IRFS3206PBF [INFINEON]

HEXFET Power MOSFET; HEXFET功率MOSFET
IRFS3206PBF
型号: IRFS3206PBF
厂家: Infineon    Infineon
描述:

HEXFET Power MOSFET
HEXFET功率MOSFET

晶体 晶体管 功率场效应晶体管 开关 脉冲
文件: 总11页 (文件大小:431K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 97097  
IRFB3206PbF  
IRFS3206PbF  
IRFSL3206PbF  
HEXFET® Power MOSFET  
D
S
Applications  
VDSS  
RDS(on) typ.  
max.  
60V  
l High Efficiency Synchronous Rectification in SMPS  
l Uninterruptible Power Supply  
l High Speed Power Switching  
l Hard Switched and High Frequency Circuits  
2.4m  
3.0m  
:
:
G
ID  
210A  
Benefits  
D
D
l Improved Gate, Avalanche and Dynamic dV/dt  
D
Ruggedness  
l Fully Characterized Capacitance and Avalanche  
S
S
S
D
SOA  
D
D
G
G
G
l Enhanced body diode dV/dt and dI/dt Capability  
l Lead-Free  
D2Pak  
TO-262  
TO-220AB  
IRFS3206PbF  
IRFSL3206PbF  
IRFB3206PbF  
G
D
S
Gate  
Drain  
Source  
Absolute Maximum Ratings  
Symbol  
ID @ TC = 25°C  
ID @ TC = 100°C  
IDM  
Parameter  
Continuous Drain Current, VGS @ 10V  
Max.  
210c  
150c  
840  
Units  
A
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current d  
PD @TC = 25°C  
300  
Maximum Power Dissipation  
Linear Derating Factor  
W
2.0  
W/°C  
V
VGS  
± 20  
Gate-to-Source Voltage  
5.0  
Peak Diode Recovery f  
Operating Junction and  
dv/dt  
TJ  
V/ns  
°C  
-55 to + 175  
TSTG  
Storage Temperature Range  
Soldering Temperature, for 10 seconds  
(1.6mm from case)  
300  
10lbxin (1.1Nxm)  
Mounting torque, 6-32 or M3 screw  
Avalanche Characteristics  
Single Pulse Avalanche Energy e  
EAS (Thermally limited)  
200  
mJ  
A
Avalanche Currentꢀc  
IAR  
See Fig. 14, 15, 22a, 22b,  
Repetitive Avalanche Energy g  
EAR  
mJ  
Thermal Resistance  
Symbol  
Parameter  
Typ.  
–––  
Max.  
0.50  
–––  
62  
Units  
RθJC  
Junction-to-Case k  
RθCS  
Case-to-Sink, Flat Greased Surface , TO-220  
0.50  
–––  
°C/W  
RθJA  
Junction-to-Ambient, TO-220 k  
Junction-to-Ambient (PCB Mount) , D2Pak jk  
RθJA  
–––  
40  
www.irf.com  
1
6/5/06  
IRF/B/S/SL3206PbF  
Static @ TJ = 25°C (unless otherwise specified)  
Symbol  
V(BR)DSS  
Parameter  
Min. Typ. Max. Units  
60 ––– –––  
––– 0.07 ––– V/°C Reference to 25°C, ID = 5mAd  
Conditions  
VGS = 0V, ID = 250µA  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
V
V(BR)DSS/TJ  
RDS(on)  
–––  
2.0  
2.4  
3.0  
4.0  
20  
mVGS = 10V, ID = 75A g  
VDS = VGS, ID = 150µA  
VGS(th)  
–––  
V
IDSS  
Drain-to-Source Leakage Current  
––– –––  
µA VDS =60V, VGS = 0V  
VDS = 48V, VGS = 0V, TJ = 125°C  
nA VGS = 20V  
––– ––– 250  
––– ––– 100  
––– ––– -100  
IGSS  
RG  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Internal Gate Resistance  
VGS = -20V  
–––  
0.7  
–––  
Dynamic @ TJ = 25°C (unless otherwise specified)  
Symbol  
gfs  
Parameter  
Forward Transconductance  
Total Gate Charge  
Min. Typ. Max. Units  
Conditions  
VDS = 50V, ID = 75A  
nC ID = 75A  
210 ––– –––  
S
Qg  
––– 120 170  
Qgs  
Gate-to-Source Charge  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
29  
35  
85  
19  
82  
55  
83  
–––  
V
DS =30V  
Qgd  
Gate-to-Drain ("Miller") Charge  
Total Gate Charge Sync. (Qg - Qgd)  
Turn-On Delay Time  
VGS = 10V g  
Qsync  
–––  
–––  
–––  
–––  
–––  
ID = 75A, VDS =0V, VGS = 10V  
VDD = 30V  
td(on)  
ns  
tr  
Rise Time  
ID = 75A  
td(off)  
Turn-Off Delay Time  
RG =2.7Ω  
VGS = 10V g  
tf  
Fall Time  
Ciss  
Input Capacitance  
––– 6540 –––  
––– 720 –––  
––– 360 –––  
––– 1040 –––  
––– 1230 –––  
pF VGS = 0V  
VDS = 50V  
Coss  
Output Capacitance  
Crss  
Reverse Transfer Capacitance  
Effective Output Capacitance (Energy Related)  
Effective Output Capacitance (Time Related)h  
ƒ = 1.0MHz, See Fig.5  
Coss eff. (ER)  
Coss eff. (TR)  
VGS = 0V, VDS = 0V to 48V i, See Fig.11  
VGS = 0V, VDS = 0V to 48V hꢀ  
Diode Characteristics  
Symbol  
Parameter  
Min. Typ. Max. Units  
Conditions  
IS  
D
S
Continuous Source Current  
––– –––  
A
MOSFET symbol  
210c  
(Body Diode)  
Pulsed Source Current  
showing the  
integral reverse  
G
ISM  
––– ––– 840  
A
(Body Diode)ꢀd  
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
––– –––  
1.3  
50  
V
TJ = 25°C, IS = 75A, VGS = 0V g  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
VR = 51V,  
IF = 75A  
Reverse Recovery Time  
Reverse Recovery Charge  
–––  
–––  
–––  
–––  
–––  
33  
37  
41  
53  
2.1  
ns  
56  
di/dt = 100A/µs g  
Qrr  
62  
nC  
A
80  
IRRM  
ton  
Reverse Recovery Current  
Forward Turn-On Time  
–––  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
Notes:  
 Calculated continuous current based on maximum allowable junction  
temperature. Package limitation current is 75A  
‚ Repetitive rating; pulse width limited by max. junction  
temperature.  
† Coss eff. (TR) is a fixed capacitance that gives the same charging time  
as Coss while VDS is rising from 0 to 80% VDSS  
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as  
Coss while VDS is rising from 0 to 80% VDSS  
ˆ When mounted on 1" square PCB (FR-4 or G-10 Material). For recom  
.
.
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.07mH  
RG = 25, IAS = 75A, VGS =10V. Part not recommended for use  
above this value.  
mended footprint and soldering techniques refer to application note #AN-994.  
‰ Rθ is measured at TJ approximately 90°C  
„ ISD 75A, di/dt 360A/µs, VDD V(BR)DSS, TJ 175°C.  
Pulse width 400µs; duty cycle 2%.  
2
www.irf.com  
IRF/B/S/SL3206PbF  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
10V  
8.0V  
6.0V  
5.5V  
5.0V  
4.8V  
4.5V  
VGS  
15V  
10V  
8.0V  
6.0V  
5.5V  
5.0V  
4.8V  
4.5V  
TOP  
TOP  
BOTTOM  
BOTTOM  
4.5V  
4.5V  
60µs PULSE WIDTH  
Tj = 175°C  
60µs PULSE WIDTH  
Tj = 25°C  
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000  
100  
10  
2.5  
2.0  
1.5  
1.0  
0.5  
I
= 75A  
D
V
= 10V  
GS  
T
= 175°C  
J
T
= 25°C  
J
1
V
= 25V  
DS  
60µs PULSE WIDTH  
0.1  
2.0  
3.0  
V
4.0  
5.0  
6.0  
7.0  
8.0  
-60 -40 -20  
0
20 40 60 80 100 120 140 160 180  
, Gate-to-Source Voltage (V)  
GS  
T
, Junction Temperature (°C)  
J
Fig 4. Normalized On-Resistance vs. Temperature  
Fig 3. Typical Transfer Characteristics  
20  
12000  
10000  
8000  
6000  
4000  
2000  
0
V
C
= 0V,  
f = 1 MHZ  
I = 75A  
D
GS  
= C + C , C SHORTED  
iss  
gs  
gd ds  
V
= 48V  
DS  
C
= C  
rss  
gd  
16  
12  
8
VDS= 30V  
VDS= 12V  
C
= C + C  
oss  
ds  
gd  
Ciss  
4
Coss  
Crss  
0
0
40  
80  
120  
160  
200  
1
10  
100  
Q
Total Gate Charge (nC)  
G
V
, Drain-to-Source Voltage (V)  
DS  
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage  
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage  
www.irf.com  
3
IRF/B/S/SL3206PbF  
1000  
10000  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
T
= 175°C  
J
100  
10  
1
1msec  
100µsec  
T
= 25°C  
J
10msec  
1
Tc = 25°C  
Tj = 175°C  
Single Pulse  
DC  
V
= 0V  
GS  
0.1  
0.1  
0.1  
1
10  
100  
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
, Source-to-Drain Voltage (V)  
V
, Drain-toSource Voltage (V)  
V
DS  
SD  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
80  
75  
70  
65  
60  
55  
240  
LIMITED BY PACKAGE  
I
= 5mA  
D
200  
160  
120  
80  
40  
0
25  
50  
75  
100  
125  
150  
175  
-60 -40 -20  
0
20 40 60 80 100 120 140 160 180  
T
, Case Temperature (°C)  
C
T
, Junction Temperature (°C)  
J
Fig 9. Maximum Drain Current vs.  
Fig 10. Drain-to-Source Breakdown Voltage  
Case Temperature  
800  
2.0  
1.5  
1.0  
0.5  
0.0  
I
D
TOP  
21A  
33A  
75A  
600  
400  
200  
0
BOTTOM  
25  
50  
75  
100  
125  
150  
175  
0
10  
V
20  
30  
40  
50  
60  
Starting T , Junction Temperature (°C)  
Drain-to-Source Voltage (V)  
J
DS,  
Fig 11. Typical COSS Stored Energy  
Fig 12. Maximum Avalanche Energy Vs. DrainCurrent  
4
www.irf.com  
IRF/B/S/SL3206PbF  
1
0.1  
D = 0.50  
0.20  
0.10  
0.05  
0.02  
0.01  
0.01  
SINGLE PULSE  
( THERMAL RESPONSE )  
0.001  
0.0001  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
100  
10  
1
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming Tj = 150°C and  
Tstart =25°C (Single Pulse)  
Duty Cycle = Single Pulse  
0.01  
0.05  
0.10  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming ∆Τ j = 25°C and  
Tstart = 150°C.  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 14. Typical Avalanche Current vs.Pulsewidth  
200  
160  
120  
80  
Notes on Repetitive Avalanche Curves , Figures 14, 15:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a temperature far in  
excess of Tjmax. This is validated for every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.  
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
during avalanche).  
TOP  
BOTTOM 1% Duty Cycle  
= 75A  
Single Pulse  
I
D
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as  
25°C in Figure 14, 15).  
40  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)  
0
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
25  
50  
75  
100  
125  
150  
175  
Iav = 2DT/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·tav  
Starting T , Junction Temperature (°C)  
J
Fig 15. Maximum Avalanche Energy vs. Temperature  
www.irf.com  
5
IRF/B/S/SL3206PbF  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
18  
16  
14  
12  
10  
8
I
I
I
= 1.0A  
D
D
D
= 1.0mA  
= 250µA  
ID = 150µA  
6
I
= 30A  
F
4
V
T
= 51V  
R
= 125°C  
= 25°C  
J
J
2
T
0
-75 -50 -25  
0
J
25 50 75 100 125 150 175  
, Temperature ( °C )  
100 200 300 400 500 600 700 800 900 1000  
T
di / dt - (A / µs)  
f
Fig. 17 - Typical Recovery Current vs. dif/dt  
Fig 16. Threshold Voltage Vs. Temperature  
350  
300  
250  
200  
150  
18  
16  
14  
12  
10  
8
6
I
= 30A  
= 51V  
R
I
= 45A  
100  
50  
0
F
F
4
2
0
V
T
V
T
= 51V  
R
= 125°C  
= 125°C  
= 25°C  
J
J
J
T
T
= 25°C  
J
100 200 300 400 500 600 700 800 900 1000  
100 200 300 400 500 600 700 800 900 1000  
di / dt - (A / µs)  
f
di / dt - (A / µs)  
f
Fig. 18 - Typical Recovery Current vs. dif/dt  
Fig. 19 - Typical Stored Charge vs. dif/dt  
350  
300  
250  
200  
150  
100  
50  
I
= 45A  
= 51V  
F
V
T
R
= 125°C  
J
T
= 25°C  
J
0
100 200 300 400 500 600 700 800 900 1000  
di / dt - (A / µs)  
f
Fig. 20 - Typical Stored Charge vs. dif/dt  
6
www.irf.com  
IRF/B/S/SL3206PbF  
Driver Gate Drive  
P.W.  
P.W.  
D =  
Period  
D.U.T  
Period  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Current  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
2
GS  
0.01Ω  
t
p
I
AS  
Fig 22b. Unclamped Inductive Waveforms  
Fig 22a. Unclamped Inductive Test Circuit  
LD  
VDS  
VDS  
90%  
+
-
VDD  
10%  
VGS  
D.U.T  
VGS  
Pulse Width < 1µs  
Duty Factor < 0.1%  
td(on)  
td(off)  
tr  
tf  
Fig 23a. Switching Time Test Circuit  
Fig 23b. Switching Time Waveforms  
Id  
Current Regulator  
Same Type as D.U.T.  
Vds  
Vgs  
50KΩ  
.2µF  
12V  
.3µF  
+
V
DS  
D.U.T.  
-
Vgs(th)  
V
GS  
3mA  
I
I
D
G
Qgs1  
Qgs2  
Qgd  
Qgodr  
Current Sampling Resistors  
Fig 24a. Gate Charge Test Circuit  
Fig 24b. Gate Charge Waveform  
www.irf.com  
7
IRF/B/S/SL3206PbF  
TO-220AB Package Outline  
Dimensions are shown in millimeters (inches)  
TO-220AB Part Marking Information  
EXAMPLE: THIS IS AN IRF1010  
LOT CODE 1789  
PART NUMBER  
INTERNATIONAL  
RECTIFIER  
LOGO  
ASSEMBLED ON WW 19, 2000  
IN THE ASSEMBLY LINE "C"  
DATE CODE  
YEAR 0 = 2000  
WE E K 19  
Note: "P" in assembly lineposition  
indicates "Lead- Free"  
ASSEMBLY  
LOT CODE  
LINE C  
TO-220AB packages are not recommended for Surface Mount Application.  
8
www.irf.com  
IRF/B/S/SL3206PbF  
TO-262 Package Outline (Dimensions are shown in millimeters (inches))  
TO-262 Part Marking Information  
EXAMPLE: THIS IS AN IRL3103L  
LOT CODE 1789  
PART NUMBER  
INTERNATIONAL  
ASSEMBLED ON WW 19, 1997  
RECTIFIER  
IN THE ASSEMBLY LINE "C"  
LOGO  
DATE CODE  
YEAR 7 = 1997  
WEEK 19  
AS S E MB L Y  
LOT CODE  
LINE C  
OR  
PART NUMBER  
INTERNATIONAL  
RECTIFIER  
LOGO  
DATE CODE  
P = DE S IGNAT E S L E AD-F RE E  
PRODUCT (OPTIONAL)  
YEAR 7 = 1997  
AS S E MB L Y  
LOT CODE  
WEE K 19  
A = AS S E MB L Y S IT E CODE  
www.irf.com  
9
IRF/B/S/SL3206PbF  
D2Pak Package Outline (Dimensions are shown in millimeters (inches))  
D2Pak Part Marking Information  
THIS IS AN IRF530S WITH  
PART NUMBER  
LOT CODE 8024  
INTERNATIONAL  
RECTIFIER  
LOGO  
ASSEMBLED ON WW 02, 2000  
IN THE ASSEMBLY LINE "L"  
F530S  
DATE CODE  
YEAR 0 = 2000  
WEE K 02  
AS S E MB LY  
LOT CODE  
LINE L  
OR  
PART NUMBER  
INTERNATIONAL  
RECTIFIER  
LOGO  
F530S  
DATE CODE  
P = DE S IGNAT E S L E AD - F RE E  
PRODUCT (OPTIONAL)  
YEAR 0 = 2000  
AS S E MB L Y  
LOT CODE  
WE E K 02  
A = AS S E MB L Y S IT E CODE  
10  
www.irf.com  
IRF/B/S/SL3206PbF  
D2Pak Tape & Reel Information  
TRR  
1.60 (.063)  
1.50 (.059)  
1.60 (.063)  
1.50 (.059)  
4.10 (.161)  
3.90 (.153)  
0.368 (.0145)  
0.342 (.0135)  
FEED DIRECTION  
TRL  
11.60 (.457)  
11.40 (.449)  
1.85 (.073)  
1.65 (.065)  
24.30 (.957)  
23.90 (.941)  
15.42 (.609)  
15.22 (.601)  
1.75 (.069)  
1.25 (.049)  
10.90 (.429)  
10.70 (.421)  
4.72 (.136)  
4.52 (.178)  
16.10 (.634)  
15.90 (.626)  
FEED DIRECTION  
13.50 (.532)  
12.80 (.504)  
27.40 (1.079)  
23.90 (.941)  
4
330.00  
(14.173)  
MAX.  
60.00 (2.362)  
MIN.  
30.40 (1.197)  
MAX.  
NOTES :  
1. COMFORMS TO EIA-418.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION MEASURED @ HUB.  
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.  
26.40 (1.039)  
24.40 (.961)  
4
3
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 06/06  
www.irf.com  
11  

相关型号:

IRFS3206TRLPBF

Power Field-Effect Transistor, 120A I(D), 60V, 0.003ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, LEAD FREE, D2PAK-3
INFINEON

IRFS3206TRRPBF

Power Field-Effect Transistor, 120A I(D), 60V, 0.003ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, LEAD FREE, D2PAK-3
INFINEON

IRFS3207

HEXFET Power MOSFET
INFINEON

IRFS3207PBF

HEXFET㈢Power MOSFET
INFINEON

IRFS3207TRLPBF

Power Field-Effect Transistor, 75A I(D), 75V, 0.0045ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, LEAD FREE, PLASTIC, D2PAK-3
INFINEON

IRFS3207TRR

Power Field-Effect Transistor, 75A I(D), 75V, 0.0045ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, PLASTIC, D2PAK-3
INFINEON

IRFS3207TRRPBF

Power Field-Effect Transistor, 75A I(D), 75V, 0.0045ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, LEAD FREE, PLASTIC, D2PAK-3
INFINEON

IRFS3207Z

75V 单个 N 通道 HEXFET Power MOSFET, 采用 D2-Pak 封装
INFINEON

IRFS3207ZPBF

HEXFET Power MOSFET
INFINEON

IRFS3207ZTRLPBF

Power Field-Effect Transistor, 120A I(D), 75V, 0.0041ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, LEAD FREE, D2PAK-3
INFINEON

IRFS3207ZTRRPBF

Power Field-Effect Transistor, 120A I(D), 75V, 0.0041ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, LEAD FREE, D2PAK-3
INFINEON

IRFS3306

60V 单个 N 通道 HEXFET Power MOSFET, 采用 D2-Pak 封装
INFINEON