IRFR4615TRPBF [INFINEON]

HEXFET Power MOSFET; HEXFET功率MOSFET
IRFR4615TRPBF
型号: IRFR4615TRPBF
厂家: Infineon    Infineon
描述:

HEXFET Power MOSFET
HEXFET功率MOSFET

文件: 总11页 (文件大小:392K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD -96206A  
IRFR4615PbF  
IRFU4615PbF  
HEXFET® Power MOSFET  
Applications  
l High Efficiency Synchronous Rectification in SMPS  
l Uninterruptible Power Supply  
l High Speed Power Switching  
D
S
VDSS  
RDS(on) typ.  
150V  
34m  
42m  
33A  
G
max.  
l Hard Switched and High Frequency Circuits  
ID  
Benefits  
l Improved Gate, Avalanche and Dynamic dV/dt  
D
D
Ruggedness  
l Fully Characterized Capacitance and Avalanche  
SOA  
S
S
D
l Enhanced body diode dV/dt and dI/dt Capability  
l Lead-Free  
G
G
DPak  
IRFR4615PbF  
IPAK  
IRFU4615PbF  
G
D
S
Gate  
Drain  
Source  
Absolute Maximum Ratings  
Symbol  
Parameter  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
Max.  
33  
Units  
ID @ TC = 25°C  
ID @ TC = 100°C  
IDM  
24  
A
140  
PD @TC = 25°C  
W
144  
Maximum Power Dissipation  
Linear Derating Factor  
0.96  
W/°C  
V
VGS  
± 20  
Gate-to-Source Voltage  
38  
Peak Diode Recovery  
dv/dt  
TJ  
V/ns  
-55 to + 175  
Operating Junction and  
TSTG  
Storage Temperature Range  
Soldering Temperature, for 10 seconds  
(1.6mm from case)  
°C  
300  
Avalanche Characteristics  
Single Pulse Avalanche Energy  
EAS (Thermally limited)  
109  
mJ  
A
Avalanche Current  
IAR  
See Fig. 14, 15, 22a, 22b,  
Repetitive Avalanche Energy  
EAR  
mJ  
Thermal Resistance  
Symbol  
Parameter  
Typ.  
–––  
–––  
–––  
Max.  
1.045  
50  
Units  
RθJC  
Junction-to-Case  
RθJA  
RθJA  
°C/W  
Junction-to-Ambient (PCB Mount)  
Junction-to-Ambient  
110  
ORDERING INFORMATION:  
See detailed ordering and shipping information on the last page of this data sheet.  
Notes  through ˆ are on page 11  
www.irf.com  
1
06/08/09  
IRFR/U4615PbF  
Static @ TJ = 25°C (unless otherwise specified)  
Symbol  
V(BR)DSS  
Parameter  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
Min. Typ. Max. Units  
150 ––– –––  
––– 0.19 ––– V/°C Reference to 25°C, ID = 5mA  
Conditions  
VGS = 0V, ID = 250µA  
V
V
/ T  
J
(BR)DSS  
RDS(on)  
VGS(th)  
IDSS  
–––  
3.0  
34  
42  
5.0  
20  
VGS = 10V, ID = 21A  
m
V
–––  
VDS = VGS, ID = 100µA  
Drain-to-Source Leakage Current  
––– –––  
VDS = 150V, VGS = 0V  
µA  
––– ––– 250  
––– ––– 100  
––– ––– -100  
VDS = 150V, VGS = 0V, TJ = 125°C  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Internal Gate Resistance  
V
GS = 20V  
nA  
VGS = -20V  
RG(int)  
–––  
2.7  
–––  
Dynamic @ TJ = 25°C (unless otherwise specified)  
Symbol  
gfs  
Parameter  
Forward Transconductance  
Min. Typ. Max. Units  
Conditions  
VDS = 50V, ID = 21A  
35  
––– –––  
S
Qg  
Total Gate Charge  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
26  
ID = 21A  
Qgs  
Qgd  
Qsync  
td(on)  
tr  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Total Gate Charge Sync. (Qg - Qgd)  
Turn-On Delay Time  
Rise Time  
8.6  
9.0  
17  
15  
35  
25  
20  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
VDS = 75V  
nC  
VGS = 10V  
ID = 21A, VDS =0V, VGS = 10V  
VDD = 98V  
ID = 21A  
ns  
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
R = 7.3  
G
VGS = 10V  
Ciss  
Coss  
Crss  
Input Capacitance  
––– 1750 –––  
––– 155 –––  
VGS = 0V  
Output Capacitance  
Reverse Transfer Capacitance  
VDS = 50V  
ƒ = 1.0MHz  
–––  
40  
–––  
(See Fig.5)  
pF  
C
oss eff. (ER)  
––– 179 –––  
––– 382 –––  
VGS = 0V, VDS = 0V to 120V (See Fig.11)  
VGS = 0V, VDS = 0V to 120V  
Effective Output Capacitance (Energy Related)  
Effective Output Capacitance (Time Related)  
Coss eff. (TR)  
Diode Characteristics  
Symbol  
Parameter  
Continuous Source Current  
Min. Typ. Max. Units  
Conditions  
MOSFET symbol  
D
IS  
––– –––  
33  
(Body Diode)  
showing the  
A
G
ISM  
Pulsed Source Current  
(Body Diode)  
integral reverse  
––– ––– 140  
S
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
––– –––  
1.3  
–––  
–––  
V
TJ = 25°C, IS = 21A, VGS = 0V  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
VR = 100V,  
IF = 21A  
di/dt = 100A/µs  
–––  
–––  
70  
83  
ns  
Qrr  
Reverse Recovery Charge  
––– 177 –––  
––– 247 –––  
nC  
A
IRRM  
ton  
Reverse Recovery Current  
Forward Turn-On Time  
–––  
4.9  
–––  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
2
www.irf.com  
IRFR/U4615PbF  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
12V  
VGS  
15V  
12V  
TOP  
TOP  
10V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
BOTTOM  
BOTTOM  
5.0V  
1
1
5.0V  
0.1  
0.01  
60µs PULSE WIDTH  
Tj = 175°C  
60µs PULSE WIDTH  
Tj = 25°C  
0.1  
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
DS  
V
, Drain-to-Source Voltage (V)  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000  
100  
10  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
I
= 21A  
D
V
= 10V  
GS  
T = 175°C  
J
T = 25°C  
J
1
V
= 50V  
DS  
60µs PULSE WIDTH  
0.1  
2
4
6
8
10 12 14  
16  
-60 -40 -20 0 20 40 60 80 100120140160180  
, Junction Temperature (°C)  
T
J
V
, Gate-to-Source Voltage (V)  
GS  
Fig 4. Normalized On-Resistance vs. Temperature  
Fig 3. Typical Transfer Characteristics  
100000  
10000  
1000  
100  
14.0  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
I
= 21A  
C
C
C
+ C , C  
SHORTED  
ds  
D
iss  
gs  
gd  
12.0  
10.0  
8.0  
= C  
rss  
oss  
gd  
= C + C  
V
V
= 120V  
= 75V  
DS  
DS  
ds  
gd  
VDS= 30V  
C
iss  
C
oss  
6.0  
C
rss  
4.0  
2.0  
10  
0.0  
1
10  
100  
1000  
0
5
10  
15  
20  
25  
30  
35  
V
, Drain-to-Source Voltage (V)  
Q , Total Gate Charge (nC)  
DS  
G
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage  
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage  
www.irf.com  
3
IRFR/U4615PbF  
1000  
100  
10  
1000  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
100µsec  
100  
1msec  
T
= 175°C  
10msec  
J
T
= 25°C  
J
10  
DC  
1
Tc = 25°C  
Tj = 175°C  
Single Pulse  
V
= 0V  
1.4  
GS  
0.1  
1.0  
1
10  
100  
1000  
0.2  
0.4  
V
0.6  
0.8  
1.0  
1.2  
1.6  
V
, Drain-to-Source Voltage (V)  
, Source-to-Drain Voltage (V)  
DS  
SD  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
40  
190  
185  
180  
175  
170  
165  
160  
155  
150  
145  
140  
Id = 5mA  
35  
30  
25  
20  
15  
10  
5
0
25  
50  
75  
100  
125  
150  
175  
-60 -40 -20 0 20 40 60 80 100120140160180  
T
, Case Temperature (°C)  
T , Temperature ( °C )  
J
Fig 10. Drain-to-Source Breakdown Voltage  
Fig 9. MaxiCmum Drain Current vs.  
Case Temperature  
3.0  
500  
I
D
450  
400  
350  
300  
250  
200  
150  
100  
50  
TOP  
2.8A  
5.3A  
BOTTOM 21A  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
0
-20  
0
20 40 60 80 100 120 140 160  
Drain-to-Source Voltage (V)  
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
V
J
DS,  
Fig 11. Typical COSS Stored Energy  
Fig 12. Maximum Avalanche Energy vs. DrainCurrent  
4
www.irf.com  
IRFR/U4615PbF  
10  
1
D = 0.50  
0.20  
0.10  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
Ri (°C/W) τi (sec)  
0.1  
0.02324 0.000008  
0.26212 0.000106  
0.50102 0.001115  
0.25880 0.005407  
τ
τ
J τJ  
τ
0.05  
0.02  
0.01  
Cτ  
1τ1  
Ci= τi/Ri  
τ
τ
τ
2 τ2  
3τ3  
4τ4  
0.01  
0.001  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
SINGLE PULSE  
( THERMAL RESPONSE )  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
100  
10  
1
Duty Cycle = Single Pulse  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming Tj = 150°C and  
Tstart =25°C (Single Pulse)  
0.01  
0.05  
0.10  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming ∆Τ j = 25°C and  
Tstart = 150°C.  
0.1  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 14. Typical Avalanche Current vs.Pulsewidth  
120  
100  
80  
60  
40  
20  
0
Notes on Repetitive Avalanche Curves , Figures 14, 15:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a temperature far in  
excess of Tjmax. This is validated for every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.  
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as  
25°C in Figure 14, 15).  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
TOP  
BOTTOM 1.0% Duty Cycle  
= 21A  
Single Pulse  
I
D
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)  
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
25  
50  
75  
100  
125  
150  
175  
Iav = 2DT/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·tav  
Starting T , Junction Temperature (°C)  
J
Fig 15. Maximum Avalanche Energy vs. Temperature  
www.irf.com  
5
IRFR/U4615PbF  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
30  
25  
20  
15  
10  
5
I = 14A  
F
V
= 100V  
R
T = 25°C  
J
T = 125°C  
J
I
I
= 100µA  
D
D
3.0  
2.5  
2.0  
1.5  
1.0  
= 250uA  
ID = 1.0mA  
ID = 1.0A  
0
-75 -50 -25  
0
25 50 75 100 125 150 175  
0
200  
400  
600  
800  
1000  
T
, Temperature ( °C )  
di /dt (A/µs)  
J
F
Fig. 17 - Typical Recovery Current vs. dif/dt  
Fig 16. Threshold Voltage vs. Temperature  
35  
800  
I = 21A  
I = 14A  
F
F
30  
25  
20  
15  
10  
5
700  
600  
500  
400  
300  
200  
100  
V
= 100V  
V
= 100V  
R
R
T = 25°C  
T = 25°C  
J
J
T = 125°C  
J
T = 125°C  
J
0
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
di /dt (A/µs)  
di /dt (A/µs)  
F
F
Fig. 18 - Typical Recovery Current vs. dif/dt  
Fig. 19 - Typical Stored Charge vs. dif/dt  
1000  
I = 21A  
F
V
900  
800  
700  
600  
500  
400  
300  
200  
100  
= 100V  
R
T = 25°C  
J
T = 125°C  
J
0
200  
400  
600  
800  
1000  
di /dt (A/µs)  
F
Fig. 20 - Typical Stored Charge vs. dif/dt  
6
www.irf.com  
IRFR/U4615PbF  
Driver Gate Drive  
P.W.  
P.W.  
Period  
D.U.T  
Period  
D =  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Current  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
2
GS  
0.01  
t
p
I
AS  
Fig 22b. Unclamped Inductive Waveforms  
Fig 22a. Unclamped Inductive Test Circuit  
RD  
VDS  
V
DS  
90%  
VGS  
D.U.T.  
RG  
+
VDD  
-
VGS  
10%  
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 23a. Switching Time Test Circuit  
Fig 23b. Switching Time Waveforms  
Id  
Current Regulator  
Same Type as D.U.T.  
Vds  
Vgs  
50KΩ  
.2µF  
12V  
.3µF  
+
V
DS  
D.U.T.  
-
Vgs(th)  
V
GS  
3mA  
I
I
D
G
Qgs1  
Qgs2  
Qgd  
Qgodr  
Current Sampling Resistors  
Fig 24a. Gate Charge Test Circuit  
Fig 24b. Gate Charge Waveform  
www.irf.com  
7
IRFR/U4615PbF  
D-Pak (TO-252AA) Package Outline  
Dimensions are shown in millimeters (inches)  
D-Pak (TO-252AA) Part Marking Information  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
8
www.irf.com  
IRFR/U4615PbF  
I-Pak (TO-251AA) Package Outline  
Dimensions are shown in millimeters (inches)  
I-Pak (TO-251AA) Part Marking Information  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
www.irf.com  
9
IRFR/U4615PbF  
D-Pak (TO-252AA) Tape & Reel Information  
Dimensions are shown in millimeters (inches)  
TR  
TRL  
TRR  
16.3 ( .641 )  
15.7 ( .619 )  
16.3 ( .641 )  
15.7 ( .619 )  
12.1 ( .476 )  
11.9 ( .469 )  
8.1 ( .318 )  
7.9 ( .312 )  
FEED DIRECTION  
FEED DIRECTION  
NOTES :  
1. CONTROLLING DIMENSION : MILLIMETER.  
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ).  
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.  
13 INCH  
16 mm  
NOTES :  
1. OUTLINE CONFORMS TO EIA-481.  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
10  
www.irf.com  
IRFR/U4615PbF  
Orderable part number  
Package Type  
Standard Pack  
Form Quantity  
Note  
IRFR4615PbF  
IRFR4615TRPbF  
D-PAK  
D-PAK  
Tube/Bulk  
Tape and Reel  
75  
2000  
IRFU4615PbF  
I-PAK  
Tube/Bulk  
75  
Qualification Information†  
Industrial ††  
(per JEDEC JESD47F††† guidelines)  
Qualification level  
Comments: This family of products has passed JEDEC’s Industrial  
qualification. IR’s Consumer qualification level is granted by extension of the  
higher Industrial level.  
MSL1  
D-PAK  
(per JEDEC J-STD-020D†††  
)
Moisture Sensitivity Level  
RoHS Compliant  
Not applicable  
I-PAK  
Yes  
Qualification standards can be found at International Rectifier’s web site http://www.irf.com/product-info/reliability  
†† Higher qualification ratings may be available should the user have such requirements. Please contact  
your International Rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/  
††† Applicable version of JEDEC standard at the time of product release.  
Notes:  
Coss eff. (TR) is a fixed capacitance that gives the same charging time  
 Repetitive rating; pulse width limited by max. junction  
as Coss while VDS is rising from 0 to 80% VDSS  
.
temperature.  
† Coss eff. (ER) is a fixed capacitance that gives the same energy as  
Coss while VDS is rising from 0 to 80% VDSS  
‚ Limited by TJmax, starting TJ = 25°C, L = 0.51mH  
RG = 25, IAS = 21A, VGS =10V. Part not recommended for use  
above this value .  
ƒ ISD 21A, di/dt 549A/µs, VDD V(BR)DSS, TJ 175°C.  
„ Pulse width 400µs; duty cycle 2%.  
.
‡ When mounted on 1" square PCB (FR-4 or G-10 Material). For recom  
mended footprint and soldering techniques refer to application  
note #AN-994  
ˆ Rθ is measured at TJ approximately 90°C  
Data and specifications subject to change without notice  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 06/2009  
www.irf.com  
11  

相关型号:

IRFR4615TRRPBF

Power Field-Effect Transistor, 33A I(D), 150V, 0.042ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-252AA, ROHS COMPLIANT, DPAK-3
INFINEON

IRFR4620

The IR MOSFET family of power MOSFETs utilizes proven silicon processes offering designers a wide portfolio of devices to support various applications such as DC motors, inverters, SMPS, lighting, load switches as well as battery powered applications.The devices are available in a variety of surface mount and through-hole packages with industry standard footprints for ease of design.
INFINEON

IRFR4620PBF

HEXFET Power MOSFET
INFINEON

IRFR4620PBF

HEXFETPower MOSFET
FREESCALE

IRFR4620TRLPBF

Power Field-Effect Transistor, 24A I(D), 200V, 0.078ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-252AA, ROHS COMPLIANT, DPAK-3
INFINEON

IRFR4620TRPBF

HEXFET Power MOSFET
INFINEON

IRFR48Z

AUTOMOTIVE MOSFET
INFINEON

IRFR48ZPBF

AUTOMOTIVE MOSFET
INFINEON

IRFR48ZTRL

AUTOMOTIVE MOSFET
KERSEMI

IRFR48ZTRL

Power Field-Effect Transistor, 42A I(D), 55V, 0.011ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-252AA, PLASTIC, DPAK-3
INFINEON

IRFR48ZTRLPBF

Power Field-Effect Transistor, 42A I(D), 55V, 0.011ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-252AA, LEAD FREE, PLASTIC, DPAK-3
INFINEON

IRFR48ZTRPBF

Power Field-Effect Transistor, 42A I(D), 55V, 0.011ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-252AA, LEAD FREE, PLASTIC, DPAK-3
INFINEON