IRFR4620TRPBF [INFINEON]

HEXFET Power MOSFET; HEXFET功率MOSFET
IRFR4620TRPBF
型号: IRFR4620TRPBF
厂家: Infineon    Infineon
描述:

HEXFET Power MOSFET
HEXFET功率MOSFET

晶体 晶体管 功率场效应晶体管 开关 脉冲
文件: 总11页 (文件大小:386K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD -96207A  
IRFR4620PbF  
IRFU4620PbF  
HEXFET® Power MOSFET  
Applications  
l High Efficiency Synchronous Rectification in SMPS  
l Uninterruptible Power Supply  
l High Speed Power Switching  
D
S
VDSS  
RDS(on) typ.  
200V  
64m  
78m  
24A  
G
max.  
l Hard Switched and High Frequency Circuits  
ID  
Benefits  
l Improved Gate, Avalanche and Dynamic dV/dt  
D
D
Ruggedness  
l Fully Characterized Capacitance and Avalanche  
SOA  
S
D
S
l Enhanced body diode dV/dt and dI/dt Capability  
l Lead-Free  
G
G
DPak  
IRFR4620PbF  
IPAK  
IRFU4620PbF  
G
D
S
Gate  
Drain  
Source  
Absolute Maximum Ratings  
Symbol  
Parameter  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
Max.  
24  
Units  
ID @ TC = 25°C  
ID @ TC = 100°C  
IDM  
17  
A
100  
PD @TC = 25°C  
W
144  
Maximum Power Dissipation  
Linear Derating Factor  
0.96  
W/°C  
V
VGS  
± 20  
Gate-to-Source Voltage  
54  
Peak Diode Recovery  
dv/dt  
TJ  
V/ns  
-55 to + 175  
Operating Junction and  
TSTG  
Storage Temperature Range  
Soldering Temperature, for 10 seconds  
(1.6mm from case)  
°C  
300  
Avalanche Characteristics  
Single Pulse Avalanche Energy  
EAS (Thermally limited)  
113  
mJ  
A
Avalanche Current  
IAR  
See Fig. 14, 15, 22a, 22b,  
Repetitive Avalanche Energy  
EAR  
mJ  
Thermal Resistance  
Symbol  
Parameter  
Typ.  
–––  
–––  
–––  
Max.  
1.045  
50  
Units  
RθJC  
Junction-to-Case  
RθJA  
RθJA  
°C/W  
Junction-to-Ambient (PCB Mount)  
Junction-to-Ambient  
110  
ORDERING INFORMATION:  
See detailed ordering and shipping information on the last page of this data sheet.  
Notes  through ˆ are on page 11  
www.irf.com  
1
06/08/09  
IRFR/U4620PbF  
Static @ TJ = 25°C (unless otherwise specified)  
Symbol  
V(BR)DSS  
Parameter  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
Min. Typ. Max. Units  
200 ––– –––  
––– 0.23 ––– V/°C Reference to 25°C, ID = 5mA  
Conditions  
VGS = 0V, ID = 250µA  
V
V(BR)DSS/TJ  
RDS(on)  
–––  
3.0  
64  
78  
5.0  
20  
VGS = 10V, ID = 15A  
mΩ  
V
VGS(th)  
–––  
VDS = VGS, ID = 100µA  
IDSS  
Drain-to-Source Leakage Current  
––– –––  
VDS = 200V, VGS = 0V  
µA  
––– ––– 250  
––– ––– 100  
––– ––– -100  
VDS = 200V, VGS = 0V, TJ = 125°C  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Internal Gate Resistance  
VGS = 20V  
nA  
VGS = -20V  
RG(int)  
–––  
2.6  
–––  
Dynamic @ TJ = 25°C (unless otherwise specified)  
Symbol  
gfs  
Parameter  
Forward Transconductance  
Min. Typ. Max. Units  
Conditions  
VDS = 50V, ID = 15A  
37  
––– –––  
S
Qg  
Total Gate Charge  
–––  
–––  
–––  
–––  
25  
8.2  
7.9  
17  
38  
ID = 15A  
Qgs  
Qgd  
Qsync  
td(on)  
tr  
Gate-to-Source Charge  
–––  
–––  
–––  
VDS = 100V  
nC  
Gate-to-Drain ("Miller") Charge  
Total Gate Charge Sync. (Qg - Qgd)  
VGS = 10V  
ID = 15A, VDS =0V, VGS = 10V  
VDD = 130V  
Turn-On Delay Time  
––– 13.4 –––  
––– 22.4 –––  
––– 25.4 –––  
––– 14.8 –––  
––– 1710 –––  
––– 125 –––  
Rise Time  
ID = 15A  
ns  
td(off)  
tf  
Turn-Off Delay Time  
RG = 7.3Ω  
VGS = 10V  
Fall Time  
Ciss  
Coss  
Crss  
Input Capacitance  
VGS = 0V  
Output Capacitance  
VDS = 50V  
Reverse Transfer Capacitance  
Effective Output Capacitance (Energy Related)  
Effective Output Capacitance (Time Related)  
–––  
30  
–––  
ƒ = 1.0MHz (See Fig.5)  
pF  
C
oss eff. (ER)  
oss eff. (TR)  
––– 113 –––  
––– 317 –––  
V
GS = 0V, VDS = 0V to 160V (See Fig.11)  
GS = 0V, VDS = 0V to 160V  
C
V
Diode Characteristics  
Symbol  
Parameter  
Continuous Source Current  
Min. Typ. Max. Units  
Conditions  
MOSFET symbol  
IS  
D
––– –––  
24  
(Body Diode)  
showing the  
A
G
ISM  
Pulsed Source Current  
(Body Diode)  
integral reverse  
––– ––– 100  
S
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
––– –––  
1.3  
–––  
–––  
V
TJ = 25°C, IS = 15A, VGS = 0V  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
VR = 100V,  
IF = 15A  
di/dt = 100A/µs  
–––  
–––  
78  
99  
ns  
Qrr  
Reverse Recovery Charge  
––– 294 –––  
––– 432 –––  
nC  
A
IRRM  
ton  
Reverse Recovery Current  
Forward Turn-On Time  
–––  
7.6  
–––  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
2
www.irf.com  
IRFR/U4620PbF  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
12V  
VGS  
15V  
12V  
TOP  
TOP  
10V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
BOTTOM  
BOTTOM  
5.0V  
1
5.0V  
1
0.1  
0.01  
60µs PULSE WIDTH  
Tj = 175°C  
60µs PULSE WIDTH  
Tj = 25°C  
0.1  
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000  
100  
10  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
I
= 15A  
D
V
= 10V  
GS  
T = 175°C  
J
T
= 25°C  
J
1
V
= 50V  
DS  
60µs PULSE WIDTH  
0.1  
2
4
6
8
10  
12  
14  
16  
-60 -40 -20 0 20 40 60 80 100120140160180  
, Junction Temperature (°C)  
T
J
V
, Gate-to-Source Voltage (V)  
GS  
Fig 4. Normalized On-Resistance vs. Temperature  
Fig 3. Typical Transfer Characteristics  
14.0  
100000  
10000  
1000  
100  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
I = 15A  
D
C
C
C
+ C , C  
SHORTED  
ds  
iss  
gs  
gd  
V
= 160V  
= 100V  
12.0  
10.0  
8.0  
DS  
= C  
rss  
oss  
gd  
V
DS  
= C + C  
ds  
gd  
VDS= 40V  
C
iss  
6.0  
C
oss  
4.0  
C
rss  
2.0  
0.0  
10  
0
5
10  
15  
20  
25  
30  
35  
1
10  
100  
1000  
Q , Total Gate Charge (nC)  
G
V
, Drain-to-Source Voltage (V)  
DS  
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage  
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage  
www.irf.com  
3
IRFR/U4620PbF  
1000  
100  
10  
100  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
100µsec  
T
= 175°C  
1msec  
J
T
= 25°C  
J
10  
10msec  
DC  
1
Tc = 25°C  
Tj = 175°C  
Single Pulse  
V
= 0V  
1.4  
GS  
0.1  
1.0  
1
10  
100  
1000  
0.2  
0.4  
V
0.6  
0.8  
1.0  
1.2  
1.6  
175  
200  
V
, Drain-to-Source Voltage (V)  
, Source-to-Drain Voltage (V)  
DS  
SD  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
30  
25  
20  
15  
10  
5
260  
250  
240  
230  
220  
210  
200  
190  
Id = 5mA  
0
25  
50  
75  
100  
125  
150  
-60 -40 -20 0 20 40 60 80 100120140160180  
T
, Case Temperature (°C)  
T , Temperature ( °C )  
J
Fig 10. Drain-to-Source Breakdown Voltage  
Fig 9. MaxiCmum Drain Current vs.  
Case Temperature  
3.0  
500  
I
D
450  
400  
350  
300  
250  
200  
150  
100  
50  
TOP  
2.05A  
2.94A  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
BOTTOM 15A  
0
-50  
0
50  
100  
150  
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
V
Drain-to-Source Voltage (V)  
J
DS,  
Fig 11. Typical COSS Stored Energy  
Fig 12. Maximum Avalanche Energy vs. DrainCurrent  
4
www.irf.com  
IRFR/U4620PbF  
10  
1
D = 0.50  
0.20  
0.10  
0.05  
R1  
R1  
R2  
R2  
0.1  
Ri (°C/W) τi (sec)  
τ
J τJ  
τ
0.456  
0.000311  
τ
Cτ  
0.02  
0.01  
1 τ1  
Ci= τi/Ri  
τ
0.589  
0.003759  
2τ2  
0.01  
0.001  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
SINGLE PULSE  
( THERMAL RESPONSE )  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
100  
10  
1
Duty Cycle = Single Pulse  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming Tj = 150°C and  
Tstart =25°C (Single Pulse)  
0.01  
0.05  
0.10  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming Τj = 25°C and  
Tstart = 150°C.  
0.1  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 14. Typical Avalanche Current vs.Pulsewidth  
120  
100  
80  
60  
40  
20  
0
Notes on Repetitive Avalanche Curves , Figures 14, 15:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a temperature far in  
excess of Tjmax. This is validated for every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.  
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as  
25°C in Figure 14, 15).  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
TOP  
BOTTOM 1.0% Duty Cycle  
= 15A  
Single Pulse  
I
D
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)  
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
25  
50  
75  
100  
125  
150  
175  
Iav = 2DT/ [1.3·BV·Zth]  
Starting T , Junction Temperature (°C)  
EAS (AR) = PD (ave)·tav  
J
Fig 15. Maximum Avalanche Energy vs. Temperature  
www.irf.com  
5
IRFR/U4620PbF  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
I = 10A  
F
V
= 100V  
R
T = 25°C  
J
T = 125°C  
J
I
I
= 100µA  
D
D
3.0  
2.5  
2.0  
1.5  
1.0  
= 250uA  
ID = 1.0mA  
ID = 1.0A  
0
200  
400  
600  
800  
1000  
-75 -50 -25  
0
25 50 75 100 125 150 175  
di /dt (A/µs)  
T
, Temperature ( °C )  
F
J
Fig. 17 - Typical Recovery Current vs. dif/dt  
Fig 16. Threshold Voltage vs. Temperature  
2000  
90  
I = 10A  
I = 15A  
F
F
1800  
1600  
1400  
1200  
1000  
800  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 100V  
V
= 100V  
R
R
T = 25°C  
T = 25°C  
J
J
T = 125°C  
J
T = 125°C  
J
600  
400  
200  
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
di /dt (A/µs)  
di /dt (A/µs)  
F
F
Fig. 18 - Typical Recovery Current vs. dif/dt  
Fig. 19 - Typical Stored Charge vs. dif/dt  
2000  
I = 15A  
F
V
1800  
1600  
1400  
1200  
1000  
800  
= 100V  
R
T = 25°C  
J
T = 125°C  
J
600  
400  
200  
0
200  
400  
600  
800  
1000  
di /dt (A/µs)  
F
Fig. 20 - Typical Stored Charge vs. dif/dt  
6
www.irf.com  
IRFR/U4620PbF  
Driver Gate Drive  
P.W.  
P.W.  
Period  
D.U.T  
Period  
D =  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Current  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
2
GS  
0.01  
t
p
I
AS  
Fig 22b. Unclamped Inductive Waveforms  
Fig 22a. Unclamped Inductive Test Circuit  
RD  
VDS  
V
DS  
90%  
VGS  
D.U.T.  
RG  
+
VDD  
-
VGS  
10%  
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 23a. Switching Time Test Circuit  
Fig 23b. Switching Time Waveforms  
Id  
Current Regulator  
Same Type as D.U.T.  
Vds  
Vgs  
50KΩ  
.2µF  
12V  
.3µF  
+
V
DS  
D.U.T.  
-
Vgs(th)  
V
GS  
3mA  
I
I
D
G
Qgs1  
Qgs2  
Qgd  
Qgodr  
Current Sampling Resistors  
Fig 24a. Gate Charge Test Circuit  
Fig 24b. Gate Charge Waveform  
www.irf.com  
7
IRFR/U4620PbF  
D-Pak (TO-252AA) Package Outline  
Dimensions are shown in millimeters (inches)  
D-Pak (TO-252AA) Part Marking Information  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
8
www.irf.com  
IRFR/U4620PbF  
I-Pak (TO-251AA) Package Outline  
Dimensions are shown in millimeters (inches)  
I-Pak (TO-251AA) Part Marking Information  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
www.irf.com  
9
IRFR/U4620PbF  
D-Pak (TO-252AA) Tape & Reel Information  
Dimensions are shown in millimeters (inches)  
TR  
TRL  
TRR  
16.3 ( .641 )  
15.7 ( .619 )  
16.3 ( .641 )  
15.7 ( .619 )  
12.1 ( .476 )  
11.9 ( .469 )  
8.1 ( .318 )  
7.9 ( .312 )  
FEED DIRECTION  
FEED DIRECTION  
NOTES :  
1. CONTROLLING DIMENSION : MILLIMETER.  
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ).  
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.  
13 INCH  
16 mm  
NOTES :  
1. OUTLINE CONFORMS TO EIA-481.  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
10  
www.irf.com  
IRFR/U4620PbF  
Orderable part number  
Package Type  
Standard Pack  
Note  
Form  
Tube/Bulk  
Quantity  
75  
IRFR4620PbF  
IRFR4620TRPbF  
D-PAK  
D-PAK  
Tape and Reel  
2000  
IRFU4620PbF  
I-PAK  
Tube/Bulk  
75  
Qualification Information†  
Industrial ††  
(per JEDEC JESD47F††† guidelines)  
Qualification level  
Comments: This family of products has passed JEDEC’s Industrial  
qualification. IR’s Consumer qualification level is granted by extension of the  
higher Industrial level.  
MSL1  
D-PAK  
(per JEDEC J-STD-020D†††  
)
Moisture Sensitivity Level  
RoHS Compliant  
Not applicable  
I-PAK  
Yes  
Qualification standards can be found at International Rectifier’s web site http://www.irf.com/product-info/reliability  
†† Higher qualification ratings may be available should the user have such requirements. Please contact  
your International Rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/  
††† Applicable version of JEDEC standard at the time of product release.  
Notes:  
 Repetitive rating; pulse width limited by max. junction  
temperature.  
‚ Limited by TJmax, starting TJ = 25°C, L = 1.0mH  
RG = 25, IAS = 15A, VGS =10V. Part not recommended for use  
above this value .  
Coss eff. (TR) is a fixed capacitance that gives the same charging time  
as Coss while VDS is rising from 0 to 80% VDSS  
† Coss eff. (ER) is a fixed capacitance that gives the same energy as  
Coss while VDS is rising from 0 to 80% VDSS  
‡ When mounted on 1" square PCB (FR-4 or G-10 Material). For recom  
.
.
ƒ ISD 15A, di/dt 634A/µs, VDD V(BR)DSS, TJ 175°C.  
„ Pulse width 400µs; duty cycle 2%.  
mended footprint and soldering techniques refer to application note #AN-994.  
ˆ Rθ is measured at TJ approximately 90°C  
Data and specifications subject to change without notice  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 06/2009  
www.irf.com  
11  

相关型号:

IRFR48Z

AUTOMOTIVE MOSFET
INFINEON

IRFR48ZPBF

AUTOMOTIVE MOSFET
INFINEON

IRFR48ZTRL

AUTOMOTIVE MOSFET
KERSEMI

IRFR48ZTRL

Power Field-Effect Transistor, 42A I(D), 55V, 0.011ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-252AA, PLASTIC, DPAK-3
INFINEON

IRFR48ZTRLPBF

Power Field-Effect Transistor, 42A I(D), 55V, 0.011ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-252AA, LEAD FREE, PLASTIC, DPAK-3
INFINEON

IRFR48ZTRPBF

Power Field-Effect Transistor, 42A I(D), 55V, 0.011ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-252AA, LEAD FREE, PLASTIC, DPAK-3
INFINEON

IRFR48ZTRR

Power Field-Effect Transistor, 42A I(D), 55V, 0.011ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-252AA, PLASTIC, DPAK-3
INFINEON

IRFR48ZTRRPBF

Power Field-Effect Transistor, 42A I(D), 55V, 0.011ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-252AA, LEAD FREE, PLASTIC, DPAK-3
INFINEON

IRFR5305

Power MOSFET(Vdss=-55V, Rds(on)=0.065ohm, Id=-31A)
INFINEON

IRFR5305

Ultra Low On-Resistance
KERSEMI

IRFR5305HR

暂无描述
INFINEON

IRFR5305PBF

HEXFET㈢ Power MOSFET ( VDSS = -55V , RDS(on) = 0.065ヘ , ID = -31A )
INFINEON