IRFI4228PBF [INFINEON]

Advanced Process Technology; 先进的工艺技术
IRFI4228PBF
型号: IRFI4228PBF
厂家: Infineon    Infineon
描述:

Advanced Process Technology
先进的工艺技术

晶体 晶体管 开关 脉冲 局域网
文件: 总9页 (文件大小:308K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 97228  
IRFI4228PbF  
PDP SWITCH  
Features  
Key Parameters  
l
Advanced Process Technology  
VDS max  
150  
180  
12.2  
61  
V
V
m:  
A
°C  
l
Key Parameters Optimized for PDP Sustain,  
Energy Recovery and Pass Switch Applications  
Low EPULSE Rating to Reduce Power  
Dissipation in PDP Sustain, Energy Recovery  
and Pass Switch Applications  
VDS (Avalanche) typ.  
RDS(ON) typ. @ 10V  
RP max @ TC= 100°C  
l
I
TJ max  
150  
l
l
Low QG for Fast Response  
High Repetitive Peak Current Capability for  
Reliable Operation  
D
D
S
l
Short Fall & Rise Times for Fast Switching  
150°C Operating Junction Temperature for  
Improved Ruggedness  
l
S
D
G
l
Repetitive Avalanche Capability for Robustness  
G
and Reliability  
TO-220AB Full-Pak  
G
D
S
Gate  
Drain  
Source  
Description  
This HEXFET® Power MOSFET is specifically designed for Sustain; Energy Recovery & Pass switch  
applicationsinPlasmaDisplayPanels. ThisMOSFETutilizesthelatestprocessingtechniquestoachieve  
low on-resistance per silicon area and low EPULSE rating. Additional features of this MOSFET are 150°C  
operating junction temperature and high repetitive peak current capability. These features combine to  
make this MOSFET a highly efficient, robust and reliable device for PDP driving applications.  
Absolute Maximum Ratings  
Max.  
Parameter  
Units  
VGS  
±30  
Gate-to-Source Voltage  
V
ID @ TC = 25°C  
ID @ TC = 100°C  
IDM  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current c  
34  
A
21  
130  
I
RP @ TC = 100°C  
61  
Repetitive Peak Current g  
Power Dissipation  
PD @TC = 25°C  
PD @TC = 100°C  
46  
18  
W
Power Dissipation  
0.37  
Linear Derating Factor  
W/°C  
°C  
TJ  
-40 to + 150  
Operating Junction and  
TSTG  
Storage Temperature Range  
Soldering Temperature for 10 seconds  
Mounting Torque, 6-32 or M3 Screw  
300  
10lbxin (1.1Nxm)  
N
Thermal Resistance  
Parameter  
Junction-to-Case f  
Junction-to-Ambient f  
Typ.  
Max.  
2.73  
65  
Units  
RθJC  
RθJA  
–––  
–––  
°C/W  
Notes  through are on page 8  
www.irf.com  
1
06/26/06  
IRFI4228PbF  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Conditions  
VGS = 0V, ID = 250µA  
Parameter  
Min. Typ. Max. Units  
BVDSS  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
150  
–––  
–––  
3.0  
–––  
190  
12.2  
–––  
-12  
–––  
V
Reference to 25°C, I = 1mA  
∆ΒVDSS/TJ  
RDS(on)  
––– mV/°C  
D
VGS = 10V, ID = 20A e  
16  
mΩ  
V
VDS = VGS, ID = 250µA  
VGS(th)  
5.0  
VGS(th)/TJ  
IDSS  
Gate Threshold Voltage Coefficient  
Drain-to-Source Leakage Current  
–––  
–––  
–––  
–––  
–––  
64  
––– mV/°C  
VDS = 150V, VGS = 0V  
–––  
–––  
–––  
–––  
–––  
73  
20  
1.0  
µA  
mA  
nA  
VDS = 150V, VGS = 0V, TJ = 125°C  
VGS = 20V  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Forward Transconductance  
Total Gate Charge  
100  
-100  
–––  
110  
–––  
–––  
VGS = -20V  
VDS = 25V, ID = 20A  
VDD = 75V, ID = 20A, VGS = 10Ve  
gfs  
Qg  
Qgd  
tst  
S
–––  
–––  
100  
nC  
Gate-to-Drain Charge  
20  
V
DD = 120V, VGS = 15V, RG= 5.1Ω  
L = 220nH, C= 0.3µF, VGS = 15V  
DS = 120V, RG= 5.1Ω, TJ = 25°C  
Shoot Through Blocking Time  
–––  
ns  
µJ  
–––  
–––  
62  
–––  
–––  
EPULSE  
V
Energy per Pulse  
L = 220nH, C= 0.3µF, VGS = 15V  
110  
VDS = 120V, RG= 5.1Ω, TJ = 100°C  
VGS = 0V  
Ciss  
Input Capacitance  
––– 4560 –––  
V
DS = 25V  
Coss  
Crss  
Output Capacitance  
–––  
–––  
–––  
–––  
560  
110  
460  
4.5  
–––  
–––  
–––  
–––  
pF  
ƒ = 1.0MHz  
Reverse Transfer Capacitance  
Effective Output Capacitance  
Internal Drain Inductance  
VGS = 0V, VDS = 0V to 120V  
Coss eff.  
LD  
D
S
Between lead,  
nH 6mm (0.25in.)  
from package  
G
LS  
Internal Source Inductance  
–––  
7.5  
–––  
and center of die contact  
Avalanche Characteristics  
Typ.  
–––  
–––  
180  
–––  
Max.  
170  
4.6  
Parameter  
Units  
mJ  
mJ  
V
EAS  
Single Pulse Avalanche Energyd  
Repetitive Avalanche Energy c  
Repetitive Avalanche Voltageꢀc  
Avalanche Currentꢀd  
EAR  
VDS(Avalanche)  
IAS  
–––  
20  
A
Diode Characteristics  
Conditions  
Parameter  
Min. Typ. Max. Units  
IS @ TC = 25°C  
ISM  
MOSFET symbol  
Continuous Source Current  
–––  
–––  
34  
showing the  
(Body Diode)  
A
integral reverse  
p-n junction diode.  
Pulsed Source Current  
(Body Diode)ꢀc  
–––  
–––  
130  
TJ = 25°C, IS = 20A, VGS = 0V e  
TJ = 25°C, IF = 20A, VDD = 50V  
di/dt = 100A/µs e  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
Reverse Recovery Charge  
–––  
–––  
–––  
–––  
74  
1.3  
110  
350  
V
ns  
nC  
Qrr  
230  
2
www.irf.com  
IRFI4228PbF  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
10V  
8.0V  
7.0V  
6.5V  
6.0V  
5.5V  
5.0V  
VGS  
15V  
60µs PULSE WIDTH  
Tj = 25°C  
TOP  
TOP  
10V  
8.0V  
7.0V  
6.5V  
6.0V  
5.5V  
5.0V  
BOTTOM  
BOTTOM  
5.0V  
1
60µs PULSE WIDTH  
Tj = 150°C  
5.0V  
0.1  
1
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
V
, Drain-to-Source Voltage (V)  
DS  
V
, Drain-to-Source Voltage (V)  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
1000  
100  
10  
I
= 20A  
V
= 25V  
D
DS  
V
= 10V  
60µs PULSE WIDTH  
GS  
T
= 150°C  
J
T
= 25°C  
J
1
0.1  
3
4
5
6
7
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
T
J
, Junction Temperature (°C)  
V
, Gate-to-Source Voltage (V)  
GS  
Fig 3. Typical Transfer Characteristics  
Fig 4. Normalized On-Resistance vs. Temperature  
120  
120  
L = 220nH  
C = 0.3µF  
100°C  
L = 220nH  
C = Variable  
100°C  
25°C  
90  
110  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
100  
25°C  
80  
70  
60  
50  
40  
30  
20  
10  
80  
90  
100  
110  
120  
130  
60 65 70 75 80 85 90 95 100 105  
V
Drain-to-Source Voltage (V)  
I , Peak Drain Current (A)  
D
DS,  
Fig 6. Typical EPULSE vs. Drain Current  
Fig 5. Typical EPULSE vs. Drain-to-Source Voltage  
www.irf.com  
3
IRFI4228PbF  
140  
1000  
100  
10  
L = 220nH  
120  
C = 0.3µF  
100  
80  
60  
40  
20  
0
C = 0.2µF  
T
= 150°C  
J
T
= 25°C  
J
C = 0.1µF  
1
V
= 0V  
GS  
0.1  
20  
40  
60  
80  
100 120 140 160  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
V
, Source-to-Drain Voltage (V)  
SD  
Temperature (°C)  
Fig 7. Typical EPULSE vs.Temperature  
Fig 8. Typical Source-Drain Diode Forward Voltage  
100000  
10000  
1000  
100  
12.0  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
I = 20A  
D
C
C
C
+ C , C  
SHORTED  
iss  
gs  
gd  
ds  
V
V
V
= 120V  
= 75V  
= 30V  
= C  
DS  
DS  
DS  
10.0  
8.0  
6.0  
4.0  
2.0  
0.0  
rss  
oss  
gd  
= C + C  
ds  
gd  
C
iss  
C
oss  
C
rss  
10  
1
10  
100  
1000  
0
10 20 30 40 50 60 70 80  
V
, Drain-to-Source Voltage (V)  
Q , Total Gate Charge (nC)  
G
DS  
Fig 10. Typical Gate Charge vs.Gate-to-Source Voltage  
Fig 9. Typical Capacitance vs.Drain-to-Source Voltage  
1000  
35  
30  
25  
20  
15  
10  
5
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
100  
100µsec  
10msec  
10  
1msec  
1
Tc = 25°C  
Tj = 150°C  
Single Pulse  
0.1  
0
0
1
10  
100  
1000  
25  
50  
75  
100  
125  
150  
V
, Drain-to-Source Voltage (V)  
T
J
, Junction Temperature (°C)  
DS  
Fig 11. Maximum Drain Current vs. Case Temperature  
Fig 12. Maximum Safe Operating Area  
4
www.irf.com  
IRFI4228PbF  
160  
140  
120  
100  
80  
700  
600  
500  
400  
300  
200  
100  
0
I
I
= 20A  
D
D
TOP  
4.6A  
5.4A  
BOTTOM 20A  
60  
40  
T
= 125°C  
J
20  
T
= 25°C  
J
0
4
5
6
7
8
9
10  
11  
25  
50  
75  
100  
125  
150  
Starting T , Junction Temperature (°C)  
J
V
Gate -to -Source Voltage (V)  
GS,  
Fig 14. Maximum Avalanche Energy vs. Temperature  
Fig 13. On-Resistance vs. Gate Voltage  
5.0  
100  
ton= 1µs  
Duty cycle = 0.25  
4.5  
4.0  
Half Sine Wave  
Square Pulse  
80  
60  
I
= 250µA  
D
3.5  
3.0  
2.5  
2.0  
40  
20  
0
25  
50  
75  
100  
125  
150  
-75 -50 -25  
0
25 50 75 100 125 150  
Case Temperature (°C)  
T
, Temperature ( °C )  
J
Fig 15. Threshold Voltage vs. Temperature  
Fig 16. Typical Repetitive peak Current vs.  
Case temperature  
10  
D = 0.50  
1
0.20  
0.10  
R1  
R1  
R2  
R2  
R3  
R3  
0.05  
0.1  
Ri (°C/W) τi (sec)  
0.3129 0.000381  
1.1873 0.219458  
1.2311 2.895  
τ
JτJ  
τ
τ
0.02  
0.01  
Cτ  
τ
1τ1  
τ
2 τ2  
3τ3  
0.01  
Ci= τi/Ri  
τ /  
SINGLE PULSE  
0.001  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
0.0001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
t
, Rectangular Pulse Duration (sec)  
1
Fig 17. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
www.irf.com  
5
IRFI4228PbF  
Driver Gate Drive  
P.W.  
P.W.  
Period  
Period  
D =  
D.U.T  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
di/dt controlled by RG  
RG  
+
-
Body Diode  
Inductor Current  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 18. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
GS  
0.01Ω  
t
p
I
AS  
Fig 19b. Unclamped Inductive Waveforms  
Fig 19a. Unclamped Inductive Test Circuit  
Id  
Vds  
Vgs  
L
VCC  
DUT  
Vgs(th)  
0
1K  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Fig 20a. Gate Charge Test Circuit  
Fig 20b. Gate Charge Waveform  
6
www.irf.com  
IRFI4228PbF  
A
RG  
C
DRIVER  
L
VCC  
B
Ipulse  
DUT  
RG  
Fig 21b. tst Test Waveforms  
Fig 21a. tst and EPULSE Test Circuit  
Fig 21c. EPULSE Test Waveforms  
www.irf.com  
7
IRFI4228PbF  
TO-220AB Full-Pak Package Outline (Dimensions are shown in millimeters (inches))  
TO-220AB Full-Pak Part Marking Information  
TO-220AB Full-Pak packages are not recommended for Surface Mount Application.  
Notes:  
 Repetitive rating; pulse width limited by max. junction temperature.  
‚ Starting TJ = 25°C, L = 0.85mH, RG = 25, IAS = 20A.  
ƒ Pulse width 400µs; duty cycle 2%.  
„ R is measured at TJ of approximately 90°C.  
θ
Half sine wave with duty cycle = 0.25, ton=1µsec.  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 06/06  
8
www.irf.com  
Note: For the most current drawings please refer to the IR website at:  
http://www.irf.com/package/  

相关型号:

IRFI4229PBF

PDP SWITCH
INFINEON

IRFI4321PBF

HEXFET Power MOSFET
INFINEON

IRFI4410ZPBF

High Efficiency Synchronous Rectification in SMPS
INFINEON

IRFI460

TRANSISTOR N-CHANNEL(Vdss=500V, Rds(on)=0.27ohm, Id=21A)
INFINEON

IRFI460D

TRANSISTOR | MOSFET | N-CHANNEL | 500V V(BR)DSS | 21A I(D) | TO-259VAR
ETC

IRFI460U

TRANSISTOR | MOSFET | N-CHANNEL | 500V V(BR)DSS | 21A I(D) | TO-259VAR
ETC

IRFI48NPBF

Power Field-Effect Transistor, 40A I(D), 55V, 0.016ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB, LEAD FREE, PLASTIC, TO-220, FULL PACK-3
INFINEON

IRFI4905

HEXFET Power MOSFET
INFINEON

IRFI4905-101

Power Field-Effect Transistor, 41A I(D), 55V, 0.02ohm, 1-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET,
INFINEON

IRFI4905-101PBF

41A, 55V, 0.02ohm, P-CHANNEL, Si, POWER, MOSFET
INFINEON

IRFI4905-102

Power Field-Effect Transistor, 41A I(D), 55V, 0.02ohm, 1-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET,
INFINEON

IRFI4905-102PBF

Power Field-Effect Transistor, 41A I(D), 55V, 0.02ohm, 1-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET
INFINEON