:  
Repetitive rating; pulse width limited by max. junction temperature.  
Limited by TJmax, starting TJ = 25°C, L = 78µH, RG = 50, IAS = 51A, VGS =10V.  
ISD 51A, di/dt 1212A/µs, VDD V(BR)DSS, TJ 175°C.  
Pulse width 400µs; duty cycle 2%.  
Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS  
.
Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS  
.
Ris measured at TJ approximately 90°C.  
Limited by TJmax, starting TJ = 25°C, L = 1mH, RG = 50, IAS = 18A, VGS =10V.  
When mounted on 1 inch square PCB (FR-4). Please refer to AN-994 for more details:  
http://www.irf.com/technical-info/appnotes/an-994.pdf  
2
www.irf.com  
© 2014 International Rectifier  
Submit Datasheet Feedback  
November 7, 2014  
IRFH7545PbF  
Dynamic Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Symbol  
gfs  
Parameter  
Forward Transconductance  
Total Gate Charge  
Min.  
140  
–––  
–––  
–––  
–––  
–––  
–––  
Typ. Max. Units  
Conditions  
–––  
73  
–––  
110  
–––  
–––  
–––  
–––  
–––  
S
VDS = 10V, ID = 51A  
Qg  
ID = 51A  
Qgs  
Gate-to-Source Charge  
Gate-to-Drain Charge  
Total Gate Charge Sync. (Qg – Qgd)  
Turn-On Delay Time  
19  
VDS = 30V  
VGS = 10V  
nC  
Qgd  
22  
Qsync  
td(on)  
tr  
51  
8.6  
26  
VDD = 30V  
ID = 51A  
Rise Time  
ns  
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
–––  
–––  
–––  
–––  
–––  
43  
16  
–––  
–––  
–––  
–––  
–––  
RG= 2.7  
V
GS = 10V   
Ciss  
Coss  
Crss  
Input Capacitance  
Output Capacitance  
Reverse Transfer Capacitance  
3890  
365  
220  
VGS = 0V  
VDS = 25V  
ƒ = 1.0MHz, See Fig.7  
pF  
Effective Output Capacitance  
(Energy Related)  
Coss eff.(ER)  
–––  
–––  
370  
470  
–––  
–––  
VGS = 0V, VDS = 0V to 48V  
VGS = 0V, VDS = 0V to 48V  
Coss eff.(TR)  
Output Capacitance (Time Related)  
Diode Characteristics  
Symbol  
Parameter  
Min.  
Typ. Max. Units  
Conditions  
D
Continuous Source Current  
(Body Diode)  
Pulsed Source Current  
(Body Diode)  
MOSFET symbol  
showing the  
integral reverse  
p-n junction diode.  
IS  
–––  
–––  
85  
G
A
S
ISM  
–––  
–––  
–––  
–––  
340  
1.2  
VSD  
Diode Forward Voltage  
V
TJ = 25°C,IS = 51A,VGS = 0V   
dv/dt  
Peak Diode Recovery dv/dt  
–––  
–––  
–––  
–––  
–––  
8.1  
32  
34  
30  
38  
––– V/ns TJ = 150°C,IS = 51A,VDS = 60V  
–––  
–––  
–––  
–––  
TJ = 25°C  
VDD = 51V  
IF = 51A,  
trr  
Reverse Recovery Time  
ns  
TJ = 125°C  
TJ = 25°C di/dt = 100A/µs   
Qrr  
Reverse Recovery Charge  
Reverse Recovery Current  
nC  
A
TJ = 125°C  
IRRM  
–––  
1.7  
–––  
TJ = 25°C  
3
www.irf.com  
© 2014 International Rectifier  
Submit Datasheet Feedback  
November 7, 2014  
IRFH7545PbF  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
4.5V  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
4.5V  
TOP  
TOP  
BOTTOM  
BOTTOM  
4.5V  
4.5V  
60µs  
Tj = 25°C  
PULSE WIDTH  
60µs  
Tj = 150°C  
PULSE WIDTH  
1
1
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 4. Typical Output Characteristics  
Fig 3. Typical Output Characteristics  
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
1000  
100  
10  
I
= 51A  
D
V
= 10V  
GS  
T
= 150°C  
T
= 25°C  
J
J
1
V
= 25V  
DS  
60µs PULSE WIDTH  
0.1  
-60 -40 -20  
T
0
20 40 60 80 100 120 140 160  
2
3
4
5
6
7
, Junction Temperature (°C)  
J
V
, Gate-to-Source Voltage (V)  
GS  
Fig 6. Normalized On-Resistance vs. Temperature  
Fig 5. Typical Transfer Characteristics  
100000  
10000  
1000  
14.0  
V
C
= 0V,  
f = 1 MHZ  
GS  
I
= 51A  
V
= C + C , C SHORTED  
D
iss  
gs  
gd ds  
12.0  
10.0  
8.0  
C
= C  
rss  
gd  
= 48V  
= 30V  
DS  
C
= C + C  
oss  
ds  
gd  
V
DS  
VDS= 12V  
C
iss  
6.0  
C
oss  
4.0  
C
rss  
2.0  
100  
0.0  
0.1  
1
10  
100  
0
20  
40  
60  
80  
100  
V
, Drain-to-Source Voltage (V)  
Q
, Total Gate Charge (nC)  
DS  
G
Fig 8. Typical Gate Charge vs.  
Fig 7. Typical Capacitance vs. Drain-to-Source Voltage  
Gate-to-Source Voltage  
4
www.irf.com  
© 2014 International Rectifier  
Submit Datasheet Feedback  
November 7, 2014  
IRFH7545PbF  
1000  
100  
10  
100µsec  
1msec  
100  
10  
1
OPERATION IN THIS  
AREA LIMITED BY R (on)  
T
= 150°C  
T
= 25°C  
J
J
DS  
10msec  
1
Tc = 25°C  
Tj = 150°C  
Single Pulse  
DC  
V
= 0V  
GS  
0.1  
0.1  
0.1  
1
10  
0.1  
0.4  
0.7  
1.0  
1.3  
1.6  
V
, Drain-to-Source Voltage (V)  
V
, Source-to-Drain Voltage (V)  
DS  
SD  
Fig 10. Maximum Safe Operating Area  
Fig 9. Typical Source-Drain Diode Forward Voltage  
0.6  
78  
Id = 1.0mA  
76  
74  
72  
70  
68  
66  
64  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
0
10  
20  
30  
40  
50  
60  
-60 -40 -20  
0
T
20 40 60 80 100 120 140 160  
, Temperature ( °C )  
V
Drain-to-Source Voltage (V)  
J
DS,  
Fig 11. Drain-to-Source Breakdown Voltage  
Fig 12. Typical Coss Stored Energy  
20.0  
VGS = 5.5V  
VGS = 6.0V  
VGS = 7.0V  
VGS = 8.0V  
VGS = 10V  
15.0  
10.0  
5.0  
0.0  
0
50  
I
100  
150  
200  
, Drain Current (A)  
D
Fig 13. Typical On-Resistance vs. Drain Current  
© 2014 International Rectifier Submit Datasheet Feedback  
5
www.irf.com  
November 7, 2014  
IRFH7545PbF  
10  
1
D = 0.50  
0.20  
0.10  
0.05  
0.1  
0.02  
0.01  
0.01  
0.001  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
100  
10  
1
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming Tj = 125°C and  
Tstart =25°C (Single Pulse)  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming  j = 25°C and  
Tstart = 125°C.  
0.1  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 15. Avalanche Current vs. Pulse Width  
120  
100  
80  
60  
40  
20  
0
Notes on Repetitive Avalanche Curves , Figures 15, 16:  
(For further info, see AN-1005 at www.irf.com)  
1.Avalanche failures assumption:  
TOP  
Single Pulse  
BOTTOM 1.0% Duty Cycle  
I
= 51A  
D
Purely a thermal phenomenon and failure occurs at a  
temperature far in excess of Tjmax. This is validated for every  
part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is not  
exceeded.  
3. Equation below based on circuit and waveforms shown in Figures  
23a, 23b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage  
increase during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed Tjmax  
(assumed as 25°C in Figure 15, 16).  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
25  
50  
75  
100  
125  
150  
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)  
Starting T , Junction Temperature (°C)  
J
PD (ave) = 1/2 ( 1.3·BV·Iav) = T/ ZthJC  
I
av = 2T/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)· av  
t
Fig 16. Maximum Avalanche Energy vs. Temperature  
6
www.irf.com  
© 2014 International Rectifier  
Submit Datasheet Feedback  
November 7, 2014  
IRFH7545PbF  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
12  
9
I
= 34A  
= 51V  
F
V
R
T = 25°C  
J
T = 125°C  
J
6
ID = 100µA  
ID = 250µA  
ID = 1.0mA  
ID = 1.0A  
3
0
-75 -50 -25  
T
0
25 50 75 100 125 150  
0
200  
400  
600  
800  
1000  
, Temperature ( °C )  
di /dt (A/µs)  
J
F
Fig 17. Threshold Voltage vs. Temperature  
Fig 18. Typical Recovery Current vs. dif/dt  
12  
200  
I
= 51A  
= 51V  
I
= 34A  
= 51V  
F
F
175  
150  
125  
100  
75  
V
V
R
R
T = 25°C  
T = 25°C  
J
J
9
6
3
0
T = 125°C  
J
T = 125°C  
J
50  
25  
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
di /dt (A/µs)  
di /dt (A/µs)  
F
F
Fig 19. Typical Recovery Current vs. dif/dt  
Fig 20. Typical Stored Charge vs. dif/dt  
200  
I
= 51A  
= 51V  
F
175  
150  
125  
100  
75  
V
R
T = 25°C  
J
T = 125°C  
J
50  
25  
0
200  
400  
600  
800  
1000  
di /dt (A/µs)  
F
Fig 21. Typical Stored Charge vs. dif/dt  
© 2014 International Rectifier Submit Datasheet Feedback  
7
www.irf.com  
November 7, 2014  
IRFH7545PbF  
Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
20V  
0.01  
I
t
p
AS  
Fig 23a. Unclamped Inductive Test Circuit  
Fig 23b. Unclamped Inductive Waveforms  
Fig 24a. Switching Time Test Circuit  
Fig 24b. Switching Time Waveforms  
Id  
Vds  
Vgs  
VDD  
Vgs(th)  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Fig 25b. Gate Charge Waveform  
Fig 25a. Gate Charge Test Circuit  
8
www.irf.com  
© 2014 International Rectifier  
Submit Datasheet Feedback  
November 7, 2014  
IRFH7545PbF  
PQFN 5x6 Outline "E" Package Details  
For more information on board mounting, including footprint and stencil recommendation, please refer to application note  
AN-1136: http://www.irf.com/technical-info/appnotes/an-1136.pdf  
For more information on package inspection techniques, please refer to application note AN-1154:  
http://www.irf.com/technical-info/appnotes/an-1154.pdf  
PQFN 5x6 Outline "E" Part Marking  
INTERNATIONAL  
RECTIFIER LOGO  
DATE CODE  
PART NUMBER  
XXXX  
(“4 or 5 digits”)  
ASSEMBLY  
SITE CODE  
(Per SCOP 200-002)  
MARKING CODE  
XYWWX  
XXXXX  
(Per Marking Spec)  
PIN 1  
IDENTIFIER  
LOT CODE  
(Eng Mode - Min last 4 digits of EATI#)  
(Prod Mode - 4 digits of SPN code)  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
9
www.irf.com  
© 2014 International Rectifier  
Submit Datasheet Feedback  
November 7, 2014  
IRFH7545PbF  
PQFN Tape and Reel  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
Qualification Information†  
Industrial  
Qualification Level  
(per JEDEC JESD47F†† guidelines)  
MSL1  
PQFN 5mm x 6mm  
Moisture Sensitivity Level  
RoHS Compliant  
(per JEDEC J-STD-020D††)  
Yes  
† Qualification standards can be found at International Rectifier’s web site: http://www.irf.com/product-info/reliability  
†† Applicable version of JEDEC standard at the time of product release.  
Revision History  
Date  
Comments  
8/21/2014  
Updated data sheet with latest PQFN Tape and Reel on page 10.  
 Updated EAS (L =1mH) = 160mJ on page 2  
 Updated note 8 “Limited by TJmax, starting TJ = 25°C, L = 1mH, RG = 50, IAS = 18A, VGS =10V” on page 2  
11/7/2014  
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA  
To contact International Rectifier, please visit http://www.irf.com/whoto-call/  
10  
www.irf.com  
© 2014 International Rectifier  
Submit Datasheet Feedback  
November 7, 2014  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on the product, technology,  
event be regarded as a guarantee of conditions or delivery terms and conditions and prices please  
characteristics (“Beschaffenheitsgarantie”) .  
contact your nearest Infineon Technologies office  
(www.infineon.com).  
With respect to any examples, hints or any typical  
values stated herein and/or any information  
regarding the application of the product, Infineon  
Technologies hereby disclaims any and all  
warranties and liabilities of any kind, including  
without limitation warranties of non-infringement  
of intellectual property rights of any third party.  
WARNINGS  
Due to technical requirements products may  
contain dangerous substances. For information on  
the types in question please contact your nearest  
Infineon Technologies office.  
In addition, any information given in this document  
is subject to customers compliance with its  
obligations stated in this document and any  
applicable legal requirements, norms and  
standards concerning customers products and any  
use of the product of Infineon Technologies in  
customers applications.  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
authorized  
representatives  
of  
Infineon  
Technologies, Infineon Technologies’ products may  
not be used in any applications where a failure of  
the product or any consequences of the use thereof  
can reasonably be expected to result in personal  
injury.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customers technical departments  
to evaluate the suitability of the product for the  
intended application and the completeness of the  
product information given in this document with  
respect to such application.  

相关型号:

IRFH7545PBF

Brushed Motor drive applications
INFINEON

IRFH7545PBF_15

Brushed Motor drive applications
INFINEON

IRFH7545TRPBF

Power Field-Effect Transistor
INFINEON

IRFH7787PBF

Brushed motor drive applications
INFINEON

IRFH7787PBF_15

Brushed motor drive applications
INFINEON

IRFH7882PBF

Optimized for Secondary Side Synchronous Rectification
INFINEON

IRFH7882PBF_15

Optimized for Secondary Side Synchronous Rectification
INFINEON

IRFH7885PBF

Primary Switch for High Frequency 48V/60V Telecom DC-DC Power Supplies
INFINEON

IRFH7885PBF_15

Primary Switch for High Frequency 48V/60V Telecom DC-DC Power Supplies
INFINEON

IRFH7911

30V Dual N-Channel HEXFET Power MOSFET in a PQFN 5mm x 6mm Lead Free package
INFINEON

IRFH7911PBF

Control and synchronous FET in one package
INFINEON

IRFH7911TR2PBF

Control and synchronous FET in one package
INFINEON