IRFS3107-7PPBF [INFINEON]

HEXFET Power MOSFET; HEXFET功率MOSFET
IRFS3107-7PPBF
型号: IRFS3107-7PPBF
厂家: Infineon    Infineon
描述:

HEXFET Power MOSFET
HEXFET功率MOSFET

晶体 晶体管 功率场效应晶体管 开关 脉冲 PC
文件: 总9页 (文件大小:316K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD -97344  
IRFS3107-7PPbF  
HEXFET® Power MOSFET  
Applications  
D
VDSS  
75V  
l High Efficiency Synchronous Rectification in SMPS  
l Uninterruptible Power Supply  
l High Speed Power Switching  
RDS(on) typ.  
2.1m  
2.6m  
max.  
G
l Hard Switched and High Frequency Circuits  
ID  
260A  
240A  
S
ID (Package Limited)  
Benefits  
l Improved Gate, Avalanche and Dynamic dV/dt  
D
Ruggedness  
l Fully Characterized Capacitance and Avalanche  
SOA  
l Enhanced body diode dV/dt and dI/dt Capability  
l Lead-Free  
S
S
S
S
S
G
D2Pak 7 Pin  
G
D
S
Gate  
Drain  
Source  
Absolute Maximum Ratings  
Symbol  
Parameter  
Max.  
260  
Units  
ID @ TC = 25°C  
Continuous Drain Current, VGS @ 10V  
ID @ TC = 100°C  
ID @ TC = 25°C  
IDM  
Continuous Drain Current, VGS @ 10V  
190  
A
Continuous Drain Current, VGS @ 10V (Package Limited)  
Pulsed Drain Current c  
240  
1060  
370  
PD @TC = 25°C  
W
Maximum Power Dissipation  
Linear Derating Factor  
2.5  
W/°C  
V
VGS  
± 20  
Gate-to-Source Voltage  
13  
Peak Diode Recovery e  
dv/dt  
TJ  
V/ns  
°C  
-55 to + 175  
Operating Junction and  
TSTG  
Storage Temperature Range  
Soldering Temperature, for 10 seconds  
(1.6mm from case)  
300  
10lbxin (1.1Nxm)  
Mounting torque, 6-32 or M3 screw  
Avalanche Characteristics  
Single Pulse Avalanche Energy d  
EAS (Thermally limited)  
320  
mJ  
A
Avalanche Current c  
IAR  
See Fig. 14, 15, 22a, 22b,  
Repetitive Avalanche Energy f  
EAR  
mJ  
Thermal Resistance  
Symbol  
Parameter  
Typ.  
–––  
Max.  
0.40  
40  
Units  
°C/W  
RθJC  
Junction-to-Case jk  
RθJA  
–––  
Junction-to-Ambient (PCB Mount) ij  
www.irf.com  
1
10/07/08  
IRFS3107-7PPbF  
Static @ TJ = 25°C (unless otherwise specified)  
Symbol  
V(BR)DSS  
Parameter  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
Min. Typ. Max. Units  
75 ––– –––  
––– 0.083 ––– V/°C Reference to 25°C, ID = 5mAc  
Conditions  
VGS = 0V, ID = 250µA  
V
V(BR)DSS/TJ  
RDS(on)  
–––  
2.0  
2.1  
2.6  
4.0  
20  
VGS = 10V, ID = 160A f  
mΩ  
V
VGS(th)  
–––  
VDS = VGS, ID = 250µA  
IDSS  
Drain-to-Source Leakage Current  
––– –––  
µA  
VDS = 75V, VGS = 0V  
––– ––– 250  
––– ––– 100  
––– ––– -100  
V
DS = 75V, VGS = 0V, TJ = 125°C  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Internal Gate Resistance  
nA VGS = 20V  
GS = -20V  
V
RG(int)  
–––  
2.1  
–––  
Dynamic @ TJ = 25°C (unless otherwise specified)  
Symbol  
gfs  
Qg  
Parameter  
Forward Transconductance  
Total Gate Charge  
Min. Typ. Max. Units  
Conditions  
VDS = 25V, ID = 160A  
nC ID = 160A  
260 ––– –––  
S
––– 160 240  
Qgs  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Total Gate Charge Sync. (Qg - Qgd)  
Turn-On Delay Time  
–––  
–––  
38  
57  
–––  
–––  
V
DS = 38V  
Qgd  
VGS = 10V f  
Qsync  
––– 103 –––  
ID = 160A, VDS =0V, VGS = 10V  
ns VDD = 49V  
td(on)  
–––  
–––  
17  
80  
–––  
–––  
tr  
Rise Time  
ID = 160A  
RG = 2.7Ω  
VGS = 10V f  
VGS = 0V  
td(off)  
Turn-Off Delay Time  
––– 100 –––  
––– 64 –––  
tf  
Fall Time  
Ciss  
Input Capacitance  
––– 9200 –––  
––– 850 –––  
––– 400 –––  
––– 1150 –––  
––– 1500 –––  
Coss  
Output Capacitance  
V
DS = 50V  
pF ƒ = 1.0MHz  
Crss  
Reverse Transfer Capacitance  
Coss eff. (ER)  
Coss eff. (TR)  
VGS = 0V, VDS = 0V to 60V h  
Effective Output Capacitance (Energy Related)  
h
VGS = 0V, VDS = 0V to 60V g  
Effective Output Capacitance (Time Related)  
g
Diode Characteristics  
Symbol  
Parameter  
Min. Typ. Max. Units  
Conditions  
D
S
IS  
Continuous Source Current  
––– –––  
A
MOSFET symbol  
260  
(Body Diode)  
Pulsed Source Current  
(Body Diode)ꢁc  
showing the  
integral reverse  
G
ISM  
––– ––– 1060  
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
––– –––  
1.3  
–––  
–––  
V
TJ = 25°C, IS = 160A, VGS = 0V f  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
VR = 64V,  
–––  
–––  
52  
63  
ns  
IF = 160A  
di/dt = 100A/µs f  
Qrr  
Reverse Recovery Charge  
––– 110 –––  
––– 160 –––  
nC  
IRRM  
ton  
Reverse Recovery Current  
Forward Turn-On Time  
–––  
3.8  
–––  
A
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
Notes:  
 Repetitive rating; pulse width limited by max. junction  
temperature.  
‚ Limited by TJmax, starting TJ = 25°C, L = 0.026mH  
RG = 25, IAS = 160A, VGS =10V. Part not recommended for use  
above this value .  
ƒ ISD 160A, di/dt 1420A/µs, VDD V(BR)DSS, TJ 175°C.  
„ Pulse width 400µs; duty cycle 2%.  
Coss eff. (TR) is a fixed capacitance that gives the same charging time  
as Coss while VDS is rising from 0 to 80% VDSS  
† Coss eff. (ER) is a fixed capacitance that gives the same energy as  
Coss while VDS is rising from 0 to 80% VDSS  
.
.
‡ When mounted on 1" square PCB (FR-4 or G-10 Material). For recom  
mended footprint and soldering techniques refer to application note #AN-994.  
ˆ Rθ is measured at TJ approximately 90°C.  
‰ RθJC value shown is at time zero.  
2
www.irf.com  
IRFS3107-7PPbF  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
4.8V  
4.5V  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
4.8V  
4.5V  
TOP  
TOP  
BOTTOM  
BOTTOM  
4.5V  
4.5V  
60µs PULSE WIDTH  
Tj = 25°C  
60µs PULSE WIDTH  
Tj = 175°C  
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
DS  
V
, Drain-to-Source Voltage (V)  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000  
100  
10  
2.5  
2.0  
1.5  
1.0  
0.5  
I
= 160A  
= 10V  
D
V
GS  
T
= 175°C  
J
T
= 25°C  
= 25V  
J
1
V
DS  
60µs PULSE WIDTH  
0.1  
2
3
4
5
6
7
8
-60 -40 -20 0 20 40 60 80 100120140160180  
, Junction Temperature (°C)  
T
J
V
, Gate-to-Source Voltage (V)  
GS  
Fig 4. Normalized On-Resistance vs. Temperature  
Fig 3. Typical Transfer Characteristics  
100000  
10000  
1000  
14.0  
V
C
= 0V,  
f = 1 MHZ  
GS  
I = 160A  
D
= C + C , C SHORTED  
iss  
gs gd ds  
12.0  
C
= C  
V
V
= 60V  
= 38V  
rss  
gd  
DS  
DS  
C
= C + C  
ds gd  
oss  
10.0  
8.0  
6.0  
4.0  
2.0  
0.0  
C
iss  
C
oss  
C
rss  
100  
1
10  
100  
1000  
0
25 50 75 100 125 150 175 200 225  
, Total Gate Charge (nC)  
V
, Drain-to-Source Voltage (V)  
Q
G
DS  
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage  
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage  
www.irf.com  
3
IRFS3107-7PPbF  
1000  
10000  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
T
= 175°C  
J
100  
10  
1
100µsec  
T
= 25°C  
10msec  
1msec  
J
DC  
1
Tc = 25°C  
Tj = 175°C  
Single Pulse  
V
= 0V  
GS  
0.1  
0.1  
0.0  
0.5  
1.0  
1.5  
2.0  
1
10  
100  
1000  
V
, Source-to-Drain Voltage (V)  
V
, Drain-to-Source Voltage (V)  
SD  
DS  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
300  
250  
200  
150  
100  
50  
95  
90  
85  
80  
75  
70  
Id = 5mA  
Limited By Package  
0
25  
50  
75  
100  
125  
150  
175  
-60 -40 -20  
0
T
20 40 60 80 100120140160180  
, Temperature ( °C )  
J
T
, Case Temperature (°C)  
C
Fig 9. Maximum Drain Current vs.  
Fig 10. Drain-to-Source Breakdown Voltage  
Case Temperature  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
1400  
I
D
1200  
1000  
800  
600  
400  
200  
0
TOP  
28A  
50A  
BOTTOM 160A  
-10  
0
10 20 30 40 50 60 70 80  
Drain-to-Source Voltage (V)  
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
V
DS,  
Fig 11. Typical COSS Stored Energy  
Fig 12. Maximum Avalanche Energy vs. DrainCurrent  
4
www.irf.com  
IRFS3107-7PPbF  
1
D = 0.50  
0.20  
0.1  
0.10  
0.05  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
Ri (°C/W) τi (sec)  
0.01083  
0.05878  
0.15777  
0.17478  
0.00001  
τ
τ
J τJ  
τ
Cτ  
0.000086  
0.001565  
0.011192  
1τ1  
Ci= τi/Ri  
τ
τ
τ
2τ2  
3τ3  
4τ4  
0.01  
0.02  
0.01  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
SINGLE PULSE  
( THERMAL RESPONSE )  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
1000  
100  
10  
Duty Cycle = Single Pulse  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming Tj = 150°C and  
Tstart =25°C (Single Pulse)  
0.01  
0.05  
0.10  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming  
Tstart = 150°C.  
j = 25°C and  
∆Τ  
1
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 14. Typical Avalanche Current vs.Pulsewidth  
350  
300  
250  
200  
150  
100  
50  
Notes on Repetitive Avalanche Curves , Figures 14, 15:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a temperature far in  
excess of Tjmax. This is validated for every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.  
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as  
25°C in Figure 14, 15).  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
TOP  
BOTTOM 1.0% Duty Cycle  
= 160A  
Single Pulse  
I
D
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)  
0
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
25  
50  
75  
100  
125  
150  
175  
Iav = 2DT/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·tav  
Starting T , Junction Temperature (°C)  
J
Fig 15. Maximum Avalanche Energy vs. Temperature  
www.irf.com  
5
IRFS3107-7PPbF  
4.5  
4.0  
3.5  
3.0  
30  
25  
20  
15  
10  
5
I = 106A  
F
V
= 64V  
R
T = 25°C  
J
T = 125°C  
J
I
I
I
= 250µA  
= 1.0mA  
= 1.0A  
D
D
D
2.5  
2.0  
1.5  
1.0  
0
-75 -50 -25  
0
25 50 75 100 125 150 175  
, Temperature ( °C )  
0
200  
400  
600  
800  
1000  
T
di /dt (A/µs)  
J
F
Fig. 17 - Typical Recovery Current vs. dif/dt  
Fig 16. Threshold Voltage vs. Temperature  
30  
1000  
I = 160A  
F
I = 106A  
F
900  
800  
700  
600  
500  
400  
300  
200  
100  
V
= 64V  
V
= 64V  
R
25  
20  
15  
10  
5
R
T = 25°C  
T = 25°C  
J
J
T = 125°C  
J
T = 125°C  
J
0
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
di /dt (A/µs)  
di /dt (A/µs)  
F
F
Fig. 18 - Typical Recovery Current vs. dif/dt  
Fig. 19 - Typical Stored Charge vs. dif/dt  
1000  
I = 160A  
F
900  
V
= 64V  
R
T = 25°C  
J
800  
700  
600  
500  
400  
300  
200  
T = 125°C  
J
0
200  
400  
600  
800  
1000  
di /dt (A/µs)  
F
Fig. 20 - Typical Stored Charge vs. dif/dt  
6
www.irf.com  
IRFS3107-7PPbF  
Driver Gate Drive  
P.W.  
P.W.  
Period  
Period  
D =  
D.U.T  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Current  
I
SD  
Ripple  
5%  
* VGS = 5V for Logic Level Devices  
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
2
GS  
0.01Ω  
t
p
I
AS  
Fig 22b. Unclamped Inductive Waveforms  
Fig 22a. Unclamped Inductive Test Circuit  
RD  
VDS  
V
DS  
90%  
VGS  
D.U.T.  
RG  
+
VDD  
-
VGS  
10%  
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 23a. Switching Time Test Circuit  
Fig 23b. Switching Time Waveforms  
Id  
Current Regulator  
Same Type as D.U.T.  
Vds  
Vgs  
50KΩ  
.2µF  
12V  
.3µF  
+
V
DS  
D.U.T.  
-
Vgs(th)  
V
GS  
3mA  
I
I
D
G
Qgs1  
Qgs2  
Qgd  
Qgodr  
Current Sampling Resistors  
Fig 24a. Gate Charge Test Circuit  
Fig 24b. Gate Charge Waveform  
www.irf.com  
7
IRFS3107-7PPbF  
D2Pak - 7 Pin Package Outline  
Dimensions are shown in millimeters (inches)  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
8
www.irf.com  
IRFS3107-7PPbF  
D2Pak - 7 Pin Part Marking Information  
ꢀ14  
D2Pak - 7 Pin Tape and Reel  
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 10/08  
www.irf.com  
9

相关型号:

IRFS3107PBF

HEXFET Power MOSFET
INFINEON

IRFS3107TRLPBF

Power Field-Effect Transistor, 195A I(D), 75V, 0.003ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, LEAD FREE, PLASTIC, D2PAK-3
INFINEON

IRFS3107TRRPBF

Power Field-Effect Transistor, 195A I(D), 75V, 0.003ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, LEAD FREE, PLASTIC, D2PAK-3
INFINEON

IRFS31N20D

Power MOSFET(Vdss=200V, Rds(on)max=0.082ohm, Id=31A)
INFINEON

IRFS31N20DHR

Power Field-Effect Transistor, 31A I(D), 200V, 0.082ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, D2PAK-3
INFINEON

IRFS31N20DPBF

HEXFET Power MOSFET ( VDSS = 200V , RDS(on)max = 0.082ヘ , ID = 31A )
INFINEON

IRFS31N20DTRL

TRANSISTOR | MOSFET | N-CHANNEL | 200V V(BR)DSS | 31A I(D) | TO-263AB
INFINEON

IRFS31N20DTRLP

Power Field-Effect Transistor, 31A I(D), 200V, 0.082ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, LEAD FREE, PLASTIC, D2PAK-3
INFINEON

IRFS31N20DTRR

TRANSISTOR | MOSFET | N-CHANNEL | 200V V(BR)DSS | 31A I(D) | TO-263AB
INFINEON

IRFS31N20DTRRP

Power Field-Effect Transistor, 31A I(D), 200V, 0.082ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, LEAD FREE, PLASTIC, D2PAK-3
INFINEON

IRFS3206

60V 单个 N 通道 HEXFET Power MOSFET, 采用 D2-Pak 封装
INFINEON

IRFS3206PBF

HEXFET Power MOSFET
INFINEON