IRFP23N50LPBF [INFINEON]

HEXFET Power MOSFET ( VDSS = 500V , RDS(on)typ. = 0.190ヘ , Trr typ. = 170ns , ID = 23A ); HEXFET功率MOSFET ( VDSS = 500V , RDS ( ON) (典型值) = 0.190ヘ, TRR (典型值) = 170ns , ID = 23A )
IRFP23N50LPBF
型号: IRFP23N50LPBF
厂家: Infineon    Infineon
描述:

HEXFET Power MOSFET ( VDSS = 500V , RDS(on)typ. = 0.190ヘ , Trr typ. = 170ns , ID = 23A )
HEXFET功率MOSFET ( VDSS = 500V , RDS ( ON) (典型值) = 0.190ヘ, TRR (典型值) = 170ns , ID = 23A )

晶体 晶体管 开关 脉冲 局域网
文件: 总9页 (文件大小:202K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 94999  
IRFP23N50LPbF  
SMPS MOSFET  
HEXFET® Power MOSFET  
Applications  
Zero Voltage Switching SMPS  
Telecom and Server Power Supplies  
Uninterruptible Power Supplies  
Motor Control applications  
Trr typ.  
VDSS RDS(on) typ.  
0.190  
ID  
500V  
170ns 23A  
Lead-Free  
Features and Benefits  
SuperFast body diode eliminates the need for external  
diodes in ZVS applicationsꢀ  
Lower Gate charge results in simpler drive requirementsꢀ  
Enhanced dv/dt capabilities offer improved ruggednessꢀ  
Higher Gate voltage threshold offers improved noise  
immunityꢀ  
TO-247AC  
Absolute Maximum Ratings  
Parameter  
Max.  
23  
Units  
A
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V  
ID @ TC = 100°C Continuous Drain Current, VGS @ 10V  
15  
IDM  
92  
Pulsed Drain Current  
PD @TC = 25°C  
Power Dissipation  
370  
W
Linear Derating Factor  
Gate-to-Source Voltage  
2.9  
± 30  
W/°C  
V
VGS  
dv/dt  
TJ  
Peak Diode Recovery dv/dt  
Operating Junction and  
14  
V/ns  
-55 to + 150  
TSTG  
Storage Temperature Range  
°C  
Soldering Temperature, for 10 seconds  
Mounting torque, 6-32 or M3 screw  
300 (1.6mm from case )  
10lb in (1.1N m)  
Diode Characteristics  
Symbol  
Parameter  
Min. Typ. Max. Units  
Conditions  
I
I
Continuous Source Current  
––– ––– 23  
MOSFET symbol  
S
(Body Diode)  
Pulsed Source Current  
A
showing the  
integral reverse  
––– ––– 92  
SM  
(Body Diode)  
p-n junction diode.  
V
t
T = 25°C, I = 14A, V = 0V  
J S GS  
Diode Forward Voltage  
Reverse Recovery Time  
––– ––– 1.5  
––– 170 250  
––– 220 330  
V
SD  
T = 25°C, I = 23A  
ns  
rr  
J
F
TJ = 125°C, di/dt = 100A/µs  
Q
rr  
T = 25°C, I = 23A, V = 0V  
Reverse Recovery Charge  
––– 560 840 nC  
––– 980 1500  
J
S
GS  
TJ = 125°C, di/dt = 100A/µs  
IRRM  
T = 25°C  
J
Reverse Recovery Current  
Forward Turn-On Time  
––– 7.6  
11  
A
t
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
on  
www.irf.com  
1
02/11/04  
IRFP23N50LPbF  
Static @ TJ = 25°C (unless otherwise specified)  
Symbol  
V(BR)DSS  
Parameter  
Min. Typ. Max. Units  
Conditions  
VGS = 0V, ID = 250µA  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
500  
–––  
–––  
V
(BR)DSS/ TJ  
V
–––  
0.27  
–––  
V/°C Reference to 25°C, ID = 1mA  
RDS(on)  
VGS(th)  
IDSS  
––– 0.190 0.235  
V
V
V
V
GS = 10V, ID = 14A  
V
3.0  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
5.0  
50  
DS = VGS, ID = 250µA  
Drain-to-Source Leakage Current  
µA  
mA  
DS = 500V, VGS = 0V  
2.0  
100  
DS = 400V, VGS = 0V, TJ = 125°C  
IGSS  
RG  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Internal Gate Resistance  
nA VGS = 30V  
VGS = -30V  
––– -100  
1.2 –––  
f = 1MHz, open drain  
Dynamic @ TJ = 25°C (unless otherwise specified)  
Symbol  
Parameter  
Forward Transconductance  
Total Gate Charge  
Min. Typ. Max. Units  
Conditions  
VDS = 50V, ID = 14A  
ID = 23A  
DS = 400V  
gfs  
Qg  
12  
–––  
–––  
–––  
–––  
26  
–––  
150  
44  
S
–––  
–––  
–––  
–––  
–––  
–––  
–––  
Qgs  
Qgd  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Turn-On Delay Time  
Rise Time  
nC  
V
72  
VGS = 10V, See Fig. 7 & 15  
VDD = 250V  
td(on)  
tr  
td(off)  
tf  
–––  
–––  
–––  
–––  
94  
ns ID = 23A  
RG = 6.0  
VGS = 10V, See Fig. 11a & 11b  
VGS = 0V  
Turn-Off Delay Time  
Fall Time  
53  
45  
Ciss  
Coss  
Crss  
Coss  
Coss  
Input Capacitance  
––– 3600 –––  
Output Capacitance  
–––  
–––  
380  
37  
–––  
–––  
VDS = 25V  
Reverse Transfer Capacitance  
Output Capacitance  
ƒ = 1.0MHz, See Fig. 5  
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz  
VGS = 0V, VDS = 400V, ƒ = 1.0MHz  
––– 4800 –––  
pF  
Output Capacitance  
–––  
–––  
–––  
100  
220  
160  
–––  
–––  
–––  
C
oss eff.  
Effective Output Capacitance  
Effective Output Capacitance  
VGS = 0V,VDS = 0V to 400V  
Coss eff. (ER)  
(Energy Related)  
Avalanche Characteristics  
Parameter  
Typ.  
–––  
–––  
–––  
Max.  
410  
23  
Units  
mJ  
A
Symbol  
Single Pulse Avalanche Energy  
EAS  
IAR  
Avalanche Current  
Repetitive Avalanche Energy  
EAR  
37  
mJ  
Thermal Resistance  
Symbol  
Parameter  
Junction-to-Case  
Typ.  
–––  
Max.  
0.34  
–––  
40  
Units  
RθJC  
RθCS  
RθJA  
Case-to-Sink, Flat, Greased Surface  
Junction-to-Ambient  
0.24  
–––  
°C/W  
Notes:  
 Repetitive rating; pulse width limited by  
max. junction temperature. (See Fig. 11).  
‚ Starting TJ = 25°C, L = 1.5mH, RG = 25,  
IAS = 23A, dv/dt = 14V/ns. (See Figure 12).  
„ Pulse width 300µs; duty cycle 2%.  
Coss eff. is a fixed capacitance that gives the same charging time  
as Coss while VDS is rising from 0 to 80% VDSS  
Coss eff.(ER) is a fixed capacitance that stores the same energy  
as Coss while VDS is rising from 0 to 80% VDSS  
.
ƒ ISD 23A, di/dt 430A/µs, VDD V(BR)DSS  
,
.
TJ 150°C.  
2
www.irf.com  
IRFP23N50LPbF  
100  
10  
1
100  
10  
VGS  
15V  
10V  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
TOP  
TOP  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
BOTTOM 4.5V  
BOTTOM 4.5V  
1
0.1  
4.5V  
4.5V  
0.01  
0.001  
20µs PULSE WIDTH  
Tj = 25°C  
20µs PULSE WIDTH  
Tj = 150°C  
0.1  
0.1  
1
10  
100  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
DS  
V
, Drain-to-Source Voltage (V)  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
3.0  
1000.00  
23A  
=
I
D
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
T
= 25°C  
J
100.00  
10.00  
1.00  
T = 150°C  
J
V
= 15V  
DS  
20µs PULSE WIDTH  
V
= 10V  
GS  
-60 -40 -20  
0
20  
40  
60  
80 100 120 140 160  
1.0  
6.0  
11.0  
16.0  
°
T , Junction Temperature  
( C)  
J
V
, Gate-to-Source Voltage (V)  
GS  
Fig 3. Typical Transfer Characteristics  
Fig 4. Normalized On-Resistance  
Vs. Temperature  
www.irf.com  
3
IRFP23N50LPbF  
100000  
25  
20  
15  
10  
5
V
= 0V,  
f = 1 MHZ  
GS  
C
= C + C  
,
C
SHORTED  
iss  
gs  
gd  
ds  
C
= C  
rss  
gd  
C
= C + C  
oss  
ds gd  
10000  
1000  
100  
Ciss  
Coss  
Crss  
0
10  
0
100  
V
200  
300  
400  
500  
600  
1
10  
100  
1000  
V
, Drain-to-Source Voltage (V)  
DS  
Drain-to-Source Voltage (V)  
DS,  
Fig 6. Typ. Output Capacitance  
Fig 5. Typical Capacitance vs.  
Stored Energy vs. VDS  
Drain-to-Source Voltage  
100.00  
10.00  
1.00  
12  
10  
7
D
I
= 23  
V
V
V
=
=
=
400V  
250V  
100V  
DS  
DS  
DS  
T
= 150°C  
J
T
= 25°C  
J
5
2
V
= 0V  
GS  
0.10  
0
0
24  
Q
48  
72  
96  
120  
0.0  
0.5  
1.0  
1.5  
2.0  
, Total Gate Charge (nC)  
G
V
, Source-toDrain Voltage (V)  
SD  
Fig 8. Typical Source-Drain Diode  
Fig 7. Typical Gate Charge vs.  
Forward Voltage  
Gate-to-Source Voltage  
4
www.irf.com  
IRFP23N50LPbF  
1000  
100  
10  
25  
20  
15  
10  
5
OPERATION IN THIS AREA LIMITED  
BY R  
DS(on)  
10us  
100us  
1ms  
°
T = 25 C  
C
10ms  
°
T = 150 C  
Single Pulse  
J
1
0
10  
100  
1000  
10000  
25  
50  
T
75  
100  
125  
150  
V
, Drain-to-Source Voltage (V)  
°
( C)  
, Case Temperature  
DS  
C
Fig 9. Maximum Safe Operating Area  
Fig 10. Maximum Drain Current vs.  
Case Temperature  
RD  
VDS  
V
DS  
90%  
VGS  
DꢀUꢀTꢀ  
RG  
+VDD  
-
10%  
10V  
V
GS  
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 11b. Switching Time Waveforms  
Fig 11a. Switching Time Test Circuit  
www.irf.com  
5
IRFP23N50LPbF  
10  
1
D = 0.50  
0.1  
0.20  
0.10  
0.05  
P
DM  
t
0.02  
0.01  
1
SINGLE PULSE  
(THERMAL RESPONSE)  
0.01  
t
2
Notes:  
1. Duty factor D =  
t / t  
1
2
2. Peak T  
= P  
x Z  
+ T  
J
DM  
thJC  
C
0.001  
0.00001  
0.0001  
0.001  
0.01  
0.1  
1
t , Rectangular Pulse Duration (sec)  
1
Fig 12. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
5.0  
4.5  
4.0  
I
= 250µA  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
D
-75 -50 -25  
0
25  
50  
75 100 125 150  
T , Temperature ( °C )  
J
Fig 13. Threshold Voltage vs. Temperature  
6
www.irf.com  
IRFP23N50LPbF  
750  
600  
450  
300  
150  
0
I
D
TOP  
10A  
15A  
23A  
BOTTOM  
25  
50  
75  
100  
125  
150  
°
( C)  
Starting T , Junction Temperature  
J
Fig 14. Maximum Avalanche Energy  
Vs. Drain Current  
15V  
V
(BR)DSS  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
20V  
0.01Ω  
t
p
I
AS  
Fig 15b. Unclamped Inductive Waveforms  
Fig 15a. Unclamped Inductive Test Circuit  
Current Regulator  
Same Type as D.U.T.  
Q
G
50KΩ  
.2µF  
12V  
VGS  
V
.3µF  
Q
Q
GD  
GS  
+
V
DS  
D.U.T.  
-
V
V
GS  
G
3mA  
I
I
D
G
Charge  
Current Sampling Resistors  
Fig 16b. Basic Gate Charge Waveform  
Fig 16a. Gate Charge Test Circuit  
www.irf.com  
7
IRFP23N50LPbF  
Peak Diode Recovery dv/dt Test Circuit  
+
ƒ
-
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
DꢀUꢀT  
+
‚
-
„
-
+

RG  
dv/dt controlled by RG  
+
-
Driver same type as DꢀUꢀTꢀ  
ISD controlled by Duty Factor "D"  
DꢀUꢀTꢀ - Device Under Test  
VDD  
Driver Gate Drive  
P.W.  
P.W.  
Period  
Period  
D =  
V
=10V  
*
GS  
D.U.T. I Waveform  
SD  
Reverse  
Recovery  
Current  
Body Diode Forward  
Current  
di/dt  
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  
V
DD  
Re-Applied  
Voltage  
Body Diode  
Forward Drop  
Inductor Curent  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 17. For N-Channel HEXFET® Power MOSFETs  
8
www.irf.com  
IRFP23N50LPbF  
TO-247AC Package Outline  
Dimensions are shown in millimeters (inches)  
- D -  
3.65 (.143)  
3.55 (.140)  
5.30 (.209)  
4.70 (.185)  
15.90 (.626)  
15.30 (.602)  
0.25 (.010)  
D
M
B
M
2.50 (.089)  
- B -  
- A -  
1.50 (.059)  
5.50 (.217)  
4
20.30 (.800)  
19.70 (.775)  
NOTES:  
5.50 (.217)  
4.50 (.177)  
2X  
1
DIMENSIONING & TOLERANCING  
PER ANSI Y14.5M, 1982.  
CONTROLLING DIMENSION : INCH.  
CONFORMS TO JEDEC OUTLINE  
TO-247-AC.  
1
2
3
2
3
- C -  
14.80 (.583)  
14.20 (.559)  
4.30 (.170)  
3.70 (.145)  
LEAD ASSIGNMENTS  
Hexfet  
IGBT  
1 -Gate1-Gate  
2.40 (.094)  
2.00 (.079)  
2X  
0.80 (.031)  
0.40 (.016)  
1.40 (.056)  
1.00 (.039)  
3X  
3X  
2 - Drain2 - Collector  
3 - Source 3 - Emitter  
2.60 (.102)  
2.20 (.087)  
0.25 (.010)  
A
C
M
S
5.45 (.215)  
4 - Drain  
4 - Collector  
3.40 (.133)  
3.00 (.118)  
2X  
TO-247AC Part Marking Information  
EXAMPLE: THIS IS AN IRFPE30  
WITH ASSEMBLY  
PART NUMBER  
INTERNATIONAL  
RECTIFIER  
LOGO  
LOT CODE 5657  
IRFPE30  
ASSEMBLED ON WW 35, 2000  
IN THE ASSEMBLY LINE "H"  
035H  
57  
56  
DATE CODE  
YEAR 0 = 2000  
WE EK 35  
Note: "P" in assembly line  
position indicates "Lead-Free"  
ASSEMBLY  
LOT CODE  
LINE H  
TO-247AC package is not recommended for Surface Mount Application.  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.02/04  
www.irf.com  
9

相关型号:

IRFP240

20A, 200V, 0.180 Ohm, N-Channel Power MOSFET
INTERSIL

IRFP240

Power MOSFET(Vdss=200V, Rds(on)=0.18ohm, Id=20A)
INFINEON

IRFP240

Power MOSFET
VISHAY

IRFP240

Dynamic dV/dt Rating Repetitive Avalanche Rated
KERSEMI

IRFP240A

Advanced Power MOSFET
FAIRCHILD

IRFP240B

200V N-Channel MOSFET
FAIRCHILD

IRFP240B_FP001

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET
FAIRCHILD

IRFP240FI

TRANSISTOR | MOSFET | N-CHANNEL | 200V V(BR)DSS | 12A I(D) | TO-218VAR
ETC

IRFP240PBF

HEXFET㈢ Power MOSFET
INFINEON

IRFP240PBF

Power MOSFET
VISHAY

IRFP240PBF

Dynamic dV/dt Rating Repetitive Avalanche Rated
KERSEMI

IRFP240R

20A, 200V, 0.18ohm, N-CHANNEL, Si, POWER, MOSFET, TO-247
RENESAS