IRFP4568PBF [INFINEON]

HEXFETPower MOSFET; ?? HEXFET功率MOSFET
IRFP4568PBF
型号: IRFP4568PBF
厂家: Infineon    Infineon
描述:

HEXFETPower MOSFET
?? HEXFET功率MOSFET

晶体 晶体管 功率场效应晶体管 开关 脉冲 局域网
文件: 总8页 (文件大小:321K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD -96175  
IRFP4568PbF  
HEXFET® Power MOSFET  
Applications  
l High Efficiency Synchronous Rectification in SMPS  
l Uninterruptible Power Supply  
l High Speed Power Switching  
l Hard Switched and High Frequency Circuits  
D
S
VDSS  
RDS(on) typ.  
150V  
4.8m  
5.9m  
171  
G
max.  
ID  
(Silicon Limited)  
Benefits  
l Improved Gate, Avalanche and Dynamic dV/dt  
D
Ruggedness  
l Fully Characterized Capacitance and Avalanche  
SOA  
S
D
l Enhanced body diode dV/dt and dI/dt Capability  
l Lead-Free  
G
TO-247AC  
IRFP4568PbF  
G
D
S
Gate  
Drain  
Source  
Absolute Maximum Ratings  
Symbol  
ID @ TC = 25°C  
ID @ TC = 100°C  
IDM  
Parameter  
Max.  
171  
Units  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Pulsed Drain Current  
121  
A
684  
PD @TC = 25°C  
W
517  
Maximum Power Dissipation  
Linear Derating Factor  
3.45  
W/°C  
V
VGS  
± 30  
Gate-to-Source Voltage  
18.5  
Peak Diode Recovery  
dv/dt  
TJ  
V/ns  
-55 to + 175  
Operating Junction and  
TSTG  
Storage Temperature Range  
Soldering Temperature, for 10 seconds  
(1.6mm from case)  
°C  
300  
10lb in (1.1N m)  
Mounting torque, 6-32 or M3 screw  
Avalanche Characteristics  
Single Pulse Avalanche Energy  
EAS (Thermally limited)  
763  
mJ  
A
Avalanche Current  
IAR  
See Fig. 14, 15, 22a, 22b,  
Repetitive Avalanche Energy  
EAR  
mJ  
Thermal Resistance  
Symbol  
Parameter  
Typ.  
–––  
Max.  
0.29  
–––  
40  
Units  
RθJC  
Junction-to-Case  
RθCS  
RθJA  
0.24  
–––  
°C/W  
Case-to-Sink, Flat Greased Surface  
Junction-to-Ambient  
www.irf.com  
1
09/08/08  
IRFP4568PbF  
Static @ TJ = 25°C (unless otherwise specified)  
Symbol  
V(BR)DSS  
Parameter  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
Min. Typ. Max. Units  
150 ––– –––  
––– 0.17 ––– V/°C Reference to 25°C, ID = 5mA  
Conditions  
VGS = 0V, ID = 250µA  
V
V(BR)DSS/TJ  
RDS(on)  
––– 4.8  
3.0 ––– 5.0  
––– ––– 20  
5.9  
VGS = 10V, ID = 103A  
VDS = VGS, ID = 250µA  
mΩ  
V
VGS(th)  
IDSS  
Drain-to-Source Leakage Current  
VDS =150V, VGS = 0V  
µA  
––– ––– 250  
––– ––– 100  
––– ––– -100  
––– 1.0 –––  
VDS = 150V, VGS = 0V, TJ = 125°C  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Internal Gate Resistance  
VGS = 20V  
nA  
VGS = -20V  
RG  
Dynamic @ TJ = 25°C (unless otherwise specified)  
Symbol  
Parameter  
Forward Transconductance  
Min. Typ. Max. Units  
Conditions  
VDS = 50V, ID = 103A  
gfs  
Qg  
162 ––– –––  
S
Total Gate Charge  
––– 151 227  
ID = 103A  
Qgs  
Qgd  
Gate-to-Source Charge  
–––  
–––  
–––  
–––  
52  
55  
96  
27  
–––  
–––  
–––  
–––  
VDS = 75V  
nC  
Gate-to-Drain ("Miller") Charge  
Total Gate Charge Sync. (Qg - Qgd)  
VGS = 10V  
Qsync  
td(on)  
tr  
ID = 103A, VDS =0V, VGS = 10V  
VDD = 98V  
Turn-On Delay Time  
Rise Time  
––– 119 –––  
ID =103A  
ns  
td(off)  
tf  
Turn-Off Delay Time  
–––  
–––  
47  
84  
–––  
–––  
RG =1.0Ω  
VGS = 10V  
Fall Time  
Ciss  
Coss  
Crss  
Input Capacitance  
––– 10470 –––  
––– 977 –––  
––– 203 –––  
––– 897 –––  
––– 1272 –––  
V
GS = 0V  
Output Capacitance  
VDS = 50V  
Reverse Transfer Capacitance  
Effective Output Capacitance (Energy Related)  
Effective Output Capacitance (Time Related)  
ƒ = 1.0MHz, (See Fig 5)  
GS = 0V, VDS = 0V to 120V  
pF  
Coss eff. (ER)  
oss eff. (TR)  
V
(SeeFig.11)  
C
VGS = 0V, VDS = 0V to 120V  
Diode Characteristics  
Symbol  
Parameter  
Continuous Source Current  
Min. Typ. Max. Units  
Conditions  
MOSFET symbol  
IS  
D
S
––– ––– 171  
A
(Body Diode)  
showing the  
G
ISM  
Pulsed Source Current  
(Body Diode)  
Diode Forward Voltage  
Reverse Recovery Time  
integral reverse  
––– ––– 684  
A
V
p-n junction diode.  
VSD  
trr  
––– ––– 1.3  
––– 110 –––  
––– 133 –––  
––– 515 –––  
––– 758 –––  
––– 8.8 –––  
TJ = 25°C, IS = 103A, VGS = 0V  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
VR = 100V,  
IF = 103A  
di/dt = 100A/µs  
ns  
Qrr  
Reverse Recovery Charge  
nC  
A
IRRM  
ton  
Reverse Recovery Current  
Forward Turn-On Time  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
Notes:  
„ Pulse width 400µs; duty cycle 2%.  
Coss eff. (TR) is a fixed capacitance that gives the same charging time  
 Repetitive rating; pulse width limited by max. junction  
temperature.  
as Coss while VDS is rising from 0 to 80% VDSS  
† Coss eff. (ER) is a fixed capacitance that gives the same energy as  
Coss while VDS is rising from 0 to 80% VDSS  
.
‚ Limited by TJmax, starting TJ = 25°C, L = 0.144mH  
RG = 25, IAS = 103A, VGS =10V. Part not recommended for use  
above this value.  
.
‡ When mounted on 1" square PCB (FR-4 or G-10 Material). For recom  
mended footprint and soldering techniques refer to application note #AN-994.  
ˆ Rθ is measured at TJ approximately 90°C.  
ƒ ISD 103A, di/dt 360A/µs, VDD V(BR)DSS, TJ 175°C.  
2
www.irf.com  
IRFP4568PbF  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
4.5V  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
4.5V  
TOP  
TOP  
BOTTOM  
BOTTOM  
1
4.5V  
60µs PULSE WIDTH  
Tj = 25°C  
0.1  
0.01  
60µs PULSE WIDTH  
Tj = 175°C  
4.5V  
1
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
DS  
V
, Drain-to-Source Voltage (V)  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000  
100  
10  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
I
= 103A  
= 10V  
D
V
GS  
T
= 175°C  
J
T
= 25°C  
J
1
V
= 50V  
DS  
60µs PULSE WIDTH  
0.1  
3
4
5
6
7
8
9
-60 -40 -20 0 20 40 60 80 100120140160180  
, Junction Temperature (°C)  
T
J
V
, Gate-to-Source Voltage (V)  
GS  
Fig 4. Normalized On-Resistance vs. Temperature  
Fig 3. Typical Transfer Characteristics  
14.0  
1000000  
100000  
10000  
1000  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
I = 103A  
D
C
C
C
+ C , C  
SHORTED  
ds  
iss  
gs  
gd  
12.0  
= C  
rss  
oss  
gd  
= C + C  
V
V
= 120V  
= 75V  
DS  
DS  
ds  
gd  
10.0  
8.0  
6.0  
4.0  
2.0  
0.0  
VDS= 30V  
C
iss  
C
oss  
C
rss  
100  
10  
0
50  
100  
150  
200  
1
10  
100  
1000  
Q , Total Gate Charge (nC)  
V
, Drain-to-Source Voltage (V)  
G
DS  
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage  
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage  
www.irf.com  
3
IRFP4568PbF  
10000  
1000  
100  
10  
1000  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
T
= 175°C  
J
T
= 25°C  
J
100µsec  
100  
10  
1msec  
DC  
10msec  
1
Tc = 25°C  
Tj = 175°C  
Single Pulse  
V
= 0V  
GS  
0.1  
1.0  
0.1  
1
10  
100  
1000  
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8  
, Source-to-Drain Voltage (V)  
V
, Drain-to-Source Voltage (V)  
V
DS  
SD  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
190  
185  
180  
175  
170  
165  
160  
155  
150  
145  
140  
180  
Id = 5mA  
160  
140  
120  
100  
80  
60  
40  
20  
0
-60 -40 -20 0 20 40 60 80 100120140160180  
25  
50  
75  
100  
125  
150  
175  
T
, Temperature ( °C )  
T
, Case Temperature (°C)  
J
Fig 9. MaxiCmum Drain Current vs.  
Fig 10. Drain-to-Source Breakdown Voltage  
Case Temperature  
3500  
3000  
2500  
2000  
1500  
1000  
500  
12.0  
I
D
TOP  
21.5A  
29.3A  
BOTTOM 103A  
10.0  
8.0  
6.0  
4.0  
2.0  
0.0  
0
25  
50  
75  
100  
125  
150  
175  
0
20 40 60  
80 100 120 140 160  
Starting T , Junction Temperature (°C)  
J
V
Drain-to-Source Voltage (V)  
Fig 11. TypicDaSl ,COSS Stored Energy  
Fig 12. Maximum Avalanche Energy vs. DrainCurrent  
4
www.irf.com  
IRFP4568PbF  
1
0.1  
D = 0.50  
0.20  
0.10  
0.05  
0.01  
R1  
R1  
R2  
R2  
R3  
R3  
0.02  
0.01  
Ri (°C/W) τi (sec)  
τ
J τJ  
τ
Cτ 0.06336 0.000278  
τ
τ
1τ1  
τ
2 τ2  
0.11088 0.005836  
3τ3  
0.001  
0.0001  
0.11484 0.053606  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
Ci= τi/Ri  
/
SINGLE PULSE  
( THERMAL RESPONSE )  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
1000  
100  
10  
Duty Cycle = Single Pulse  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming Tj = 150°C and  
Tstart =25°C (Single Pulse)  
0.01  
0.05  
0.10  
1
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming Τj = 25°C and  
Tstart = 150°C.  
0.1  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 14. Typical Avalanche Current vs.Pulsewidth  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
Notes on Repetitive Avalanche Curves , Figures 14, 15:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
TOP  
BOTTOM 1.0% Duty Cycle  
= 103A  
Single Pulse  
Purely a thermal phenomenon and failure occurs at a temperature far in  
excess of Tjmax. This is validated for every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.  
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as  
25°C in Figure 14, 15).  
I
D
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)  
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
25  
50  
75  
100  
125  
150  
175  
Iav = 2DT/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·tav  
Starting T , Junction Temperature (°C)  
J
Fig 15. Maximum Avalanche Energy vs. Temperature  
www.irf.com  
5
IRFP4568PbF  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
60  
50  
40  
30  
20  
10  
0
I = 68A  
F
V
= 100V  
R
T = 25°C  
J
T = 125°C  
J
I
I
= 250µA  
D
D
= 1.0mA  
2.5  
2.0  
1.5  
1.0  
ID = 1.0A  
-75 -50 -25  
0
25 50 75 100 125 150 175  
0
200  
400  
600  
800  
1000  
T
, Temperature ( °C )  
di /dt (A/µs)  
J
F
Fig. 17 - Typical Recovery Current vs. dif/dt  
Fig 16. Threshold Voltage vs. Temperature  
70  
3600  
I = 103A  
I = 68A  
F
F
3200  
2800  
2400  
2000  
1600  
1200  
800  
60  
50  
40  
30  
20  
10  
0
V
= 100V  
V
= 100V  
R
R
T = 25°C  
T = 25°C  
J
J
T = 125°C  
J
T = 125°C  
J
400  
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
di /dt (A/µs)  
di /dt (A/µs)  
F
F
Fig. 18 - Typical Recovery Current vs. dif/dt  
Fig. 19 - Typical Stored Charge vs. dif/dt  
4000  
I = 103A  
F
V
3600  
3200  
2800  
2400  
2000  
1600  
1200  
800  
= 100V  
R
T = 25°C  
J
T = 125°C  
J
400  
0
200  
400  
600  
800  
1000  
di /dt (A/µs)  
F
Fig. 20 - Typical Stored Charge vs. dif/dt  
6
www.irf.com  
IRFP4568PbF  
Driver Gate Drive  
P.W.  
P.W.  
Period  
D.U.T  
Period  
D =  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Current  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
2
GS  
0.01  
t
p
I
AS  
Fig 22b. Unclamped Inductive Waveforms  
Fig 22a. Unclamped Inductive Test Circuit  
RD  
VDS  
V
DS  
90%  
VGS  
D.U.T.  
RG  
+
VDD  
-
VGS  
10%  
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 23a. Switching Time Test Circuit  
Fig 23b. Switching Time Waveforms  
Id  
Current Regulator  
Same Type as D.U.T.  
Vds  
Vgs  
50KΩ  
.2µF  
12V  
.3µF  
+
V
DS  
D.U.T.  
-
Vgs(th)  
V
GS  
3mA  
I
I
D
G
Qgs1  
Qgs2  
Qgd  
Qgodr  
Current Sampling Resistors  
Fig 24a. Gate Charge Test Circuit  
Fig 24b. Gate Charge Waveform  
www.irf.com  
7
IRFP4568PbF  
TO-247AC Package Outline  
Dimensions are shown in millimeters (inches)  
TO-247AC Part Marking Information  
TO-247AC package is not recommended for Surface Mount Application.  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 09/2008  
www.irf.com  
8

相关型号:

IRFP460

PowerMOS transistors Avalanche energy rated
NXP

IRFP460

N - CHANNEL 500V - 0.22 ohm - 20 A - TO-247 PowerMESH] MOSFET
STMICROELECTR

IRFP460

20A, 500V, 0.270 Ohm, N-Channel Power MOSFET
INTERSIL

IRFP460

Power MOSFET(Vdss=500V, Rds(on)=0.27ohm, Id=20A)
INFINEON

IRFP460

MegaMOS - Power MOSFET
IXYS

IRFP460

Power MOSFET
VISHAY

IRFP460A

Power MOSFET(Vdss=500V, Rds(on)max=0.27ohm, Id=20A)
INFINEON

IRFP460A

Power MOSFET
VISHAY

IRFP460APBF

SMPS MOSFET ( VDSS=500V , RDS(on)max=0.27ヘ , ID=20A )
INFINEON

IRFP460AS

Power MOSFET(Vdss=500V, Rds(on)max=0.27ohm, Id=20A)
INFINEON

IRFP460B

D Series Power MOSFET
VISHAY

IRFP460BPBF

D Series Power MOSFET
VISHAY