IRFS3006TRRPBF [INFINEON]

Power Field-Effect Transistor, 195A I(D), 60V, 0.0025ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, LEAD FREE, D2PAK-3;
IRFS3006TRRPBF
型号: IRFS3006TRRPBF
厂家: Infineon    Infineon
描述:

Power Field-Effect Transistor, 195A I(D), 60V, 0.0025ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, LEAD FREE, D2PAK-3

开关 脉冲 晶体管
文件: 总10页 (文件大小:361K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 96188  
IRFS3006PbF  
IRFSL3006PbF  
HEXFET® Power MOSFET  
Applications  
l High Efficiency Synchronous Rectification in SMPS  
l Uninterruptible Power Supply  
l High Speed Power Switching  
D
S
VDSS  
RDS(on) typ.  
max.  
60V  
2.0m  
2.5m  
270A  
l Hard Switched and High Frequency Circuits  
G
ID  
(Silicon Limited)  
ID (Package Limited)  
195A  
Benefits  
l Improved Gate, Avalanche and Dynamic dV/dt  
D
Ruggedness  
D
l Fully Characterized Capacitance and Avalanche  
SOA  
S
l Enhanced body diode dV/dt and dI/dt Capability  
l Lead-Free  
S
D
G
G
D2Pak  
IRFS3006PbF  
TO-262  
IRFSL3006PbF  
G
D
S
Gate  
Drain  
Source  
Absolute Maximum Ratings  
Symbol  
ID @ TC = 25°C  
ID @ TC = 100°C  
ID @ TC = 25°C  
IDM  
Parameter  
Max.  
270  
191  
195  
1080  
375  
2.5  
Units  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Wire Bond Limited)  
Pulsed Drain Current  
A
PD @TC = 25°C  
W
Maximum Power Dissipation  
Linear Derating Factor  
W/°C  
V
VGS  
± 20  
10  
Gate-to-Source Voltage  
Peak Diode Recovery  
dv/dt  
TJ  
V/ns  
-55 to + 175  
Operating Junction and  
TSTG  
Storage Temperature Range  
°C  
300  
Soldering Temperature, for 10 seconds  
(1.6mm from case)  
10lb in (1.1N m)  
Mounting torque, 6-32 or M3 screw  
Avalanche Characteristics  
Single Pulse Avalanche Energy  
EAS (Thermally limited)  
320  
mJ  
A
Avalanche Current  
IAR  
See Fig. 14, 15, 22a, 22b,  
Repetitive Avalanche Energy  
EAR  
mJ  
Thermal Resistance  
Symbol  
Parameter  
Typ.  
–––  
Max.  
0.4  
Units  
RθJC  
Junction-to-Case  
°C/W  
RθJA  
–––  
40  
Junction-to-Ambient  
www.irf.com  
1
10/06/08  
IRFS/SL3006PbF  
Static @ TJ = 25°C (unless otherwise specified)  
Symbol  
V(BR)DSS  
Parameter  
Min. Typ. Max. Units  
60 ––– –––  
––– 0.07 ––– V/°C Reference to 25°C, ID = 5mA  
Conditions  
VGS = 0V, ID = 250µA  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
V
V(BR)DSS/TJ  
RDS(on)  
–––  
2.0  
2.0  
2.5  
4.0  
20  
VGS = 10V, ID = 170A  
VDS = VGS, ID = 250µA  
mΩ  
V
VGS(th)  
–––  
IDSS  
Drain-to-Source Leakage Current  
––– –––  
µA  
VDS = 60V, VGS = 0V  
––– ––– 250  
––– ––– 100  
––– ––– -100  
V
DS = 60V, VGS = 0V, TJ = 125°C  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Internal Gate Resistance  
nA VGS = 20V  
GS = -20V  
V
RG  
–––  
2.0  
–––  
Dynamic @ TJ = 25°C (unless otherwise specified)  
Symbol  
gfs  
Qg  
Parameter  
Forward Transconductance  
Total Gate Charge  
Min. Typ. Max. Units  
Conditions  
VDS = 25V, ID = 170A  
280 ––– –––  
S
––– 200 300  
nC ID = 170A  
VDS =30V  
Qgs  
Qgd  
Qsync  
td(on)  
tr  
Gate-to-Source Charge  
–––  
–––  
37  
60  
–––  
Gate-to-Drain ("Miller") Charge  
Total Gate Charge Sync. (Qg - Qgd)  
VGS = 10V  
––– 140 –––  
––– 16 –––  
ID = 170A, VDS =0V, VGS = 10V  
Turn-On Delay Time  
ns VDD = 39V  
ID = 170A  
Rise Time  
––– 182 –––  
––– 118 –––  
––– 189 –––  
––– 8970 –––  
––– 1020 –––  
––– 534 –––  
––– 1480 –––  
––– 1920 –––  
td(off)  
tf  
Turn-Off Delay Time  
RG = 2.7Ω  
VGS = 10V  
Fall Time  
Ciss  
Coss  
Crss  
Input Capacitance  
pF  
VGS = 0V  
Output Capacitance  
VDS = 50V  
Reverse Transfer Capacitance  
Effective Output Capacitance (Energy Related)  
Effective Output Capacitance (Time Related)  
ƒ = 1.0MHz, See Fig. 5  
C
oss eff. (ER)  
oss eff. (TR)  
V
GS = 0V, VDS = 0V to 48V , See Fig. 11  
GS = 0V, VDS = 0V to 48V  
C
V
Diode Characteristics  
Symbol  
Parameter  
Min. Typ. Max. Units  
Conditions  
MOSFET symbol  
IS  
Continuous Source Current  
––– –––  
A
D
S
270  
(Body Diode)  
Pulsed Source Current  
(Body Diode)  
showing the  
integral reverse  
G
ISM  
––– ––– 1080  
A
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
––– –––  
1.3  
–––  
–––  
–––  
–––  
–––  
V
TJ = 25°C, IS = 170A, VGS = 0V  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
VR = 51V,  
IF = 170A  
di/dt = 100A/µs  
–––  
–––  
–––  
–––  
–––  
44  
48  
63  
77  
2.4  
ns  
Qrr  
Reverse Recovery Charge  
nC  
IRRM  
ton  
Reverse Recovery Current  
Forward Turn-On Time  
A
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
Notes:  
 Calculated continuous current based on maximum allowable junction  
temperature. Bond wire current limit is 195A. Note that current  
limitations arising from heating of the device leads may occur with  
some lead mounting arrangements. (Refer to AN-1140)  
‚ Repetitive rating; pulse width limited by max. junction  
temperature.  
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.022mH  
RG = 25, IAS = 170A, VGS =10V. Part not recommended for use  
above this value .  
„ ISD 170A, di/dt 1360A/µs, VDD V(BR)DSS, TJ 175°C.  
Pulse width 400µs; duty cycle 2%.  
† Coss eff. (TR) is a fixed capacitance that gives the same charging time  
as Coss while VDS is rising from 0 to 80% VDSS  
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as  
Coss while VDS is rising from 0 to 80% VDSS  
ˆ When mounted on 1" square PCB (FR-4 or G-10 Material). For recom  
.
.
mended footprint and soldering techniques refer to application note #AN-994.  
‰ Rθ is measured at TJ approximately 90°C  
ŠRθJC value shown is at time zero  
2
www.irf.com  
IRFS/SL3006PbF  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
10V  
8.0V  
6.0V  
5.0V  
4.5V  
4.0V  
3.5V  
VGS  
15V  
TOP  
TOP  
10V  
8.0V  
6.0V  
5.0V  
4.5V  
4.0V  
3.5V  
BOTTOM  
BOTTOM  
3.5V  
60µs PULSE WIDTH  
3.5V  
1
60µs PULSE WIDTH  
Tj = 175°C  
Tj = 25°C  
1
0.1  
1
10  
100  
0.1  
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
2.5  
2.0  
1.5  
1.0  
0.5  
1000  
100  
10  
I
= 170A  
= 10V  
D
V
GS  
T
= 175°C  
J
T
= 25°C  
J
V
= 25V  
DS  
60µs PULSE WIDTH  
1
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
-60 -40 -20  
0
20 40 60 80 100 120 140 160 180  
V
, Gate-to-Source Voltage (V)  
GS  
T
, Junction Temperature (°C)  
J
Fig 4. Normalized On-Resistance vs. Temperature  
Fig 3. Typical Transfer Characteristics  
16000  
12000  
8000  
4000  
0
16  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
I = 170A  
D
C
C
C
+ C , C  
SHORTED  
iss  
gs  
gd  
ds  
V
V
= 48V  
= 30V  
DS  
DS  
= C  
rss  
oss  
gd  
= C + C  
12  
8
ds  
gd  
C
iss  
4
C
oss  
C
rss  
0
0
40  
80  
120 160 200 240 280  
1
10  
, Drain-to-Source Voltage (V)  
100  
Q
Total Gate Charge (nC)  
G
V
DS  
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage  
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage  
www.irf.com  
3
IRFS/SL3006PbF  
1000  
10000  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
T
= 175°C  
J
100  
10  
1
100µsec  
LIMITED BY PACKAGE  
1msec  
T
J
= 25°C  
10msec  
DC  
1
Tc = 25°C  
Tj = 175°C  
V
= 0V  
GS  
Single Pulse  
0.1  
0.1  
0.0  
0.4  
0.8  
1.2  
1.6  
2.0  
0.1  
1
10  
100  
V
, Drain-toSource Voltage (V)  
V
, Source-to-Drain Voltage (V)  
DS  
SD  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
80  
75  
70  
65  
60  
55  
300  
I
= 5mA  
D
Limited By Package  
250  
200  
150  
100  
50  
0
-60 -40 -20  
0
20 40 60 80 100 120 140 160 180  
25  
50  
75  
100  
125  
150  
175  
T
, Junction Temperature (°C)  
J
T
, Case Temperature (°C)  
C
Fig 9. Maximum Drain Current vs.  
Fig 10. Drain-to-Source Breakdown Voltage  
Case Temperature  
1400  
2.0  
1.5  
1.0  
0.5  
0.0  
I
D
1200  
1000  
800  
600  
400  
200  
0
TOP  
20A  
27A  
170A  
BOTTOM  
0
10  
V
20  
30  
40  
50  
60  
25  
50  
75  
100  
125  
150  
175  
Drain-to-Source Voltage (V)  
Starting T , Junction Temperature (°C)  
DS,  
J
Fig 11. Typical COSS Stored Energy  
Fig 12. Maximum Avalanche Energy Vs. DrainCurrent  
4
www.irf.com  
IRFS/SL3006PbF  
1
0.1  
D = 0.50  
0.20  
0.10  
0.05  
R1  
R1  
R2  
R2  
τι  
0.01  
(sec)  
Ri (°C/W)  
0.02  
0.01  
τJ  
τC  
τJ  
τ1  
0.175365 0.000343  
0.22547 0.006073  
τ
2τ2  
τ1  
Ci= τi/Ri  
0.001  
0.0001  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
1000  
100  
10  
Duty Cycle = Single Pulse  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming Tj = 150°C and  
Tstart =25°C (Single Pulse)  
0.01  
0.05  
0.10  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming ∆Τ j = 25°C and  
Tstart = 150°C.  
1
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 14. Typical Avalanche Current vs.Pulsewidth  
400  
300  
200  
100  
0
Notes on Repetitive Avalanche Curves , Figures 14, 15:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a temperature far in  
excess of Tjmax. This is validated for every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.  
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as  
25°C in Figure 14, 15).  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
TOP  
BOTTOM 1% Duty Cycle  
= 170A  
Single Pulse  
I
D
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)  
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
25  
50  
75  
100  
125  
150  
175  
Iav = 2DT/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·tav  
Starting T , Junction Temperature (°C)  
J
Fig 15. Maximum Avalanche Energy vs. Temperature  
www.irf.com  
5
IRFS/SL3006PbF  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
20  
16  
12  
8
I
I
I
= 1.0A  
D
D
D
= 1.0mA  
= 250µA  
I
= 112A  
F
V
= 51V  
R
4
T
= 125°C  
= 25°C  
J
J
T
0
100  
200  
300  
400  
500  
600  
700  
800  
-75 -50 -25  
0
J
25 50 75 100 125 150 175  
, Temperature ( °C )  
di / dt - (A / µs)  
T
f
Fig. 17 - Typical Recovery Current vs. dif/dt  
Fig 16. Threshold Voltage Vs. Temperature  
20  
700  
600  
500  
400  
300  
16  
12  
8
I
= 170A  
= 51V  
I
= 112A  
= 51V  
200  
100  
0
F
F
V
V
T
R
4
0
R
T
= 125°C  
= 25°C  
= 125°C  
= 25°C  
J
J
T
T
J
J
100  
200  
300  
400  
500  
600  
700  
800  
100  
200  
300  
400  
500  
600  
700  
800  
di / dt - (A / µs)  
di / dt - (A / µs)  
f
f
Fig. 18 - Typical Recovery Current vs. dif/dt  
Fig. 19 - Typical Stored Charge vs. dif/dt  
700  
600  
500  
400  
300  
200  
100  
0
I
= 170A  
= 51V  
F
V
T
R
= 125°C  
= 25°C  
J
T
J
100  
200  
300  
400  
500  
600  
700  
800  
di / dt - (A / µs)  
f
Fig. 20 - Typical Stored Charge vs. dif/dt  
6
www.irf.com  
IRFS/SL3006PbF  
Driver Gate Drive  
P.W.  
P.W.  
Period  
D.U.T  
Period  
D =  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Current  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
2
GS  
0.01  
t
p
I
AS  
Fig 22b. Unclamped Inductive Waveforms  
Fig 22a. Unclamped Inductive Test Circuit  
RD  
VDS  
V
DS  
90%  
VGS  
D.U.T.  
RG  
+
VDD  
-
VGS  
10%  
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 23a. Switching Time Test Circuit  
Fig 23b. Switching Time Waveforms  
Id  
Current Regulator  
Same Type as D.U.T.  
Vds  
Vgs  
50KΩ  
.2µF  
12V  
.3µF  
+
V
DS  
D.U.T.  
-
Vgs(th)  
V
GS  
3mA  
I
I
D
G
Qgs1  
Qgs2  
Qgd  
Qgodr  
Current Sampling Resistors  
Fig 24a. Gate Charge Test Circuit  
Fig 24b. Gate Charge Waveform  
www.irf.com  
7
IRFS/SL3006PbF  
D2Pak (TO-263AB) Package Outline  
Dimensions are shown in millimeters (inches)  
D2Pak (TO-263AB) Part Marking Information  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
8
www.irf.com  
IRFS/SL3006PbF  
TO-262 Package Outline  
Dimensions are shown in millimeters (inches)  
TO-262 Part Marking Information  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
www.irf.com  
9
IRFS/SL3006PbF  
D2Pak (TO-263AB) Tape & Reel Information  
Dimensions are shown in millimeters (inches)  
TRR  
1.60 (.063)  
1.50 (.059)  
1.60 (.063)  
1.50 (.059)  
4.10 (.161)  
3.90 (.153)  
0.368 (.0145)  
0.342 (.0135)  
FEED DIRECTION  
1.85 (.073)  
11.60 (.457)  
11.40 (.449)  
1.65 (.065)  
24.30 (.957)  
23.90 (.941)  
15.42 (.609)  
15.22 (.601)  
TRL  
1.75 (.069)  
1.25 (.049)  
10.90 (.429)  
10.70 (.421)  
4.72 (.136)  
4.52 (.178)  
16.10 (.634)  
15.90 (.626)  
FEED DIRECTION  
13.50 (.532)  
12.80 (.504)  
27.40 (1.079)  
23.90 (.941)  
4
330.00  
(14.173)  
MAX.  
60.00 (2.362)  
MIN.  
30.40 (1.197)  
MAX.  
NOTES :  
1. COMFORMS TO EIA-418.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION MEASURED @ HUB.  
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.  
26.40 (1.039)  
24.40 (.961)  
4
3
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 10/2008  
www.irf.com  
10  

相关型号:

IRFS30N20DTRLPBF

Power Field-Effect Transistor, 30A I(D), 200V, 0.082ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, D2PAK-3
INFINEON

IRFS30N20DTRR

TRANSISTOR | MOSFET | N-CHANNEL | 200V V(BR)DSS | 30A I(D) | TO-263AB
ETC

IRFS30N20DTRRPBF

Power Field-Effect Transistor, 30A I(D), 200V, 0.082ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, D2PAK-3
INFINEON

IRFS3107

Power Field-Effect Transistor, 195A I(D), 75V, 0.003ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, PLASTIC, D2PAK-3
INFINEON

IRFS3107-7P

75V 单个 N 通道 HEXFET Power MOSFET, 采用 D2-Pak 7 引脚封装
INFINEON

IRFS3107-7PPBF

HEXFET Power MOSFET
INFINEON

IRFS3107PBF

HEXFET Power MOSFET
INFINEON

IRFS3107TRLPBF

Power Field-Effect Transistor, 195A I(D), 75V, 0.003ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, LEAD FREE, PLASTIC, D2PAK-3
INFINEON

IRFS3107TRRPBF

Power Field-Effect Transistor, 195A I(D), 75V, 0.003ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, LEAD FREE, PLASTIC, D2PAK-3
INFINEON

IRFS31N20D

Power MOSFET(Vdss=200V, Rds(on)max=0.082ohm, Id=31A)
INFINEON

IRFS31N20DHR

Power Field-Effect Transistor, 31A I(D), 200V, 0.082ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, D2PAK-3
INFINEON